1
|
Balta I, Lemon J, Gadaj A, Cretescu I, Stef D, Pet I, Stef L, McCleery D, Douglas A, Corcionivoschi N. The interplay between antimicrobial resistance, heavy metal pollution, and the role of microplastics. Front Microbiol 2025; 16:1550587. [PMID: 40092036 PMCID: PMC11906687 DOI: 10.3389/fmicb.2025.1550587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Environmental pollution with heavy metals (HMs) and microplastics (MPs) could enhance the global health challenge antimicrobial resistance (AMR). Herein, we explore the complicated mechanics of how HMs, MPs, and AMR are interlinked within microbial ecosystems, as well as the co-selection and cross-resistance mechanisms. Unlike antibiotics, HMs have influenced microbial evolution for billions of years, promoting resistance mechanisms that predate antibiotic resistance genes (ARGs). At the same time, this conundrum is further complicated by the pervasive spread of MPs in the aquatic and terrestrial environments, acting as substrates for bacterial pathogenic biofilms and accelerates the horizontal gene transfer (HGT) of ARGs and heavy metal resistance genes (MRGs). This review highlights that HMs such as lead (Pb), mercury (Hg), arsenic (As), chromium (Cr), cadmium (Cd), and nickel (Ni) have persistently selected for resistance traits through efflux systems and genetic co-regulation. Together, these interactions are amplified by MPs that create genetic exchange hotspots due to biofilm formation. These dynamics are modulated by organic matter, which serves both as a nutrient source and a mediator of HM bioavailability, directly influencing ARG abundance. Soil and water ecosystems, including riverine systems and landfill leachate, are reservoirs for ARGs and ARG-MRG combinations, with notable contributions originating from anthropogenic activities. This review also emphasizes the urgent need for integrated environmental and public health strategies to mitigate pollutant-driven AMR. This work seeks to approach HMs and MPs as synergistic drivers of AMR such that both HMs and MPs are upstream (causes) levers, a foundation from which future research on sustainable environmental management practices and health policy (One Health Approach), aimed at curbing the spread of resistance determinants can proceed.
Collapse
Affiliation(s)
- Igori Balta
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, Timisoara, Romania
| | - Joanne Lemon
- Chief Scientific Adviser's Office, Department of Agriculture, Environment and Rural Affairs for Northern Ireland, Belfast, United Kingdom
| | - Anna Gadaj
- Chemical Surveillance Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
| | - Iuliana Cretescu
- Department of Functional Sciences, Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Ducu Stef
- Faculty of Food Engineering, University of Life Sciences King Mihai I from Timisoara, Timisoara, Romania
| | - Ioan Pet
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, Timisoara, Romania
| | - Lavinia Stef
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, Timisoara, Romania
| | - David McCleery
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
| | - Alastair Douglas
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
- Academy of Romanian Scientists, Bucharest, Romania
| |
Collapse
|
2
|
Kou X, Millán MP, Canals J, Moreno VR, Renzetti S, Arija V. Effects of prenatal exposure to multiple heavy metals on infant neurodevelopment: A multi-statistical approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125647. [PMID: 39761717 DOI: 10.1016/j.envpol.2025.125647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/18/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
Prenatal exposure to heavy metals poses risks to fetal brain development, yet the joint effects of these metals remain unclear, with inconsistent findings across statistical models. This study investigates the joint effect of prenatal exposure to cadmium (Cd), nickel (Ni), mercury (Hg), and lead (Pb) on infant neurodevelopment using various statistical approaches. The study included 400 mother-infant pairs. Heavy metal levels were measured in maternal urine samples at the 12th week of gestation, and infant neurodevelopment at 40 days was evaluated by the Bayley Scales of Infant and Toddler Development. Generalized Additive Models (GAM), Multivariable Linear Regression (MLR) with restricted cubic spline (RCS), Bayesian Kernel Machine Regression (BKMR), and Weighted Quantile Sum (WQS) regression were applied to explore the associations between heavy metal exposure and neurodevelopmental outcomes. GAM revealed a significant linear relationship for Cd with cognitive scale (p = 0.045) and expressive language (p = 0.043). MLR confirmed that Cd was negatively associated with both cognitive scale (β = -1.47, p = 0.044) and expressive language (β = -0.32, p = 0.019) and RCS presented a non-linear association between Pb and language scale (p = 0.001). BKMR suggested a negative but non-significant association with most outcomes. WQS indicated a significant adverse effect of metal mixture on expressive language (β = -0.26, 95% CI = -0.44, -0.07), identifying Cd and Ni as the primary contributors. Prenatal exposure to heavy metals have detrimental effects on infant neurodevelopment, especially on language development.
