1
|
Chen R, Liu Z, Yang J, Ma T, Guo A, Shi R. Predicting cadmium enrichment in crops/vegetables and identifying the effects of soil factors based on transfer learning methods. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117823. [PMID: 39904259 DOI: 10.1016/j.ecoenv.2025.117823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
Cadmium (Cd) is present in soils and can easily migrate into plants due to its various forms. This mobility allows it to be absorbed by plant roots and accumulate in edible parts, entering the food chain and posing health risks. In some regions, insufficient sampling and research, or the limited cultivation of specific vegetables and crops, make it challenging to gather adequate data for modeling. A total of 353 pairs of soil and crop/vegetable samples were collected across three regions using a unified measurement method. These samples were utilized to build predictive models to study the relationship between soil factors and cadmium (Cd) absorption in six different crops/vegetables, followed by a unified comparison. This study compares regression and probability models and determines the best feature combination, which can retain enough information to accurately predict and prevent over-fitting caused by too many features. The best feature combination is used to apply transfer learning to cadmium enrichment in crops/vegetables. The results show that the best accuracy of the random forest probability model in the rice dataset is 0.89. The best feature combination of prediction results was found by feature optimization. This feature combination has a very good effect on the prediction of cadmium in corn / vegetables by transfer learning. The accuracy of corn, rape and radish is 0.93,0.89 and 0.81, respectively. In the case of good prediction effect of transfer learning, available Cd is the most critical function, and available Cd is positively correlated with Cd in plants. It suggests that available heavy metal significantly influence predictions in crops/vegetables. In areas with less sampling and research, selecting relevant features and using transfer learning methods is more appropriate for constructing predictive models.
Collapse
Affiliation(s)
- Rui Chen
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Zean Liu
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Jingyan Yang
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Tiantian Ma
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Aihong Guo
- College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Rongguang Shi
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
2
|
Yu Y, Fotopoulos V, Zhou K, Fernie AR. The role of gasotransmitter hydrogen sulfide in plant cadmium stress responses. TRENDS IN PLANT SCIENCE 2025; 30:35-53. [PMID: 39358104 DOI: 10.1016/j.tplants.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024]
Abstract
Cadmium (Cd) is a toxic heavy metal that poses a significant risk to both plant growth and human health. To mitigate or lessen Cd toxicity, plants have evolved a wide range of sensing and defense strategies. The gasotransmitter hydrogen sulfide (H2S) is involved in plant responses to Cd stress and exhibits a crucial role in modulating Cd tolerance through a well-orchestrated interaction with several signaling pathways. Here, we review potential experimental approaches to manipulate H2S signals, concluding that research on another gasotransmitter, namely nitric oxide (NO), serves as a good model for research on H2S. Additionally, we discuss potential strategies to leverage H2S-reguated Cd tolerance to improve plant performance under Cd stress.
Collapse
Affiliation(s)
- Yan Yu
- School of Agronomy, Anhui Agricultural University, Hefei 230036, PR China; Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany.
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Kejin Zhou
- School of Agronomy, Anhui Agricultural University, Hefei 230036, PR China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria.
| |
Collapse
|
3
|
Alsubaie QD, Al-Amri AA, Siddiqui MH, Alamri S. Strigolactone and nitric oxide collaborate synergistically to boost tomato seedling resilience to arsenic toxicity via modulating physiology and antioxidant system. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108412. [PMID: 38359557 DOI: 10.1016/j.plaphy.2024.108412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024]
Abstract
Arsenic (As) poses a significant environmental threat as a metalloid toxin, adversely affecting the health of both plants and animals. Strigolactones (SL) and nitric oxide (NO) are known to play crucial roles in plant physiology. Therefore, the present experiment was designed to investigate the potential cumulative role of SL (GR24-0.20 μM) and NO (100 μM) in mitigating the adverse effect of AsV (53 μM) by modulating physiological mechanisms in two genotypes of tomato (Riogrand and Super Strain 8). A sample randomized design with four replicates was used to arrange the experimental pots in the growth chamber. 45-d old both tomato cultivars under AsV toxicity exhibited reduced morphological attributes (root and shoot length, root and shoot fresh weight, and root and shoot dry weight) and physiological and biochemical characteristics [chlorophyll (Chl) a and b content, activity of δ-aminolevulinic acid dehydratase activity (an enzyme responsible for Chl biosynthesis), and carbonic anhydrase activity (an enzyme responsible for photosynthesis), and enhanced Chl degradation, overproduction of reactive oxygen species (ROS) and lipid peroxidation due to enhanced malondialdehyde (MDA) content. However, the combined application of SL and NO was more effective in enhancing the tolerance of both varieties to AsV toxicity compared to individual application. The combined application of SL and NO improved growth parameters, biosynthesis of Chls, NO and proline. However, the combined application significantly suppressed cellular damage by inhibiting MDA and overproduction of ROS in leaves and roots, as confirmed by the fluorescent microscopy study and markedly upregulated the antioxidant enzymes (catalase, peroxidase, superoxide dismutase, ascorbate dismutase and glutathione reductase) activity. This study provides clear evidence that the combined application of SL and NO supplementation significantly improves the resilience of tomato seedlings against AsV toxicity. The synergistic effect of SL and NO was confirmed by the application of cPTIO (an NO scavenger) with SL and NO. However, further molecular studies could be imperative to conclusively validate the simultaneous role of SL and NO in enhancing plant tolerance to abiotic stress.
