1
|
Hao Z, Qiu M, Liu Y, Liu Y, Chang M, Liu X, Wang Y, Sun W, Teng X, Tang Y. Co-exposure to ammonia and lipopolysaccharide-induced impaired energy metabolism via the miR-1599/HK2 axis and triggered autophagy, ER stress, and apoptosis in chicken cardiomyocytes. Poult Sci 2025; 104:104965. [PMID: 40043670 PMCID: PMC11927695 DOI: 10.1016/j.psj.2025.104965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/25/2025] [Accepted: 02/28/2025] [Indexed: 03/24/2025] Open
Abstract
Ammonia (NH3) and lipopolysaccharide (LPS), common pollutants in poultry farming environments, pose significant health risks by disrupting cellular processes. Although previous studies have demonstrated the individual effect of NH3 or LPS on human and animal health, the mechanisms underlying their combined impact on chicken heart tissue remain poorly understood. In this study, we established a chicken cardiotoxicity model to investigate the effects of NH3 and/or LPS exposure on energy metabolism, autophagy, endoplasmic reticulum (ER) stress, and apoptosis in cardiomyocytes. Our findings indicated that exposure to NH3 or/and LPS reduced ATPase activity and ATP content, led to the downregulation of HK2, PK, PDHX, and SDH, and upregulation of AMPK, resulting in impaired energy metabolism in chicken cardiomyocytes. Additionally, we found the gga-miR-1599/HK2 axis as a key regulator involved in NH3 or/and LPS-induced energy metabolism impairment. The impairment in energy metabolism activated the AMPK/mTOR pathway, which subsequently triggered autophagy, evidenced by the upregulation of Beclin, LC3-I, and LC3-II. Furthermore, decreased mTOR expression induced ER stress, as indicated by the upregulation of key markers such as ATF6, GRP78, IRE1, and PERK. ER stress, in turn, increased CHOP expression, which downregulated Bcl-2 and upregulated Bim, resulting in elevated levels of Bax, caspase-9, and caspase-3, ultimately triggering apoptosis. This study provides valuable insights into the mechanisms of NH3 and LPS co-exposure on poultry heart tissue and identifies potential molecular targets for mitigating these adverse effects.
Collapse
Affiliation(s)
- Zhiyu Hao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150000, China
| | - Minna Qiu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150000, China
| | - Yuhao Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150000, China
| | - Yuhang Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150000, China
| | - Minghang Chang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150000, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Yan Wang
- School of Public Health, Beihua University, Jilin, 132013, China
| | - Wei Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150000, China.
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150000, China.
| | - You Tang
- College of Electrical and Information Engineering, JiLin Agricultural Science and Technology University, Jilin 132101, China; College of Information Technology, Jilin Agricultural University, Changchun, Jilin, 132101, China.
| |
Collapse
|
2
|
Chen D, Tang H, Liu J, Zhang H, Rao K, Teng X, Yang F, Liu H. Luteolin-mediated phosphoproteomic changes in chicken splenic lymphocytes: Unraveling the detoxification mechanisms against ammonia-induced stress. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136931. [PMID: 39709809 DOI: 10.1016/j.jhazmat.2024.136931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Long-term exposure to high ammonia concentrations could severely impact chicken health. On the other hand, luteolin has been shown to protect against ammonia poisoning. Although phosphorylation is critically involved in toxicity induction, the specific role of phosphorylated proteins in ammonia poisoning remains unclear. Herein, we constructed an in vitro model to study chicken ammonia poisoning and also analyzed the protective effects of luteolin. Specifically, a combined series of organic techniques such as protein extraction, enzyme digestion, modified peptide enrichment, Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) analysis, and bioinformatics analysis were employed for a quantitative omics study of phosphorylation modification in three groups of samples. Our findings revealed thousands of Differentially Expressed Proteins (DEPs). The differentially expressed modified proteins were subjected to GO classification, KEGG pathway analysis, cluster analysis, and protein interaction analysis, revealing the detoxification mechanism encompassed mitochondrial maintenance, signal transduction, transcriptional regulation, and cytoskeleton regulation. In the process, mitochondria and Golgi apparatus were the key organelles. Furthermore, the AKT1/FOXO signaling pathway and Heat Shock Proteins (HSPs) were the key core modifiers of the proteins. We hope that our findings will provide a theoretical basis and experimental support for future research on luteolin's detoxification mechanism against ammonia poisoning.
Collapse
Affiliation(s)
- Dechun Chen
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Haojinming Tang
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Jiahao Liu
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Huanrong Zhang
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Kaijing Rao
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Falong Yang
- Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China.
| | - Haifeng Liu
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
3
|
Ma Y, Gu Q, Cao X, Li B, Sun H. Identification and functional analysis of circular RNA expression profiles associated with ammonia exposure in chicken lungs. Gene 2024; 928:148783. [PMID: 39033937 DOI: 10.1016/j.gene.2024.148783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Ammonia acts as a detrimental atmospheric pollutant, posing a sever threat to respiratory tract health and causing lung injury in humans and animals. Circular RNAs (circRNAs) are a distinctive class of non-coding RNA generated by back-splicing of linear RNA, implicated in various biological processes. However, their role in the immune response of chicken lungs to ammonia exposure remains unclear. In this study, we examined the expression profiles of circRNAs in chicken lungs under ammonia stimulation. In total, 61 differentially expressed (DE) circRNAs were identified between the ammonia exposure and control groups, including 17 up-regulated and 44 down-regulated circRNAs. The source genes of these DE circRNAs were predominantly enriched in Influenza A, SNARE interactions in vesicular transport, and Notch signaling pathway. Notably, nine DE circRNAs (circNBAS, circMTIF2, circXPO1, circSNX24, circRAB11A, circARID3B, circUSP54, circPPARA, and circERG) were selected for validation the reliability and authenticity of RNA-seq data. Results showed the back-splicing circular structure, as well as the reliability and accuracy of RNA-seq data in quantifying circRNA expression, as the RT-qPCR results were in agreement with the RNA-seq data. Moreover, we constructed the circRNA-miRNA-mRNA regulatory networks and identified several regulatory networks in chicken lungs under ammonia stimulation, including circRAB11A-gga-miR-191b-3p-BRD2 and circARID3B-gga-miR-1696-CKS2. Taken together, our study delineates the circRNA expression profile and their potential roles in the immune response of chicken lungs to ammonia exposure. These findings offer insights into molecular mechanisms that may mitigate diseases associated with ammonia induced respiratory tract pollution in humans and animals.