Collapse
Affiliation(s)
- Xiruo Kou
- Nutrition and Mental Health (NUTRISAM) research group, Universitat Rovira i Virgili, 43204 Reus, Spain; Institut d'Investigació Sanitaria Pere Virgili (IISPV), 43204 Reus, Spain
| | - Meritxell Pallejà Millán
- Research Support Unit Tarragona, Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP JGol), 43202 Reus, Spain; Faculty of Medicine and Health Sciences, University Rovira i Virgili, 43201 Reus, Spain
| | - Josefa Canals
- Nutrition and Mental Health (NUTRISAM) research group, Universitat Rovira i Virgili, 43204 Reus, Spain; Institut d'Investigació Sanitaria Pere Virgili (IISPV), 43204 Reus, Spain; Centre de Recerca en Avaluació i Mesura de la Conducta (CRAMC), Department of Psychology, Universitat Rovira i Virgili, 43007, Tarragona, Spain; University Research Institute on Sustainability, Climate Change and Energy Transition (IU-RESCAT) Universitat Rovira i Virgili, 43003 Tarragona, Spain
| | - Victoria Rivera Moreno
- Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain; Facultativa especialista en Anàlisis clíniques, Laboratori Clínic, ICS Camp de Tarragona, Spain
| | - Stefano Renzetti
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Università degli Studi di Brescia, Brescia, Italy
| | - Victoria Arija
- Nutrition and Mental Health (NUTRISAM) research group, Universitat Rovira i Virgili, 43204 Reus, Spain; Institut d'Investigació Sanitaria Pere Virgili (IISPV), 43204 Reus, Spain; University Research Institute on Sustainability, Climate Change and Energy Transition (IU-RESCAT) Universitat Rovira i Virgili, 43003 Tarragona, Spain; Collaborative Research Group on Lifestyles, Nutrition and Smoking (CENIT). Tarragona-Reus Research Support Unit, Jordi Gol Primary Care Research Institute, 43003 Tarragona, Spain.
| |
Collapse
|
3
|
El Brouzi MY, Adadi N, Lamtai M, Boulahfa H, Zghari O, Fath N, Rezqaoui A, El Hamzaoui A, Njimat S, El Hessni A, Mesfioui A. Effects of Nickel Bioaccumulation on Hematological, Biochemical, Immune Responses, Neuroinflammatory, Oxidative Stress Parameters, and Neurotoxicity in Rats. Biol Trace Elem Res 2025:10.1007/s12011-025-04528-x. [PMID: 39891830 DOI: 10.1007/s12011-025-04528-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/18/2025] [Indexed: 02/03/2025]
Abstract
Nickel (Ni) exposure is linked to numerous health issues, including dermatitis, immunotoxicity, and cancer. Emerging evidence suggests Ni may cross the blood-brain barrier, accumulating in the brain and causing neuroinflammation, oxidative stress, and neuronal apoptosis. Herein, we investigated the effect of Ni exposure through the intraperitoneal route, studying the Ni effect in subacute and chronic toxicity, on various health parameters in Wistar rats. Rats were randomly divided into four groups (n = 10 per group): two groups received a daily intraperitoneal injection of NiCl₂ at a dose of 0.25 mg/kg for subacute (21 days) or chronic (60 days) exposure periods, while the other two groups were treated with NaCl solution (0.9%) as a control for equivalent durations. The study assessed behavioral, biochemical, hematological, immunological, neurobiochemical, and histopathological effects over 21 and 60 days. Neurobehavioral tests, blood and tissue analyses, and organ examinations were conducted. This study demonstrates that Ni bioaccumulation in subacute and chronic exposure has significant health impacts in Wistar rats, including hematological, immunological, biochemical, AchE activity, neuroinflammatory, oxidative stress, and neurobehavioral changes. Chronic exposure results in higher Ni accumulation, particularly in the brain, causing neurotoxicity, inflammation, and behavioral disorders such as anxiety, depression, and memory impairment. The findings highlight the importance of limiting Ni exposure to prevent adverse health effects.
Collapse
Affiliation(s)
- Mohamed Yassine El Brouzi
- Laboratory of Biology and Health, Neurosciences, Neuro-Immunology and Behaviour Unit, Faculty of Science, Ibn Tofail University, Kenitra, Morocco.