Collapse
Affiliation(s)
- Qasi D Alsubaie
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdullah A Al-Amri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
4
|
Xiang ZX, Li W, Lu YT, Yuan TT. Hydrogen sulfide alleviates osmotic stress-induced root growth inhibition by promoting auxin homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1369-1384. [PMID: 36948886 DOI: 10.1111/tpj.16198] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 03/09/2023] [Indexed: 06/17/2023]
Abstract
Hydrogen sulfide (H2 S) promotes plant tolerance against various environmental cues, and d-cysteine desulfhydrase (DCD) is an enzymatic source of H2 S to enhance abiotic stress resistance. However, the role of DCD-mediated H2 S production in root growth under abiotic stress remains to be further elucidated. Here, we report that DCD-mediated H2 S production alleviates osmotic stress-mediated root growth inhibition by promoting auxin homeostasis. Osmotic stress up-regulated DCD gene transcript and DCD protein levels and thus H2 S production in roots. When subjected to osmotic stress, a dcd mutant showed more severe root growth inhibition, whereas the transgenic lines DCDox overexpressing DCD exhibited less sensitivity to osmotic stress in terms of longer root compared to the wild-type. Moreover, osmotic stress inhibited root growth through repressing auxin signaling, whereas H2 S treatment significantly alleviated osmotic stress-mediated inhibition of auxin. Under osmotic stress, auxin accumulation was increased in DCDox but decreased in dcd mutant. H2 S promoted auxin biosynthesis gene expression and auxin efflux carrier PIN-FORMED 1 (PIN1) protein level under osmotic stress. Taken together, our results reveal that mannitol-induced DCD and H2 S in roots promote auxin homeostasis, contributing to alleviating the inhibition of root growth under osmotic stress.
Collapse
Affiliation(s)
- Zhi-Xin Xiang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wen Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ting-Ting Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
5
|
Cao H, Liang Y, Zhang L, Liu Z, Liu D, Cao X, Deng X, Jin Z, Pei Y. AtPRMT5-mediated AtLCD methylation improves Cd2+ tolerance via increased H2S production in Arabidopsis. PLANT PHYSIOLOGY 2022; 190:2637-2650. [PMID: 35972421 PMCID: PMC9706440 DOI: 10.1093/plphys/kiac376] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) PROTEIN ARGININE METHYLTRANSFERASE5 (PRMT5), a highly conserved arginine (Arg) methyltransferase protein, regulates multiple aspects of the growth, development, and environmental stress responses by methylating Arg in histones and some mRNA splicing-related proteins in plants. Hydrogen sulfide (H2S) is a recently characterized gasotransmitter that also regulates various important physiological processes. l-cysteine desulfhydrase (LCD) is a key enzyme of endogenous H2S production. However, our understanding of the upstream regulatory mechanisms of endogenous H2S production is limited in plant cells. Here, we confirmed that AtPRMT5 increases the enzymatic activity of AtLCD through methylation modifications during stress responses. Both atprmt5 and atlcd mutants were sensitive to cadmium (Cd2+), whereas the overexpression (OE) of AtPRMT5 or AtLCD enhanced the Cd2+ tolerance of plants. AtPRMT5 methylated AtLCD at Arg-83, leading to a significant increase in AtLCD enzymatic activity. The Cd2+ sensitivity of atprmt5-2 atlcd double mutants was consistent with that of atlcd plants. When AtPRMT5 was overexpressed in the atlcd mutant, the Cd2+ tolerance of plants was significantly lower than that of AtPRMT5-OE plants in the wild-type background. These results were confirmed in pharmacological experiments. Thus, AtPRMT5 methylation of AtLCD increases its enzymatic activity, thereby strengthening the endogenous H2S signal and ultimately improving plant tolerance to Cd2+ stress. These findings provide further insights into the substrates of AtPRMT5 and increase our understanding of the regulatory mechanism upstream of H2S signals.