Collapse
Affiliation(s)
- Yuyi Ma
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qingtao Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xinqi Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Bichun Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Hongyan Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
4
|
Wu H, Xu T, Yang N, Zhang J, Xu S. Low-Se Diet Increased Mitochondrial ROS to Suppress Myoblasts Proliferation and Promote Apoptosis in Broilers via miR-365-3p/SelT Signaling Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:284-299. [PMID: 38109331 DOI: 10.1021/acs.jafc.3c04406] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
microRNA (miRNA) controls the post-transcriptional translation of mRNA to affect the expression of many genes participating in functional interaction pathways. Selenoproteins are characterized by their antioxidant activity, wherein selenoprotein T (SelT) is an essential membrane-bound selenoprotein serving as a guardian of intracellular homeostasis. During muscle development and regeneration, myoblasts enter the cell cycle and rapidly proliferate. However, the role of SelT in muscle development and selenium (Se) deficiency-induced muscle damage remains poorly investigated. This study established Se deficient broiler models, chicken embryos models, and cultured chicken primary myoblasts in vitro. We showed that Se deficiency induced skeletal muscle damage in broilers, promoted miR-365-3p expression, and downregulated the level of SelT, significantly. The absence of SelT led to the accumulation of mitochondrial superoxide and downregulated mitochondrial dynamics gene expression, which, in turn, induced the disruption of mitochondria potential and blocked the oxidative phosphorylation (OXPHOS) process. Limited ATP production rate caused by mitochondrial ROS overproduction went along with cell cycle arrest, cell proliferation slowness, and myocyte apoptosis increase. Using Mito-TEMPO for mitochondrial ROS elimination could effectively mitigate the above adverse reactions and significantly restore the proliferation potential of myoblasts. Moreover, we identified miR-365-3p, a miRNA that targeted SelT mRNA to inhibit myoblast proliferation by disrupting intracellular redox balance. The omics analysis results showed that Se deficiency led to the significant enrichment of "cell cycle", "oxidative stress response", and "oxidative phosphorylation" pathway genes. Finally, we proved that the effect of the miR-365-3p/SelT signaling axis on muscle development did exist in the chicken embryo stage. In summary, our findings revealed that miR-365-3p was involved in broiler skeletal muscle damage in Se deficiency by targeting SelT, and SelT, serving as an intracellular homeostasis guardian, resisted mitochondrial oxidative stress, and protected ATP generation, promoting myoblast proliferation and inhibiting apoptosis. This study provides an attractive target for the cultivated meat industry and regenerative medicine.
Collapse
Affiliation(s)
- Hao Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Naixi Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jiuli Zhang
- Heilongjiang Polytechnic, Harbin 150080, P. R. China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| |
Collapse
|
5
|
Chen D, Shen F, Liu J, Tang H, Zhang K, Teng X, Yang F. The protective effect of Luteolin on chicken spleen lymphocytes from ammonia poisoning through mitochondria and balancing energy metabolism disorders. Poult Sci 2023; 102:103093. [PMID: 37783192 PMCID: PMC10551554 DOI: 10.1016/j.psj.2023.103093] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 10/04/2023] Open
Abstract
Ammonia poses a significant challenge in the contemporary intensive breeding industry, resulting in substantial economic losses. Despite this, there is a dearth of research investigating efficacious strategies to prevent ammonia poisoning in poultry. Consequently, the objective of this study was to investigate the molecular mechanisms through which Luteolin (Lut) safeguards mitochondria and restores equilibrium to energy metabolism disorders, thereby shielding chicken spleen lymphocytes from the detrimental effects of ammonia poisoning. Chicken spleen lymphocytes were categorized into 3 distinct groups: the control group, the ammonia group (with the addition of 1 mmol/L of ammonium chloride), and the Lut group (with the treatment of 0.5 μg/mL of Lut for 12 h followed by the addition of 1 mmol/L of ammonium chloride). These groups were then cultured for a duration of 24 h. To investigate the potential protective effect of Lut on lymphocytes exposed to ammonia, various techniques were employed, including CCK-8 analysis, ultrastructural observation, reagent kit methodology, fluorescence microscopy, and quantitative real-time PCR (qRT-PCR). The findings indicate that Lut has the potential to mitigate the morphological damage of mitochondria caused by ammonia poisoning. Additionally, it can counteract the decline in mitochondrial membrane potential, ATP content, and ATPase activities (specifically Na+/K+-ATPase, Ca2+-ATPase, Mg2+-ATPase, and Ca/Mg2+-ATPase) following exposure to ammonia in lymphocytes. Lut also has the ability to regulate the expression of genes involved in mitochondrial fusion (Opa1, Mfn1, and Mfn2) and division (Drp1 and Mff) in spleen lymphocytes after ammonia exposure. This regulation leads to a balanced energy metabolism (HK1, HK2, LDHA, LDHB, PFK, PK, SDHB, and ACO2) and provides protection against ammonia poisoning.