| | - Najlae Adadi
- Higher Institute of Nursing and Health Professions of Dakhla, Dakhla, Morocco
| | - Mouloud Lamtai
- Laboratory of Biology and Health, Neurosciences, Neuro-Immunology and Behaviour Unit, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Hafsa Boulahfa
- Laboratory of Biology and Health, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Oussama Zghari
- Laboratory of Biology and Health, Neurosciences, Neuro-Immunology and Behaviour Unit, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Nada Fath
- Compared Anatomy Unit, School of Veterinary Medicine, Hassan II Institute of Agronomy and Veterinary Medicine, Rabat, Morocco
- Physiology and Pathophysiology Laboratory, Department of Biology, Faculty of Sciences, Mohamed V University, Rabat, Morocco
| | - Ayoub Rezqaoui
- Laboratory of Biology and Health, Neurosciences, Neuro-Immunology and Behaviour Unit, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Abdelghafour El Hamzaoui
- Laboratory of Biology and Health, Neurosciences, Neuro-Immunology and Behaviour Unit, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Smail Njimat
- Laboratory of Materials, Electrochemistry and Environment, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Aboubaker El Hessni
- Laboratory of Biology and Health, Neurosciences, Neuro-Immunology and Behaviour Unit, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Abdelhalem Mesfioui
- Laboratory of Biology and Health, Neurosciences, Neuro-Immunology and Behaviour Unit, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| |
Collapse
|
4
|
Adetutu A, Adegbola PI, Aborisade AB. Low Dose of Nickel and Benzo [a] Anthracene in Rat-Diet, Induce Apoptosis, Fibrosis, and Initiate Carcinogenesis in Liver via NF-Ƙβ Pathway. Biol Trace Elem Res 2025; 203:305-333. [PMID: 38656682 DOI: 10.1007/s12011-024-04177-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
Environmental contaminants such as polycyclic aromatic hydrocarbon (PAH) and heavy metals are major contaminants of food such as fish thus serving as source of exposure to human. This study was designed to evaluate the carcinogenic risk and other risks associated with long-term consumption of environmentally relevant dose of nickel and benzo [a] anthracene in rats. Thirty-six (36) male rats weighing between 80 and 100 g were assigned into 6 groups of 6 animals each; normal, nickel-, and benzo [a] anthracene-exposed groups for 12 and 24 weeks, respectively. Micronucleus and comet analyses were done in the blood, liver, and bone marrow. Liver function, redox, and inflammatory markers (AST, ALT, GGT, SOD, GSH, MDA, protein carbonyl, protein thiol, total protein, IL-10, 1L-1β, TNF-α, TGF-β NF-Ƙβ, and 8-oxodeoxyguansine) were analysed by standard methods. Immuno-histochemical quantification of Bax, Bcl2, and Erk 1/2 as well as mRNA expression of cyclin D1 was done in liver. From the results, weight gain was observed in varying degrees throughout the exposure period. The polychromatic erythrocytes/normochromatic erythrocytes ratio > 0.2 indicates no cytotoxic effects on the bone marrow. Percentage-MnPCE in blood significantly (p < 0.05) increased throughout exposure duration. Percentage tail DNA in blood was significantly (< 0.05) increased at weeks 20 and 24 in the exposed groups and in liver at weeks 12 (16.22 ± 0.47) and 24 (17.00 ± 0.36) of nickel-exposed rats. The aspartate amino transferase (AST):alanine amino transferase (ALT) ratio indicated fatty liver disease in the benzo [a] anthracene (0.90) and acute liver injury in the nickel (> 10 times greater than the upper limits of the reference group) exposed groups during the first 12 weeks. Observation from the histological and cytological data of the liver revealed the presence of inflammation, fibrosis, and high nuclear/cytoplasmic ratio, respectively, in the nickel and benzo [a] anthracene groups. Only benzo [a] anthracene induced liver oxidative stress with significant (p < 0.05) decrease in SOD (0.64 ± 0.02) activity and increase in protein carbonyl (7.60 ± 0.80 × 10-5) and MDA (57.10 ± 6.64) concentration after 24 weeks. Benzo [a] anthracene up-regulated the cyclin D1 expression and significantly (p < 0.05) increased the levels of the cytokines. Nickel and benzo [a] anthracene significantly (p < 0.05) increased the Bax (183.45 ± 6.50 and 199.76 ± 10.04) and Erk 1/2 (108.25 ± 6.41 and 136.74 ± 4.22) levels when compared with the control (37.43 ± 22.22 and 60.37 ± 17.86), respectively. Overall result showed that the toxic effects of nickel and benzo [a] anthracene might involve fibrosis, cirrhosis, apoptosis, and inflammation of the liver. As clearly demonstrated in this study, benzo [a] anthracene after the 24 weeks of exposure stimulates carcinogenic process by suppressing the liver antioxidant capacity, altering apoptotic, cell proliferation, and differentiation pathways.
Collapse
Affiliation(s)
- Adewale Adetutu
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Peter Ifeoluwa Adegbola
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.