Collapse
Affiliation(s)
- Haiyan Cao
- School of Life Science and Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, 030006 Taiyuan, China
| | - Yali Liang
- School of Life Science and Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, 030006 Taiyuan, China
| | - Liping Zhang
- School of Life Science and Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, 030006 Taiyuan, China
| | - Zhiqiang Liu
- School of Life Science and Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, 030006 Taiyuan, China
| | - Danmei Liu
- School of Life Science and Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, 030006 Taiyuan, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Zhuping Jin
- School of Life Science and Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, 030006 Taiyuan, China
| | - Yanxi Pei
- School of Life Science and Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, 030006 Taiyuan, China
| |
Collapse
|
6
|
Baniasadi F, Arghavani M, Saffari VR, Mansouri M. Multivariate analysis of morpho-physiological traits in Amaranthus tricolor as affected by nitric oxide and cadmium stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49092-49104. [PMID: 35217955 DOI: 10.1007/s11356-022-19430-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Edible amaranth (Amaranthus tricolor L.) is used as a food-medicine or ornamental plant, and despite its importance, there are few reports associated with cadmium (Cd) stress. This study aimed to appraise the crosstalk between sodium nitroprusside (SNP), as a source of nitric oxide (NO), and cadmium toxicity on growth and physiological traits in edible amaranth by using different multivariate statistical methods. The results showed that growth-related traits of A. tricolor were significantly reduced under Cd stress. Contrarily, Cd treatments increased lipid peroxidation and reduced total protein content. Delving on the results of SNP application showed the suitability of its medium level (100 µM) on increasing the growth-related traits and also plant tolerance to Cd stress via lowering the lipid peroxidation and radical molecules production due to the higher activities of superoxide dismutase and catalase. Increasing the amount of Cd in roots and shoots, as the result of Cd treatment, reduced the growth and production of A. tricolor plants by high rates (over 50% in 60 mg kg-1 Cd level), indicating its susceptibility to high Cd toxicity. Contrarily, treating plants with SNP showed no effect on shoot Cd content, while it significantly increased Cd allocation in the root, which might be attributable to the protective effect of NO on Cd toxicity by trapping Cd in the root. Subsequently, the application of a medium level of SNP (around 100 µM) is recommendable for A. tricolor plant to overcome the negative impacts of Cd toxicity. Moreover, according to the results of heatmap and biplot, under no application of Cd, the application of 100 µM SNP showed a great association with growth-related traits indicating the effectiveness of SNP on the productivity of this species even under no stress situations.
Collapse
Affiliation(s)
- Fatemeh Baniasadi
- Department of Horticultural Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Masoud Arghavani
- Department of Horticultural Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.
| | - Vahid Reza Saffari
- Research and Technology Institute of Plant Production, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mehdi Mansouri
- Department of Agricultural Biotechnology, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
7
|
Javad S, Shah AA, Ramzan M, Sardar R, Javed T, Al-Huqail AA, Ali HM, Chaudhry O, Yasin NA, Ahmed S, Hussain RA, Hussain I. Hydrogen sulphide alleviates cadmium stress in Trigonella foenum-graecum by modulating antioxidant enzymes and polyamine content. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:618-626. [PMID: 35114051 DOI: 10.1111/plb.13393] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/06/2022] [Indexed: 05/02/2023]
Abstract
Cadmium (Cd) toxicity reduces growth and yield of crops grown in metal-polluted sites. Research was conducted to estimate the potential of hydrogen sulphide (H2 S) to mitigate toxicity caused by Cd in fenugreek seedlings (Trigonella foenum-graecum L.). Different concentrations of CdCl2 (Cd1-1 mM, Cd2-1.5 mM, Cd3-2mM) and H2 S (HS1-100 µM, HS2-150 µM, HS3-200 µM) were assessed. Seeds of fenugreek were primed with sodium hydrosulphide (NaHS), as H2 S donor. Seedlings growing in Cd-spiked media treated with H2 S were harvested after 2 weeks. Cd stress affected growth of fenugreek seedlings. Cd toxicity decreased leaf relative water content (LRWC), intercellular CO2 concentration, net photosynthesis, stomatal conductance and transpiration. However, application of H2 S significantly improved seedling morphological attributes by increasing the activity of antioxidant enzymes, i.e. APX, CAT and SOD, in Cd-contaminated soil. H2 S treatment also regulated phenolic and flavonoid content. H2 S-induced biosynthesis of spermidine (Spd) and putrescine (Put) could account for the enhancement of growth and physiological performance of fenugreek seedlings under Cd stress. H2 S treatment also reduced H2 O2 production (38%) and electrolyte leakage (EL, 51%) in seedlings grown in different concentrations of Cd. It is recommended to evaluate the efficacy of H2 S in alleviating Cd toxicity in other crop plants.