Collapse
Affiliation(s)
- Dechun Chen
- Southwest Minzu University Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Fanyu Shen
- Southwest Minzu University Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Jiahao Liu
- Southwest Minzu University Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Haojinming Tang
- Southwest Minzu University Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Kai Zhang
- Southwest Minzu University Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Falong Yang
- Southwest Minzu University Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
6
|
Li D, Shen L, Zhang D, Wang X, Wang Q, Qin W, Gao Y, Li X. Ammonia-induced oxidative stress triggered proinflammatory response and apoptosis in pig lungs. J Environ Sci (China) 2023; 126:683-696. [PMID: 36503793 DOI: 10.1016/j.jes.2022.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 06/17/2023]
Abstract
Ammonia, a common toxic gas, is not only one of the main causes of haze, but also can enter respiratory tract and directly affect the health of humans and animals. Pig was used as an animal model for exploring the molecular mechanism and dose effect of ammonia toxicity to lung. In this study, the apoptosis of type II alveolar epithelial cells was observed in high ammonia exposure group using transmission electron microscopy. Gene and protein expression analysis using transcriptome sequencing and western blot showed that low ammonia exposure induced T-cell-involved proinflammatory response, but high ammonia exposure repressed the expression of DNA repair-related genes and affected ion transport. Moreover, high ammonia exposure significantly increased 8-hydroxy-2-deoxyguanosine (8-OHdG) level, meaning DNA oxidative damage occurred. In addition, both low and high ammonia exposure caused oxidative stress in pig lungs. Integrated analysis of transcriptome and metabolome revealed that the up-regulation of LDHB and ND2 took part in high ammonia exposure-affected pyruvate metabolism and oxidative phosphorylation progress, respectively. Inclusion, oxidative stress mediated ammonia-induced proinflammatory response and apoptosis of porcine lungs. These findings may provide new insights for understanding the ammonia toxicity to workers in livestock farms and chemical fertilizer plants.
Collapse
Affiliation(s)
- Daojie Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Long Shen
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Di Zhang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaotong Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiankun Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenhao Qin
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Yun Gao
- College of Engineering, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoping Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
7
|
Xu C, Zhu M, Zhao S, Zhang X, Wang Y, Liu M. Mutation of S461, in the GOLGA3 phosphorylation site, does not affect mouse spermatogenesis. PeerJ 2023; 11:e15133. [PMID: 37090114 PMCID: PMC10117384 DOI: 10.7717/peerj.15133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/06/2023] [Indexed: 04/25/2023] Open
Abstract
Background Golgin subfamily A member 3 (Golga3), a member of the golgin subfamily A, is highly expressed in mouse testis. The GOLGA3 protein, which contains eight phosphorylation sites, is involved in protein transport, cell apoptosis, Golgi localization, and spermatogenesis. Although it has been previously reported that nonsense mutations in Golga3 cause multiple defects in spermatogenesis, the role of Golga3 in the testis is yet to be clarified. Methods Immunofluorescence co-localization in cells and protein dephosphorylation experiments were performed. Golga3 S461L/S461Lmice were generated using cytosine base editors. Fertility tests as well as computer-assisted sperm analysis (CASA) were then performed to investigate sperm motility within caudal epididymis. Histological and immunofluorescence staining were used to analyze testis and epididymis phenotypes and TUNEL assays were used to measure germ cell apoptosis in spermatogenic tubules. Results Immunofluorescence co-localization showed reduced Golgi localization of GOLGA3S465L with some protein scattered in the cytoplasm of HeLa cells .In addition, protein dephosphorylation experiments indicated a reduced band shift of the dephosphorylated GOLGA3S465L, confirming S461 as the phosphorylation site. Golga3 is an evolutionarily conserved gene and Golga3 S461L/S461Lmice were successfully generated using cytosine base editors. These mice had normal fertility and spermatozoa, and did not differ significantly from wild-type mice in terms of spermatogenesis and apoptotic cells in tubules. Conclusions Golga3 was found to be highly conserved in the testis, and GOLGA3 was shown to be involved in spermatogenesis, especially in apoptosis and Golgi complex-mediated effects. Infertility was also observed in Golga3 KO male mice. Although GOLGA3S465Lshowed reduced localization in the Golgi with some expression in the cytoplasm, this abnormal localization did not adversely affect fertility or spermatogenesis in male C57BL/6 mice. Therefore, mutation of the S461 GOLGA3 phosphorylation site did not affect mouse spermatogenesis.
Collapse
Affiliation(s)
- Changtong Xu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Mingcong Zhu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Shuqin Zhao
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Xin Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Ying Wang
- State Key Laboratory of Reproductive Medicine, Department of Reproduction, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Bölükbaş F, Öznurlu Y. The determination of the effect of in ovo administered monosodium glutamate on the embryonic development of thymus and bursa of Fabricius and percentages of alpha-naphthyl acetate esterase positive lymphocyte in chicken. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45338-45348. [PMID: 35143005 DOI: 10.1007/s11356-022-19112-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Monosodium glutamate (MSG) is a flavor enhancer commonly used in modern nutrition. In this study, it was aimed to determine the effect of in ovo administered MSG on the embryonic development of thymus, bursa of Fabricius, and percentages of alpha-naphthyl acetate esterase (ANAE) positive lymphocyte by using histological, histometrical, and enzyme histochemical methods in chickens. For this purpose, 410 fertile eggs were used. The eggs were then divided into five groups: group 1 (control group, n = 40 eggs), group 2 (distilled water-injected group, n = 62 eggs), group 3 (0.12 mg/g egg MSG-injected group, n = 80 eggs), group 4 (0.6 mg/g egg MSG-injected group, n = 90 eggs), and group 5 (1.2 mg/g egg MSG-injected group, n = 138 eggs), and injections were performed via the egg yolk. On the 18th and 21st days of the incubation, the eggs were randomly opened from each group until six live embryos were obtained. The embryos of each group were sacrificed by decapitation, and blood, thymus, and bursa of Fabricius tissue samples were taken from the obtained embryos. The MSG-treated groups were found to be retarded embryonic development of thymus and bursa of Fabricius tissue compared to the control and distilled water groups. MSG treatment also resulted in reduced lymphoid follicles count and follicle diameters in bursa of Fabricius (P < 0.05). The percentage of peripheral blood ANAE positive lymphocytes was significantly lower in the MSG-treated groups than in the control and distilled water groups (P < 0.05). In conclusion, it has been found that in ovo administered MSG can adversely affect the embryonic development of thymus and bursa of Fabricius and decrease percentage of ANAE positive lymphocyte.