- Department of Biochemistry and Forensic Science, First Technical University, Ibadan, Nigeria.
| | - Abiodun Bukunmi Aborisade
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Nigeria Institute of Oceanography and Marine Research, Lagos, Nigeria
| |
Collapse
|
5
|
Naithani S, Dubey R, Goswami T, Thetiot F, Kumar S. Optical detection strategies for Ni(II) ion using metal-organic chemosensors: from molecular design to environmental applications. Dalton Trans 2024; 53:17409-17428. [PMID: 39345035 DOI: 10.1039/d4dt02376e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Nickel is an important element utilized in various industrial/metallurgical processes, such as surgical and dental prostheses, Ni-Cd batteries, paint pigments, electroplating, ceramics, computer magnetic tapes, catalysis, and alloy manufacturing. However, its extensive use and associated waste production have led to increased nickel pollution in soils and water bodies, which adversely affects human health, animals and plants. This issue has prompted researchers to develop various optical probes, hereafter luminescent/colorimetric sensors, for the facile, sensitive and selective detection of nickel, particularly in biological and environmental contexts. In recent years, numerous functionalized chemosensors have been reported for imaging Ni2+, both in vivo and in vitro. In this context, metal-based receptors offer clear advantages over conventional organic sensors (viz., organic ligands, polymers, and membranes) in terms of cost, durability, stability, water solubility, recyclability, chemical flexibility and scope. This review highlights recent advancements in the design and fabrication of hybrid receptors (i.e., metal complexes and MOFs) for the specific detection of Ni2+ ions in complex environmental and biological mixtures.
Collapse
Affiliation(s)
- Sudhanshu Naithani
- Department of Chemistry, School of Advanced Engineering (Applied Science Cluster), UPES, Dehradun-248007, Uttarakhand, India.
| | - Ritesh Dubey
- Department of Chemistry, School of Advanced Engineering (Applied Science Cluster), UPES, Dehradun-248007, Uttarakhand, India.
| | - Tapas Goswami
- Department of Chemistry, School of Advanced Engineering (Applied Science Cluster), UPES, Dehradun-248007, Uttarakhand, India.
| | - Franck Thetiot
- CEMCA, CNRS, UMR 6521, Université de Bretagne Occidentale, Brest 29238, France
| | - Sushil Kumar
- Department of Chemistry, School of Advanced Engineering (Applied Science Cluster), UPES, Dehradun-248007, Uttarakhand, India.
| |
Collapse
|
6
|
Zhao H, Zhang X, Feng M, Zhang J, Yu H, Chi H, Li X, Yan L, Yu P, Ye T, Wang G, Li S, Guo Y, Lu P. Associations between blood nickel and lung function in young Chinese: An observational study combining epidemiology and metabolomics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116963. [PMID: 39232299 DOI: 10.1016/j.ecoenv.2024.116963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Prior research has explored the relationship between occupational exposure to nickel and lung function. Nonetheless, there is limited research examining the correlation between blood nickel levels and lung function among young adults in the general population. The metabolomic changes associated with nickel exposure have not been well elucidated. On August 23, 2019, we enrolled 257 undergraduate participants from the Chinese Undergraduates Cohort to undergo measurements of blood nickel levels and lung function. The follow-up study was conducted in May 2021. A linear mixed-effects model was employed to assess the relationship between blood nickel levels and lung function. We also conducted stratified analyses by home address. In addition, in order to explore the biological mechanism of lung function damage caused by nickel exposure, we performed metabolomic analyses of baseline serum samples (N = 251). Both analysis of variance and mixed linear effect models were utilized to assess the impact of blood nickel exposure on metabolism. Our findings from cross-sectional and cohort analyses revealed a significant association between blood nickel levels and decreased forced expiratory volume in the first second (FEV1) and forced vital capacity (FVC) among young adults in the general population. Furthermore, we found stronger associations in urban areas. In metabolomics analysis, a total of nine metabolites were significantly changed under blood nickel exposure. The changed metabolites were mainly enriched in six pathways including carbohydrate, amino acid, and cofactor vitamin metabolism. These metabolic pathways involve inflammation and oxidative stress, indicating that high concentrations of nickel exposure can cause inflammation and oxidative stress by disrupting the above metabolism of the body.
Collapse
Affiliation(s)
- Huijuan Zhao
- Binzhou Medical University, Yantai, Shandong, China
| | | | - Mingyu Feng
- Binzhou Medical University, Yantai, Shandong, China
| | - Jia Zhang
- Binzhou Medical University, Yantai, Shandong, China
| | - Haochen Yu
- Case Western Reserve University, Cleveland, United States
| | - Hanwei Chi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, China
| | - Xinyuan Li
- Binzhou Medical University, Yantai, Shandong, China
| | - Lailai Yan
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China
| | - Pei Yu
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Tingting Ye
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Guanghe Wang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Yuming Guo
- Binzhou Medical University, Yantai, Shandong, China; Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.
| | - Peng Lu
- Binzhou Medical University, Yantai, Shandong, China.