Collapse
Affiliation(s)
- S Javad
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - A A Shah
- Department of Botany, Division of Science and Technology., University of Education, Lahore, Pakistan., Lahore, Pakistan
| | - M Ramzan
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - R Sardar
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - T Javed
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - A A Al-Huqail
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - H M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - O Chaudhry
- Ontario Institute of Agrology, Biology and Environmental Sciences, Albert Campbell Collegiate Institute (NS), Scarborough, Ontario, Canada
| | - N A Yasin
- Senior Superintendent Garden, RO-II Office, University of the Punjab, Lahore, Pakistan
| | - S Ahmed
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - R A Hussain
- Department of Botany, Division of Science and Technology., University of Education, Lahore, Pakistan., Lahore, Pakistan
| | - I Hussain
- Department of Agronomy, Faculty of Agriculture, Gomal University, Dera Ismail Khan, KPK, Pakistan
| |
Collapse
|
8
|
Li H, Chen H, Chen L, Wang C. The Role of Hydrogen Sulfide in Plant Roots during Development and in Response to Abiotic Stress. Int J Mol Sci 2022; 23:ijms23031024. [PMID: 35162947 PMCID: PMC8835357 DOI: 10.3390/ijms23031024] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 12/31/2022] Open
Abstract
Hydrogen sulfide (H2S) is regarded as a “New Warrior” for managing plant stress. It also plays an important role in plant growth and development. The regulation of root system architecture (RSA) by H2S has been widely recognized. Plants are dependent on the RSA to meet their water and nutritional requirements. They are also partially dependent on the RSA for adapting to environment change. Therefore, a good understanding of how H2S affects the RSA could lead to improvements in both crop function and resistance to environmental change. In this review, we summarized the regulating effects of H2S on the RSA in terms of primary root growth, lateral and adventitious root formation, root hair development, and the formation of nodules. We also discussed the genes involved in the regulation of the RSA by H2S, and the relationships with other signal pathways. In addition, we discussed how H2S regulates root growth in response to abiotic stress. This review could provide a comprehensive understanding of the role of H2S in roots during development and under abiotic stress.
Collapse
Affiliation(s)
- Hua Li
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China; (H.C.); (L.C.)
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China
- Correspondence: (H.L.); (C.W.)
| | - Hongyu Chen
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China; (H.C.); (L.C.)
| | - Lulu Chen
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China; (H.C.); (L.C.)
| | - Chenyang Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University,
Zhengzhou 450002, China
- Correspondence: (H.L.); (C.W.)
| |
Collapse
|
9
|
Siddiqui MH, Mukherjee S, Kumar R, Alansi S, Shah AA, Kalaji HM, Javed T, Raza A. Potassium and melatonin-mediated regulation of fructose-1,6-bisphosphatase (FBPase) and sedoheptulose-1,7- bisphosphatase (SBPase) activity improve photosynthetic efficiency, carbon assimilation and modulate glyoxalase system accompanying tolerance to cadmium stress in tomato seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 171:49-65. [PMID: 34971955 DOI: 10.1016/j.plaphy.2021.12.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/07/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
The mechanism of the combined action of potassium (K) and melatonin (Mel) in modulating tolerance to cadmium (Cd) stress in plants is not well understood. The present study reveals the synergistic role of K and Mel in enhancing physiological and biochemical mechanisms of Cd stress tolerance in tomato seedlings. The present findings reveal that seedlings subjected to Cd toxicity exhibited disturbed nutrients balance [nitrogen (N) and potassium (K)], chlorophyll (Chl) biosynthesis [reduced δ-aminolevulinic acid (δ-ALA) content and δ-aminolevulinic acid dehydratase (δ-ALAD) activity], pathway of carbon fixation [reduced fructose-1,6-bisphosphatase (FBPase) and sedoheptulose-1,7- bisphosphatase (SBPase) activity] and photosynthesis process in tomato seedlings. However, exogenous application of K and Mel alone as well as together improved physiological and biochemical mechanisms in tomato seedlings, but their combined application proved best by efficiently improving nutrient uptake, photosynthetic pigments biosynthesis (increased Chl a and b, and Total Chl), carbon flow in Calvin cycle, activity of Rubisco, carbonic anhydrase activity, and accumulation of total soluble carbohydrates content in seedlings under Cd toxicity. Furthermore, the combined treatment of K and Mel suppressed overproduction of reactive oxygen species (hydrogen peroxide and superoxide), Chl degradation [reduced chlorophyllase (Chlase) activity] and methylglyoxal content in Cd-stressed tomato seedlings by upregulating glyoxalase (increased glyoxalase I and glyoxalase II activity) and antioxidant systems (increased ascorbate-glutathione metabolism). Thus, the present study provides stronger evidence that the co-application of K and Mel exhibited synergistic roles in mitigating the toxic effect of Cd stress by increasing glyoxalase and antioxidant systems and also by improving photosynthetic efficiency in tomato seedlings.