Collapse
Affiliation(s)
- Ferhan Bölükbaş
- Department of Histology and Embryology, Faculty of Medicine, Aksaray University, Aksaray, Turkey.
| | - Yasemin Öznurlu
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Selcuk, Konya, Turkey
| |
Collapse
|
9
|
Bai S, Peng X, Wu C, Cai T, Liu J, Shu G. Effects of dietary inclusion of Radix Bupleuri extract on the growth performance, and ultrastructural changes and apoptosis of lung epithelial cells in broilers exposed to atmospheric ammonia. J Anim Sci 2021; 99:skab313. [PMID: 34718609 PMCID: PMC8599180 DOI: 10.1093/jas/skab313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/23/2021] [Indexed: 02/07/2023] Open
Abstract
To explore whether Radix Bupleuri extract (RBE) could protect lung injury of broilers under ammonia (NH3) exposure, 360 one-d-old male broilers were randomly allocated to four groups of six replicates each in a 2 × 2 factorial design with two diets (the basal diet [control; CON] and the basal diet supplemented with RBE [RB]) and two air conditions (normal condition [<2 ppm of NH3; NOR] and NH3 exposure [70 ppm of NH3; NH70]). The RB diet contained 80 mg saikosaponins/kg diet. On day 7, the lung tissues were collected and the lung epithelial cells (LEC) were isolated. Our experimental results showed that the NH3 exposure decreased body weight gain and feed intake irrespective of dietary treatments during days 1 to 7. However, the RBE addition decreased feed consumption to body weight gain ratio in broilers under NH70 conditions. In the LEC of CON-fed broilers under NH70 conditions, Golgi stacks showed the dilation of cisternaes and reduced secretory vesicles, mitochondria enlarged, the inner membrane of mitochondria became obscure, and the cristae of mitochondria ruptured, whereas only a mild enlargement of Golgi cisternaes and the part rupture of mitochondrial cristaes occurred in the LEC of RB-fed broilers under NH70 conditions. The NH3 exposure increased malondialdehyde (MDA) level, but decreased total antioxidant capacity (T-AOC) in the lungs of CON-fed broilers. However, the RBE addition decreased MDA level and increased T-AOC in the lungs of broilers under NH70 conditions. Simultaneously, the NH3 exposure increased apoptotic rate (AR), mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) level in the isolated LEC of CON-fed broilers. The RBE addition decreased AR, MMP, and ROS in the isolated LEC of broilers under NH70 condition. Besides, the NH3 exposure increased mRNA expression of B-cell lymphoma-2 associated X protein (BAX), caspase-3, and tumor necrosis factor α (TNF-α), but increased interferon γ (IFN-γ) mRNA abundance in the lungs of CON-fed broilers. The RBE supplement decreased mRNA levels of BAX, caspase-3, and TNF-α, but increased IFN-γ, interleukin (IL)-4, and IL-17 mRNA levels in the lungs of broilers under NH70 conditions. These results indicated that dietary RBE addition alleviated NH3 exposure-induced intercellular ultrastructural damage via mitochondrial apoptotic pathway, possibly due to RBE-induced increase of antioxidant capacity and immunomodulatory function in the lungs of broilers under NH3 exposure.
Collapse
Affiliation(s)
- Shiping Bai
- Institute of Animal Nutrition, Feed Engineering Research Centre of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xi Peng
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Caimei Wu
- Institute of Animal Nutrition, Feed Engineering Research Centre of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Tong Cai
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Jiangfeng Liu
- School of Intelligence Technology, Geely University of China, Chengdu 641423, China
| | - Gang Shu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
10
|
Tian H, Ding M, Guo Y, Su A, Zhai M, Tian Y, Li K, Sun G, Jiang R, Han R, Kang X, Yan F. Use of transcriptomic analysis to identify microRNAs related to the effect of stress on thymus immune function in a chicken stress model. Res Vet Sci 2021; 140:233-241. [PMID: 34534905 DOI: 10.1016/j.rvsc.2021.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/13/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
In modern poultry production, stress-induced immunosuppression leads to serious economic losses and harm to animals, but the molecular mechanisms governing the effects of stress on the chicken thymus have not been elucidated. In this study, we successfully constructed a stress model of 7-day-old Gushi chickens by adding exogenous corticosterone (CORT) to their diet and determined the microRNA (miRNA) expression profile of thymus tissues using RNA-seq technology. The results identified 51 differentially expressed miRNAs (DEMs), including 30 upregulated miRNAs and 21 downregulated miRNAs. A total of 164 target genes of the DEMs were predicted based on bioinformatic analysis methods, and Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of these target genes were performed. The results from the GO enrichment analysis of the target genes identified 349 significantly enriched terms, including terms associated with the stress response and immune function that are primarily involved in the negative regulation of phagocytosis, the response to stress and the cellular response to stimulus. The KEGG pathway analysis indicated that the enriched pathways related to immunity or stress included the MAPK signaling pathway, lysosomes, endocytosis, and the RIG-I-like receptor signaling pathway. Among these pathways, DEMs (such as gga-miR-2954, gga-miR-106-5p, and gga-miR-16-5p) and corresponding target genes (such as IL11Ra, SIKE1, and CX3CL1) might be strongly correlated with thymic immunity in chickens. The results of this study provide a reference for further research on the molecular regulatory mechanisms governing the effect of stress on the immune function of the chicken thymus.