| |
Collapse
|
7
|
Urbanowicz T, Hanć A, Frąckowiak J, Białasik-Misiorny M, Radek Z, Krama M, Filipiak KJ, Krasińska-Płachta A, Iwańczyk S, Kowalewski M, Tykarski A, Jemielity M. What Can We Learn from the Scalp Hair's Trace Element Content? The Relationship with the Advancement of Coronary Artery Disease. J Clin Med 2024; 13:5260. [PMID: 39274472 PMCID: PMC11395935 DOI: 10.3390/jcm13175260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024] Open
Abstract
Background: Multiple risk factors for coronary artery disease have been identified without answering one of the leading questions related to the extent of the involvement of the epicardial arteries. Trace elements are involved in various stages of atherosclerotic lesion formation and may play a significant role in the advancement of coronary artery disease. Methods: A total of 157 (92 (59%) men and 65 (41%) women) patients with a median age of 71 (65-75) years presenting with chronic coronary syndrome were enrolled in the prospective single-center analysis. The coronary angiography results were compared with the concentration of trace elements in scalp hair. Results: Through Spearman analysis, a positive correlation between the number of diseased coronary arteries and hair trace element concentration was found for sodium (r = 0.198, p = 0.013), vanadium (r = 0.164, p = 0.040), chromium (r = 0.242, p = 0.002), and nickel (r = 0.176, p = 0.026). A negative relationship was noted between magnesium (r = -0.237, p = 0.003) and calcium (r = -0.217, p = 0.007) and the extent of epicardial lesions. Conclusions: Scalp hair trace element analysis indicates the possible modulatory role of trace elements in advancing coronary artery disease. Since a significant correlation with one- and two-vessel but not with three-vessel disease was noted, it might be considered an "all or nothing" phenomenon. A positive correlation between the number of diseased coronary arteries and sodium, vanadium, chromium, and nickel and an inverse correlation with magnesium and calcium were noted. The presented analysis is hypothesis-generating, and further studies are necessary to corroborate the results from a clinical perspective.
Collapse
Affiliation(s)
- Tomasz Urbanowicz
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Thoracic Research Centre, Collegium Medicum Nicolaus Copernicus University, Innovative Medical Forum, 85-094 Bydgoszcz, Poland
| | - Anetta Hanć
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Julia Frąckowiak
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznan, Poland
| | | | - Zofia Radek
- Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Marta Krama
- Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Krzysztof J Filipiak
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Institute of Clinical Science, Maria Sklodowska-Curie Medical Academy, 00-136 Warsaw, Poland
| | | | - Sylwia Iwańczyk
- 1st Cardiology Department, Poznan University of Medical Sciences, 61-107 Poznan, Poland
| | - Mariusz Kowalewski
- Thoracic Research Centre, Collegium Medicum Nicolaus Copernicus University, Innovative Medical Forum, 85-094 Bydgoszcz, Poland
- Department of Cardiac Surgery and Transplantology, National Medical Institute of the Ministry of Interior and Administration, 02-507 Warsaw, Poland
- Cardio-Thoracic Surgery Department, Heart and Vascular Center, Maastricht University Medical Center (MUMC), Cardiovascular Research Center Maastricht (CARIM), 6229 Maastricht, The Netherlands
| | - Andrzej Tykarski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Marek Jemielity
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| |
Collapse
|
8
|
Chen J, Fan X, Chen J, Luo X, Huang X, Zhou Z, He Y, Feng S, Jiao Y, Wang R, Ji M, Miao J, Zhang M, Wu B. Effects of hesperidin on the histological structure, oxidative stress, and apoptosis in the liver and kidney induced by NiCl 2. Front Vet Sci 2024; 11:1424711. [PMID: 38983771 PMCID: PMC11231102 DOI: 10.3389/fvets.2024.1424711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024] Open
Abstract
The aim of this study was to investigate the effect of hesperidin on the liver and kidney dysfunctions induced by nickel. The mice were divided into six groups: nickel treatment with 80 mg/kg, 160 mg/kg, 320 mg/kg hesperidin groups, 0.5% CMC-Na group, nickel group, and blank control group. Histopathological techniques, biochemistry, immunohistochemistry, and the TUNEL method were used to study the changes in structure, functions, oxidative injuries, and apoptosis of the liver and kidney. The results showed that hesperidin could alleviate the weight loss and histological injuries of the liver and kidney induced by nickel, and increase the levels of lactate dehydrogenase (LDH), alanine aminotransferase (GPT), glutamic oxaloacetic transaminase (GOT) in liver and blood urea nitrogen (BUN), creatinine (Cr) and N-acetylglucosidase (NAG) in kidney. In addition, hesperidin could increase the activities of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione peroxidase (GSH-Px) in the liver and kidney, decrease the content of malondialdehyde (MDA) and inhibit cell apoptosis. It is suggested that hesperidin could help inhibit the toxic effect of nickel on the liver and kidney.