Collapse
Affiliation(s)
- Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, West Bengal, 742213, India
| | - Ritesh Kumar
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Saleh Alansi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology University of Education, Lahore
| | - Hazem M Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, 159 Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Talha Javed
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Departemnet of Agronomy, University of Agriculture Faisalabad, Faisalabad-38040, Pakistan
| | - Ali Raza
- Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| |
Collapse
|
10
|
Hu D, Wei L, Liao W. Brassinosteroids in Plants: Crosstalk with Small-Molecule Compounds. Biomolecules 2021; 11:biom11121800. [PMID: 34944444 PMCID: PMC8698649 DOI: 10.3390/biom11121800] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 01/01/2023] Open
Abstract
Brassinosteroids (BRs) are known as the sixth type of plant hormone participating in various physiological and biochemical activities and play an irreplaceable role in plants. Small-molecule compounds (SMCs) such as nitric oxide (NO), ethylene, hydrogen peroxide (H2O2), and hydrogen sulfide (H2S) are involved in plant growth and development as signaling messengers. Recently, the involvement of SMCs in BR-mediated growth and stress responses is gradually being discovered in plants, including seed germination, adventitious rooting, stem elongation, fruit ripening, and stress responses. The crosstalk between BRs and SMCs promotes plant development and alleviates stress damage by modulating the antioxidant system, photosynthetic capacity, and carbohydrate metabolism, as well as osmotic adjustment. In the present review, we try to explain the function of BRs and SMCs and their crosstalk in the growth, development, and stress resistance of plants.
Collapse
Affiliation(s)
| | | | - Weibiao Liao
- Correspondence: ; Tel.: +86-931-763-2155; Fax: +86-931-763-2155
| |
Collapse
|
11
|
Sardar R, Ahmed S, Yasin NA. Role of exogenously applied putrescine in amelioration of cadmium stress in Coriandrum sativum by modulating antioxidant system. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:955-962. [PMID: 34632884 DOI: 10.1080/15226514.2021.1985961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Abiotic stress reduces the plant growth and biomass production. Putrescine (Put) may be applied to alleviate numerous types of abiotic stresses in plants. The present research was intended to evaluate the role of exogenously applied Put in extenuation of cadmium (Cd) stress in coriander plants. Coriander seeds primed with 0.25, 0.5, and1 mM Put were allowed to grow in 50 mg kg-1 Cd contaminated soil for one month. Put treatment improved seed germination, gas exchange attributes, root growth and shoot growth of coriander. The improved activity of stress-responsive enzymes such as superoxide dismutase, catalase and peroxidase, besides amplification of proline was observed in Put treated seedlings under Cd stress. In addition, a reduced amount of total soluble protein and sugars content were noticed in Cd stressed seedlings. Nevertheless, Put reduced MDA level in treated plants. Our results demonstrated that Put mitigated Cd induced stress by modulating antioxidants and photosynthetic activity of coriander plants.Novelty statement Most of the researchers have studied the role of endogenous putrescine in alleviation of plant stress. However, during current study, we primed coriander seeds with putrescine. Our results elucidated very promising role of exogenously applied putrescine in stress mitigation and growth improvement of coriander seedlings under Cd stress. The findings of current study advocate the application of putrescine for stress alleviation in crop plants.
Collapse
Affiliation(s)
- Rehana Sardar
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Shakil Ahmed
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | | |
Collapse
|