Collapse
Affiliation(s)
- Huihui Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Mengxia Ding
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yujie Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Aru Su
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Minxi Zhai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Kui Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China.
| | - Fengbin Yan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China.
| |
Collapse
|
11
|
Miao Z, Zhang K, Bao R, Li J, Tang Y, Teng X. Th1/Th2 imbalance and heat shock protein mediated inflammatory damage triggered by manganese via activating NF-κB pathway in chicken nervous system in vivo and in vitro. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44361-44373. [PMID: 33847884 DOI: 10.1007/s11356-021-13782-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Manganese (Mn) is a ubiquitous heavy metal pollutant in environment, and excess Mn can damage nervous system of humans and animals. However, molecular mechanism of Mn-induced poultry neurotoxicity on inflammatory injury is still not fully clear. Thus, the purpose of the conducted research was to explore molecular mechanism of inflammatory injury caused by Mn in chicken nervous system. Two Mn poisoning models were established in vivo and in vitro. One hundred and eighty chickens were randomly separated into four groups. One control group was raised drinking water and standard diet. Three Mn groups were raised drinking water, and the standard diet supplemented with three different concentrations of MnCl2 ∙ 4H2O. There were 45 birds and 3 replicates in each group. Neurocytes from chicken embryos were cultured in mediums without and with six different concentrations of MnCl2 ∙ 4H2O in vitro. Our experiments showed that excess Mn caused cerebral histomorphological structure alternations and damage, and increased the expressions (P < 0.05) of inflammation-related factor NF-κB, TNF-α, iNOS, COX-2, and PTGEs in vivo and in vitro, meaning that excess Mn caused inflammatory damage and inflammatory response in chicken nervous system. Moreover, there were an upregulated IFN-γ mRNA expression and a downregulated IL-4 mRNA expression (P < 0.05) in bird cerebra and embryonic neurocytes after exposure to Mn, indicating that Mn exposure caused Th1/Th2 imbalance and immunosuppression. Additionally, in our research, the elevation (P < 0.05) of five HSPs (HSP27, HSP40, HSP60, HSP70, and HSP90) was found, suggesting that HSPs participated molecular mechanism of Mn stress. In addition, the inflammatory toxicity of Mn to chicken nervous system was time- and dose-dependent. Taken all together, our findings indicated that Th1/Th2 imbalance and HSPs mediated Mn-caused inflammatory injury via NF-κB pathway in chicken nervous system in vivo and in vitro.
Collapse
Affiliation(s)
- Zhiying Miao
- Electrical and Information Engineering College, JiLin Agricultural Science and Technology University, Jilin, 132101, Jilin, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Kun Zhang
- Heihe University, Heihe, 164300, People's Republic of China
| | - Rongkun Bao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jingxin Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - You Tang
- Electrical and Information Engineering College, JiLin Agricultural Science and Technology University, Jilin, 132101, Jilin, China.
| | - Xiaohua Teng
- Electrical and Information Engineering College, JiLin Agricultural Science and Technology University, Jilin, 132101, Jilin, China.
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
12
|
Quantitative proteomic analysis of trachea in fatting pig exposed to ammonia. J Proteomics 2021; 247:104330. [PMID: 34302998 DOI: 10.1016/j.jprot.2021.104330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/06/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023]
Abstract
Ammonia (NH3) is considered as the main pollutant in livestock houses and air environment, and its adverse effects on animal and human health have attracted widespread attention. However, trachea proteomics respond to NH3 is lacking, which is crucial to understanding how NH3 induces respiratory damage. In this study, we performed labeled quantitative proteomic (TMT-MS) analysis in the trachea of fatting pigs exposed to NH3 for 30 days. The proteomic results were then validated by Immunohistochemistry (IHC) and Parallel Reaction Monitoring (PRM). The results showed that a total of 126 differentially abundant proteins (DAPs) were identified (fold change <0.83 or > 1.2 and P < 0.05), including 70 differentially up-regulated proteins (DUPs) and 56 differentially down-regulated proteins (DDPs). These proteins were mainly located in intracellular regions and involved in immune response, metabolism and protein synthesis. The results of DAPs (EHHADH, RPL28, SLC25A6, TUBB6, CD14, CTSS, RPS11, RPL19, SLC25A5, RPS8, FABP3, RPL21, RPL34, RPL32, PDIA3, FBP1, HSPH1, SAR1A and SEC24C) verified by IHC and PRM were consistent with the proteomic results. The results of this study provided a basis and a novel insight for understanding the mechanism of NH3-induced tracheal injury. SIGNIFICANCE: Ammonia (NH3) is considered as the main pollutant in livestock houses and air environment, and its adverse effects on animal and human health have attracted widespread attention. However, trachea proteomics respond to NH3 is lacking, which is crucial to understanding how NH3 induces respiratory damage. Therefore, in this study, labeled quantitative proteomics (TMT-MS) was used to detect trachea tissue samples from finishing pigs in NH3 exposure group and control group, and PRM method was used to further verify the highly abundant proteins in NH3 exposure samples, so as to identify new diagnostic markers for NH3 poisoning. The results of this study provided a basis and a novel insight for understanding the molecular pathological mechanism of NH3-induced tracheal injury.