Collapse
Affiliation(s)
- Jinquan Chen
- Department of Pharmacy, Jiangsu Food and Pharmaceutical Science College, Huai’an, China
| | - Xinmei Fan
- Department of Pharmacy, Jiangsu Food and Pharmaceutical Science College, Huai’an, China
| | - Juan Chen
- Department of Pharmacy, Jiangsu Food and Pharmaceutical Science College, Huai’an, China
| | - Xin Luo
- College of Life Sciences, China West Normal University, Nanchong, China
| | - Xin Huang
- College of Life Sciences, China West Normal University, Nanchong, China
| | - Ziling Zhou
- College of Life Sciences, China West Normal University, Nanchong, China
| | - Yue He
- College of Life Sciences, China West Normal University, Nanchong, China
| | - Shaohua Feng
- College of Life Sciences, China West Normal University, Nanchong, China
| | - Yuqing Jiao
- Department of Pharmacy, Jiangsu Food and Pharmaceutical Science College, Huai’an, China
| | - Ruiqing Wang
- Department of Pharmacy, Jiangsu Food and Pharmaceutical Science College, Huai’an, China
| | - Menya Ji
- Department of Pharmacy, Jiangsu Food and Pharmaceutical Science College, Huai’an, China
| | - Jing Miao
- Department of Pharmacy, Jiangsu Food and Pharmaceutical Science College, Huai’an, China
| | - Mengyuan Zhang
- Department of Pharmaceutical Engineering, Jiangsu Food and Pharmaceutical Science College, Huai’an, China
| | - Bangyuan Wu
- College of Life Sciences, China West Normal University, Nanchong, China
| |
Collapse
|
9
|
Gu J, Guo C, Ruan J, Li K, Zhou Y, Gong X, Shi H. From ferroptosis to cuproptosis, and calcicoptosis, to find more novel metals-mediated distinct form of regulated cell death. Apoptosis 2024; 29:586-604. [PMID: 38324163 DOI: 10.1007/s10495-023-01927-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 02/08/2024]
Abstract
Regulated cell death (RCD), also known as programmed cell death (PCD), plays a critical role in various biological processes, such as tissue injury/repair, development, and homeostasis. Dysregulation of RCD pathways can lead to the development of many human diseases, such as cancer, neurodegenerative disorders, and cardiovascular diseases. Maintaining proper metal ion homeostasis is critical for human health. However, imbalances in metal levels within cells can result in cytotoxicity and cell death, leading to a variety of diseases and health problems. In recent years, new types of metal overload-induced cell death have been identified, including ferroptosis, cuproptosis, and calcicoptosis. This has prompted us to examine the three defined metal-dependent cell death types, and discuss other metals-induced ferroptosis, cuproptosis, and disrupted Ca2+ homeostasis, as well as the roles of Zn2+ in metals' homeostasis and related RCD. We have reviewed the connection between metals-induced RCD and various diseases, as well as the underlying mechanisms. We believe that further research in this area will lead to the discovery of novel types of metal-dependent RCD, a better understanding of the underlying mechanisms, and the development of new therapeutic strategies for human diseases.
Collapse
Affiliation(s)
- Jie Gu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Chuanzhi Guo
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Jiacheng Ruan
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Kongdong Li
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Yang Zhou
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Xun Gong
- Department of Rheumatology & Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212013, China.
| | - Haifeng Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
10
|
Zhao L, Wei Y, Liu Q, Cai J, Mo X, Tang X, Wang X, Qin L, Liang Y, Cao J, Huang C, Lu Y, Zhang T, Luo L, Rong J, Wu S, Jin W, Guan Q, Teng K, Li Y, Qin J, Zhang Z. Association between multiple-heavy-metal exposures and systemic immune inflammation in a middle-aged and elderly Chinese general population. BMC Public Health 2024; 24:1192. [PMID: 38679723 PMCID: PMC11057124 DOI: 10.1186/s12889-024-18638-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Exposure to heavy metals alone or in combination can promote systemic inflammation. The aim of this study was to investigate potential associations between multiple plasma heavy metals and markers of systemic immune inflammation. METHODS Using a cross-sectional study, routine blood tests were performed on 3355 participants in Guangxi, China. Eight heavy metal elements in plasma were determined by inductively coupled plasma mass spectrometry. Immunoinflammatory markers were calculated based on peripheral blood WBC and its subtype counts. A generalised linear regression model was used to analyse the association of each metal with the immunoinflammatory markers, and the association of the metal mixtures with the immunoinflammatory markers was further assessed using weighted quantile sum (WQS) regression. RESULTS In the single-metal model, plasma metal Fe (log10) was significantly negatively correlated with the levels of immune-inflammatory markers SII, NLR and PLR, and plasma metal Cu (log10) was significantly positively correlated with the levels of immune-inflammatory markers SII and PLR. In addition, plasma metal Mn (log10 conversion) was positively correlated with the levels of immune inflammatory markers NLR and PLR. The above associations remained after multiple corrections. In the mixed-metal model, after WQS regression analysis, plasma metal Cu was found to have the greatest weight in the positive effects of metal mixtures on SII and PLR, while plasma metals Mn and Fe had the greatest weight in the positive effects of metal mixtures on NLR and LMR, respectively. In addition, blood Fe had the greatest weight in the negative effects of the metal mixtures for SII, PLR and NLR. CONCLUSION Plasma metals Cu and Mn were positively correlated with immunoinflammatory markers SII, NLR and PLR. While plasma metal Fe was negatively correlated with immunoinflammatory markers SII, NLR, and PLR.
Collapse
Affiliation(s)
- Linhai Zhao
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yanfei Wei
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, Guangdong, China
| | - Qiumei Liu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jiansheng Cai
- School of Public Health, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, China
| | - Xiaoting Mo
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xu Tang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xuexiu Wang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Lidong Qin
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yujian Liang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jiejing Cao
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Chuwu Huang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yufu Lu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Tiantian Zhang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Lei Luo
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jiahui Rong
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Songju Wu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Wenjia Jin
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Qinyi Guan
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Kaisheng Teng
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - You Li
- School of Public Health, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, China
| | - Jian Qin
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
| | - Zhiyong Zhang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
- School of Public Health, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, China.
- Guangxi Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
11
|
Chiu LC, Lee CS, Hsu PC, Li HH, Chan TM, Hsiao CC, Kuo SCH, Ko HW, Lin SM, Wang CH, Lin HC, Chu PH, Yen TH. Urinary cadmium concentration is associated with the severity and clinical outcomes of COVID-19: a bicenter observational cohort study. Environ Health 2024; 23:29. [PMID: 38504259 PMCID: PMC10949676 DOI: 10.1186/s12940-024-01070-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/05/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Cadmium and nickel exposure can cause oxidative stress, induce inflammation, inhibit immune function, and therefore has significant impacts on the pathogenesis and severity of many diseases. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can also provoke oxidative stress and the dysregulation of inflammatory and immune responses. This study aimed to assess the potential associations of cadmium and nickel exposure with the severity and clinical outcomes of patients with coronavirus disease 2019 (COVID-19). METHODS We performed a retrospective, observational, bicenter cohort analysis of patients with SARS-CoV-2 infection in Taiwan between June 2022 and July 2023. Cadmium and nickel concentrations in blood and urine were measured within 3 days of the diagnosis of acute SARS-CoV-2 infection, and the severity and clinical outcomes of patients with COVID-19 were analyzed. RESULTS A total of 574 patients were analyzed and divided into a severe COVID-19 group (hospitalized patients) (n = 252; 43.9%), and non-severe COVID-19 group (n = 322; 56.1%). The overall in-hospital mortality rate was 11.8% (n = 68). The severe COVID-19 patients were older, had significantly more comorbidities, and significantly higher neutrophil/lymphocyte ratio, C-reactive protein, and interleukin-6 than the non-severe COVID-19 patients (all p < 0.05). Blood and urine cadmium and urine nickel concentrations were significantly higher in the severe COVID-19 patients than in the non-severe COVID-19 patients. Among the severe COVID-19 patients, those in higher urine cadmium/creatinine quartiles had a significantly higher risk of organ failure (i.e., higher APACHE II and SOFA scores), higher neutrophil/lymphocyte ratio, lower PaO2/FiO2 requiring higher invasive mechanical ventilation support, higher risk of acute respiratory distress syndrome, and higher 60-, 90-day, and all-cause hospital mortality (all p < 0.05). Multivariable logistic regression models revealed that urine cadmium/creatinine was independently associated with severe COVID-19 (adjusted OR 1.643 [95% CI 1.060-2.547], p = 0.026), and that a urine cadmium/creatinine value > 2.05 μg/g had the highest predictive value (adjusted OR 5.349, [95% CI 1.118-25.580], p = 0.036). CONCLUSIONS Urine cadmium concentration in the early course of COVID-19 could predict the severity and clinical outcomes of patients and was independently associated with the risk of severe COVID-19.
Collapse
Affiliation(s)
- Li-Chung Chiu
- Department of Thoracic Medicine, Linkou Branch, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chung-Shu Lee
- Department of Thoracic Medicine, Linkou Branch, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Thoracic Medicine, New Taipei Municipal TuCheng Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Ping-Chih Hsu
- Department of Thoracic Medicine, Linkou Branch, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Hsien Li
- Department of Thoracic Medicine, Linkou Branch, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Respiratory Therapy, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Tien-Ming Chan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Rheumatology, Allergy, and Immunology, Linkou Branch, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ching-Chung Hsiao
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Nephrology, New Taipei Municipal TuCheng Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Scott Chih-Hsi Kuo
- Department of Thoracic Medicine, Linkou Branch, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - How-Wen Ko
- Department of Thoracic Medicine, Linkou Branch, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shu-Min Lin
- Department of Thoracic Medicine, Linkou Branch, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Hua Wang
- Department of Thoracic Medicine, Linkou Branch, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Horng-Chyuan Lin
- Department of Thoracic Medicine, Linkou Branch, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pao-Hsien Chu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Cardiology, Linkou Branch, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tzung-Hai Yen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Linkou, No. 5, Fu-Shing St., GuiShan, Taoyuan, 33305, Taiwan.