Collapse
|
13
|
Li Z, Miao Z, Ding L, Teng X, Bao J. Energy metabolism disorder mediated ammonia gas-induced autophagy via AMPK/mTOR/ULK1-Beclin1 pathway in chicken livers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112219. [PMID: 33853017 DOI: 10.1016/j.ecoenv.2021.112219] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Ammonia gas is a well-known environmental pollution gas, threatening human health. Ammonia gas is also one of the most harmful gases to livestock and poultry for many years. Many studies have demonstrated toxic effect of ammonia gas on animal health, such as eyes, respiratory system, and digestive system. However, the effect of ammonia gas toxicity on chicken livers and underlying molecular mechanism remains unclear. In this study, we selected chicken liver as research object and duplicated successfully ammonia gas poisoning model of chickens. 1-day-old Ross-308 broilers were randomly divided into the control group (the low ammonia gas group), and two treatment groups (the middle ammonia gas group and the high ammonia gas group) (3 replicates per group and 12 chickens per replicate). Ammonia gas concentration in the low ammonia gas group was ≤5 mg/m3 during day 1-42. Ammonia gas concentration in the middle group was set as 10 ± 0.5 mg/m3 during day 1-21, and 15 ± 0.5 mg/m3 during day 22-42). Ammonia gas concentration in the high ammonia gas group was set as 20 ± 0.5 mg/m3 during day 1-21, and 45 ± 0.5 mg/m3 during day 22-42. The ultrastructure of chicken livers was observed. The activities of four ATPases (Na+K+-ATPase, Mg++-ATPase, Ca++-ATPase, and Ca++Mg++-ATPase), the expression of twelve energy metabolism-related genes (HK1, HK2, PK, PFK, PDHX, CS, LDHA, LDHB, SDHA, SDHB, avUCP, and AMPK), as well as the expression of ten autophagy-related genes (PI3K, LC3I, LC3II, Beclin1, SQSTM1, mTOR, ULK1, ATG5, ATG12, and ATG13) were measured to explore the effect of ammonia gas on energy metabolism and autophagy in chicken livers. Our results showed that excess ammonia gas induced mitochondrial and autophagic damage in chicken liver tissue cells. Meanwhile, ATPases activities were inhibited and the expression of energy metabolism-related genes changed during ammonia gas treatment, meaning that excess ammonia gas caused energy metabolism disorder. Furthermore, ammonia gas exposure altered the expression of autophagy-related genes, suggesting that ammonia gas treatment caused autophagy in chicken livers. Moreover, ammonia gas-induced AMPK compensatory up-regulation activated autophagy process through inhibiting mTOR and promoting ULK1. In addition. there were dose-dependent and time-dependent effects on all detected indexes in ammonia gas-caused chicken liver cell damage. Taken together, AMPK/mTOR/ULK1-Beclin1 pathway participated in energy metabolism disorder-mediated autophagic injury caused by ammonia gas exposure in chicken livers.
Collapse
Affiliation(s)
- Zhuo Li
- College of Animal Science and Technology, Northeast Agricultural University, NO. 600 Chang Jiang Road, Xiang Fang District, Harbin 150030, China
| | - Zhiying Miao
- College of Animal Science and Technology, Northeast Agricultural University, NO. 600 Chang Jiang Road, Xiang Fang District, Harbin 150030, China
| | - Linlin Ding
- Institute of Agricultural Economics and Development, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun Nandajie, Beijing 100081, China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, NO. 600 Chang Jiang Road, Xiang Fang District, Harbin 150030, China.
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, NO. 600 Chang Jiang Road, Xiang Fang District, Harbin 150030, China.
| |
Collapse
|
14
|
Chen J, Chen D, Li J, Liu Y, Gu X, Teng X. Cadmium-induced Oxidative Stress and Immunosuppression Mediated Mitochondrial Apoptosis via JNK-FoxO3a-PUMA pathway in Common Carp (Cyprinus carpio L.) Gills. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 233:105775. [PMID: 33631492 DOI: 10.1016/j.aquatox.2021.105775] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd)-caused water environment pollution has become a matter of concern. Gill is an organ with respiratory and mucosal immune functions, and is also one of the organs directly attacked by pollutants. It was found that excess Cd could cause Cd accumulation and gill injury in carp. However, the mechanism of Cd-caused damage in common carp gills is still unclear. Oxidative stress, immunosuppression, and apoptosis took part in the mechanism of poisoning caused by some harmful substances. The aim of the study was to investigate complex molecular mechanism of apoptotic injury caused by Cd in common carp gills. Hence, in this study, we established a Cd poisoning model to explore whether excess Cd can induce apoptosis through observing histomorphology and apoptotic cells; and determining mineral elements, oxidative stress-related factors, immune-related, and apoptosis-related genes in common carp gills. Fifty-four fish were randomly separated into the control group and the Cd group and were cultured for 45 days. The water of the control group was drinking water and the water of the Cd group was CdCl2-added drinking water (0.26 mg/L Cd). In our results, we found that excess Cd increased Cd level, decreased the levels of essential mineral elements (Cu, Fe, Zn, and Mn), damaged mitochondria, and increased apoptotic cells in common carp gills, meaning that excess Cd caused Cd accumulation and apoptotic injury via mitochondrion in common carp gills. Furthermore, we found that Cd inhibited anti-apoptosis-related gene Bcl-2 and stimulated pro-apoptosis-related genes (JNK, FoxO3a, PUMA, Bax, Apaf-1, Caspase-9, and Caspase-3) on 15th, 30th, and 45th days. Above data meant that Cd exposure caused apoptosis via mitochondrion and JNK-FoxO3a-PUMA pathway in common carp gills. In addition, in our experiment, Cd treatment increased oxidants (H2O2 and MDA) and decreased antioxidants (CAT, GPx, GST, SOD, T-AOC, and GSH), indicating that Cd caused oxidative stress via oxidation/antioxidation imbalance. Meanwhile, compared to the control group, T-help 17 (Th17) cell-related factors (IL-17, TNF-α, and RORγ) were up-regulated, regulatory T (Treg) cell-related factors (IL-10 and Foxp3) were down-regulated, and IL-17/IL-10, TNF-α/IL-10, and RORγ/Foxp3 were increased in Cd-exposed group; meaning that excess Cd induced immunosuppression via the imbalance of Th17/Treg cells. Taken together, our findings indicated that JNK-FoxO3a-PUMA pathway and mitochondrion participated in oxidative stress and immunosuppression-mediated apoptosis caused by Cd in common carp (Cyprinus carpio L.) gills. Our data provided new perspectives on the negative effects of heavy metal pollutants on fish.
Collapse
Affiliation(s)
- Jianqing Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Dechun Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China; College of Life Science and Technology, Southwest University for Nationalities, Chengdu, 610041, China
| | - Jingxin Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Yuanlong Liu
- Heilongjiang Animal Husbandry Station, Harbin, 150069, China
| | - Xianhong Gu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
15
|
Zhao H, Wang Y, Guo M, Liu Y, Yu H, Xing M. Environmentally relevant concentration of cypermethrin or/and sulfamethoxazole induce neurotoxicity of grass carp: Involvement of blood-brain barrier, oxidative stress and apoptosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143054. [PMID: 33127128 DOI: 10.1016/j.scitotenv.2020.143054] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
In water environment, the interaction between environmental pollutants is very complex, among which pesticides and antibiotics are dominant. However, most studies only focus on individual toxic effects, rather combined. In this study, the sub-chronic exposure effect of cypermethrin (CMN, 0.65 μg/L), sulfamethoxazole (SMZ, 0.30 μg/L) and their mixture on grass crap (Ctenopharyngodon idellus) was investigated. The brain tight junction, oxidative stress and apoptosis-related indices were determined after 42 days of exposure. In terms of brain function, acetyl cholinesterase (AChE) activity was significantly inhibited by CMN, SMZ and their mixtures during exposure periods. Obvious histological damage from cellular and subcellular levels were also observed, which were further confirmed by a decrease in tight junction protein levels. Malondialdehyde (MDA) and 8-hydroxy-2-deoxyguanosine (8-OHdG) contents were significantly increased by individual compounds and mixtures, in which the content of glutathione (GSH) displayed the opposite trend. In mechanism, nuclear factor (erythrocyte derived 2) like 2(Nrf2) pathway was activated, which may trigger cellular protection to cope with CMN and SMZ exposure. However, apoptosis was also detected from the level of mRNA and histochemistry. In general, these two exogenous induced similar biological responses. The neurotoxicity of CMN was strengthened by SMZ with regard to these indices in most cases and vice versa. This study will reveal the potential co-ecological risks of pesticide and antibiotic in the aquatic organism, and provide basic data for their safety and risk assessment.
Collapse
Affiliation(s)
- Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Menghao Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yachen Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hongxian Yu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| |
Collapse
|
16
|
Wu J, Chen T, Wan F, Wang J, Li X, Li W, Ma L. Structural characterization of a polysaccharide from Lycium barbarum and its neuroprotective effect against β-amyloid peptide neurotoxicity. Int J Biol Macromol 2021; 176:352-363. [PMID: 33549666 DOI: 10.1016/j.ijbiomac.2021.02.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
A water-soluble polysaccharide, designated as LBP-3, was isolated and purified from Lycium barbarum. Chemical analysis indicated that LBP-3 was composed of arabinose and galactose at a molar ratio of 1.00:1.56. The average molecular weight of LBP-3 was 6.74 × 104 Da. The structural features of LBP-3 were investigated by Fourier-transform infrared spectroscopy (FT-IR), methylation, and nuclear magnetic resonance (NMR). LBP-3 is a highly branched polysaccharide with a backbone of 1, 3-linked β-Galp, which is partially substituted at C-6. The branches contain 1, 5-linked α-Araf, 1, 6-linked β-Galp, 1, 3-linked α-Araf, and 1, 4-linked α-Araf. In vitro studies revealed that LBP-3 induced a concentration-dependent decrease in the levels of Aβ42/Aβ40 in N2a/APP695 cells. Proteomic analysis was conducted to investigate the potential molecular mechanism underlying the neuroprotective effect of LBP-3, and the results suggested that LBP-3 might have the potential for the treatment of AD.
Collapse
Affiliation(s)
- Jiaxin Wu
- Biophysics Laboratory, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China; College of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Teng Chen
- Biophysics Laboratory, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
| | - Fengqi Wan
- Biophysics Laboratory, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China; The second Hospital of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jie Wang
- Biophysics Laboratory, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
| | - Xin Li
- Biophysics Laboratory, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
| | - Wenjian Li
- Biophysics Laboratory, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
| | - Liang Ma
- Biophysics Laboratory, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China.
| |
Collapse
|
17
|
Ali Shah SW, Zhang S, Ishfaq M, Tang Y, Teng X. PTEN/AKT/mTOR pathway involvement in autophagy, mediated by miR-99a-3p and energy metabolism in ammonia-exposed chicken bursal lymphocytes. Poult Sci 2020; 100:553-564. [PMID: 33518108 PMCID: PMC7858094 DOI: 10.1016/j.psj.2020.11.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/18/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Emission of atmospheric ammonia (NH3) is an environmental challenge because of its harmful effects on humans and animals including birds. Among all organisms, NH3 is highly sensitive to birds. Autophagy plays a critical role in Bursa of fabricius (BF)-mediated immune responses against various hazardous substances. Therefore, we designed our work to demonstrate whether NH3 can induce autophagy in broiler chicken BF. In this study, the downregulated levels of mammalian target of rapamycin and light chain-3 (LC-Ⅰ), as well as the upregulated levels of phosphate and tensin homology (PTEN), protein kinase B (AKT), autophagy related-5, light chain-3 (LC3-Ⅱ), Becline-1, and Dynein, were found. Our results of transmission electron microscopy displayed signs of autophagosomes/autophagic lysosomes, and immunofluorescence assay displayed that NH3 exposure reduced the relative amount of CD8+ B-lymphocyte in chicken BF. Exposure of NH3 led to energy metabolism disturbance by decreasing mRNA levels of glucose metabolism factors aconitase-2, hexokinase-1, hexokinase-2, lactate dehydrogenase-A, lactate dehydrogenase-B, pyruvate kinase, phosphofructokinase and succinate dehydrogenase complex unit-B, and adenosine triphosphates (ATPase) activities (Na+/K+ ATPase, Ca2+ ATPase, Mg2+ ATPase, and Ca/Mg2+ ATPase). Moreover, phosphate and tensin homology was found as target gene of microRNA-99a-3p which confirmed that high concentration of NH3 caused autophagy in chicken BF. In summary, these findings suggested that ammonia induced autophagy via miR-99a-3p, the reduction of ATPase activity, and the alteration of autophagy-related factors, and energy metabolism mediation in BF. Our findings provide information to assess the harmful effects of NH3 on chicken and clues for human health pathophysiology.
Collapse
Affiliation(s)
- Syed Waqas Ali Shah
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Shuai Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Muhammad Ishfaq
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - You Tang
- Electrical and Information Engineering College, Jilin Agricultural Science and Technology University, Jilin, 132101, People's Republic of China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China; Electrical and Information Engineering College, Jilin Agricultural Science and Technology University, Jilin, 132101, People's Republic of China.
| |
Collapse
|
18
|
Han Q, Tong J, Sun Q, Teng X, Zhang H, Teng X. The involvement of miR-6615-5p/Smad7 axis and immune imbalance in ammonia-caused inflammatory injury via NF-κB pathway in broiler kidneys. Poult Sci 2020; 99:5378-5388. [PMID: 33142454 PMCID: PMC7647833 DOI: 10.1016/j.psj.2020.08.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 05/27/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
Ammonia (NH3), a toxic gas, has deleterious effects on chicken health in intensive poultry houses. MicroRNA can mediate inflammation. The complex molecular mechanisms underlying NH3 inhalation-caused inflammation in animal kidneys are still unknown. To explore the mechanisms, a broiler model of NH3 exposure was established. Kidney samples were collected on day 14, 28, and 42, and meat yield was evaluated on day 42. We performed histopathological examination, detected miR-6615-5p and mothers against decapentaplegic homolog 7 (Smad7), and determined inflammatory factors and cytokines in kidneys. The results showed that excess NH3 reduced breast weight and thigh weight, which indicated that excess NH3 impaired meat yield of broilers. Besides, kidney tissues displayed histopathological changes after NH3 exposure. Meanwhile, the increases of inducible nitric oxide synthase (iNOS) activity and nitric oxide content were obtained. The mRNA and protein expression of inflammatory factors, including nuclear factor-κB (NF-κB), cyclooxygenase-2, prostaglandin E synthases, and iNOS increased, indicating that NF-κB pathway was activated. T-helper (Th) 1 and regulatory T (Treg) cytokines were downregulated, whereas Th2 and Th17 cytokines were upregulated, suggesting the occurrence of Th1/Th2 and Treg/Th17 imbalances. In addition, we found that Smad7 was a target gene of miR-6615-5p in chickens. After NH3 exposure, miR-6615-5p expression was elevated, and Smad7 mRNA and protein expression were reduced. In summary, our results suggest that NH3 exposure negatively affected meat yield; and miR-6615/Smad7 axis and immune imbalance participated in NH3-induced inflammatory injury via the NF-κB pathway in broiler kidneys. This study is helpful to understand the mechanism of NH3-induced kidney injury and is meaningful to poultry health and breed aquatics.
Collapse
Affiliation(s)
- Qi Han
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, The People's Republic of China
| | - Jianyu Tong
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, The People's Republic of China
| | - Qi Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, The People's Republic of China
| | - Xiaojie Teng
- Grassland Station in Heilongjiang Province, Harbin 150067, The People's Republic of China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, The People's Republic of China.
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, The People's Republic of China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, The People's Republic of China.
| |
Collapse
|
19
|
Chen D, Ning F, Zhang J, Tang Y, Teng X. NF-κB pathway took part in the development of apoptosis mediated by miR-15a and oxidative stress via mitochondrial pathway in ammonia-treated chicken splenic lymphocytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:139017. [PMID: 32380330 DOI: 10.1016/j.scitotenv.2020.139017] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/19/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
Ammonia, a kind of gas with pungent smell, is harmful to livestock and people, and has bad influence on the atmosphere. However, the mechanism of splenic toxicity caused by ammonia is still poorly understood. The aim of present study was to investigate the effect of ammonia on chicken splenic lymphocytes from the perspective of apoptosis. Chicken splenic lymphocytes were divided into the control group and the two ammonium treatment groups (1 mmol/L and 5 mmol/L ammonia), and were cultured for 24 h. CCK-8, flow cytometry (FC), fluorescence microscope, quantitative real-time PCR (qRT-PCR), and Western blot were used to study the differences between different groups. The results showed that ammonia exposure increased the release of calcium (Ca)2+ and reactive oxygen species (ROS) from mitochondrion. Besides, we found an increase in mRNA levels of glutathione peroxidase (GPx), inflammation-related genes (nuclear factor-κB (NF-κB), cyclooxygenase-2 (COX-2), inducible nitric (iNOS), tumor necrosis factor-α (TNF-α), and transforming growth factor-β (TGF-β)), apoptosis-related genes (B-cell lymphoma-2 (BCL-2), Bcl-2 associated X protein (BAX), Cytochrome c (Cytc), apoptotic protease activating factor 1 (APAF1), Caspase-9, and Caspase-3), and an increase in protein levels of NF-κB, iNOS, BAX, Cytc, Caspase-9, and Caspase-3. At the same time, we found a decrease level of GPx protein expression, and a decrease level of glutathione S-transferase (GST) mRNA expression, and a decrease level of heme oxygenase-1 (HO-1) and BCL-2 mRNA and protein expression in splenic lymphocytes exposed to ammonia. Meanwhile, miR-15a expression increased under ammonia exposure. In summary, these results indicated that ammonia induced oxidative stress, promoted the release of Ca2+, Cytc, and ROS from mitochondria, and then induced mitochondria-mediated inflammatory response, finally triggered apoptosis in chicken splenic lymphocytes.
Collapse
Affiliation(s)
- Dechun Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041, China
| | - Fangyong Ning
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Jingyang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - You Tang
- Electrical and Information Engineering College, Jilin Agricultural Science and Technology University, Jilin 132101, China.
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|