- Clinical Poison Center, Center for Tissue Engineering, Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan.
| |
Collapse
|
12
|
Sharma M, Khan FH, Mahmood R. Nickel chloride generates cytotoxic ROS that cause oxidative damage in human erythrocytes. J Trace Elem Med Biol 2023; 80:127272. [PMID: 37516010 DOI: 10.1016/j.jtemb.2023.127272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/07/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND Nickel is a heavy metal that is regarded as a possible hazard to living organisms due to its toxicity and carcinogenicity. Nickel chloride (NiCl2), an inorganic divalent Ni compound, has been shown to cause oxidative stress in cells by altering the redox equilibrium. We have investigated the effect of NiCl2 on isolated human erythrocytes under in vitro condition. METHODS Isolated erythrocytes were treated with different concentrations of NiCl2 (25-500 µM) for 24 h at 37 ºC. Hemolysates were prepared and several biochemical parameters were analyzed in them. RESULTS Treatment of erythrocytes with NiCl2 enhanced the intracellular generation of reactive oxygen species (ROS). A significant increase in hydrogen peroxide levels and oxidation of proteins and lipids was also seen. This was accompanied by a reduction in levels of nitric oxide, glutathione, free amino groups and total sulfhydryl groups. NiCl2 treatment impaired both enzymatic and non-enzymatic defense systems, resulting in lowered antioxidant capacity and diminished ability of cells to quench free radicals and reduce metal ions. NiCl2 exposure also had an inhibitory effect on the activity of enzymes involved in pathways of glucose metabolism (glycolytic and pentose phosphate shunt pathways). Increased level of methemoglobin, which is inactive in oxygen transport, was also seen. The rate of heme breakdown increased resulting in the release of free iron. Exposure to NiCl2 led to considerable cell lysis, indicating damage to the erythrocyte membrane. This was supported by the inhibition of membrane bound enzymes and increase in the osmotic fragility of NiCl2 treated cells. NiCl2 treatment caused severe morphological alterations with the conversion of normal discocytes to echinocytes. All changes were seen in a NiCl2 concentration-dependent manner. CONCLUSION NiCl2 generates cytotoxic ROS in human erythrocytes which cause oxidative damage that can decrease the oxygen carrying capacity of blood and also lead to anemia.
Collapse
Affiliation(s)
- Monika Sharma
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Fahim Halim Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India.
| |
Collapse
|
13
|
Guo H, Yang Y, Lou Y, Zuo Z, Cui H, Deng H, Zhu Y, Fang J. Apoptosis and DNA damage mediated by ROS involved in male reproductive toxicity in mice induced by Nickel. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115679. [PMID: 37976929 DOI: 10.1016/j.ecoenv.2023.115679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Nickel (Ni) is the most important environmental pollution in the world. Ni has been confirmed to have multi-organ toxicology and carcinogenicity. Recently, Ni also can impair the male reproductive system, however, its precious mechanism still has not been clarified. The current work found that nickel chloride (NiCl2) induced histopathological lesions in testis. And, the Johnsen's score, seminiferous tubule diameter, and spermatogenic epithelium thickness were decreased in NiCl2-treated mice. The number of spermatogonium, primary spermatocyte, and round spermatid also were significantly reduced after Ni treatment. Next the potential molecular mechanism was measured. NiCl2 treatment elevated ROS production in the testis. Additionally, NiCl2 was found to induce apoptosis with features including up-regulation of Bax, cleaved-caspase-3, cleaved-caspase-8, caspase-9, and caspase-12, while down-regulation of Bcl-2 expression. In the meantime, the marker protein of DNA damage γ-H2AX was significantly increased in NiCl2-primed mice testis. To clarify effects of reactive oxygen species (ROS) in apoptosis and DNA damage induced by NiCl2, NiCl2 was used to co-treat antioxidant NAC (N-Acetyl-L-cysteine). NAC weakened ROS production induced by NiCl2, and played an inhibition role in apoptosis and DNA damage. Moreover, co-treatment using NiCl2 and NAC group also eliminated spermatogenesis disorders. In summary, research results reveal the relations of spermatogenesis disorder induced by NiCl2 with apoptosis and DNA damage mediated by ROS and apoptosis in the testis.
Collapse
Affiliation(s)
- Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China.
| | - Yue Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Yanbing Lou
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Yanqiu Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China.
| |
Collapse
|
14
|
Paduano S, Granata M, Turchi S, Modenese A, Galante P, Poggi A, Marchesi I, Frezza G, Dervishaj G, Vivoli R, Verri S, Marchetti S, Gobba F, Bargellini A. Factors Associated with SARS-CoV-2 Infection Evaluated by Antibody Response in a Sample of Workers from the Emilia-Romagna Region, Northern Italy. Antibodies (Basel) 2023; 12:77. [PMID: 38131799 PMCID: PMC10740768 DOI: 10.3390/antib12040077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/18/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Factors associated with SARS-CoV-2 infection risk are still debated. This case-control study aims to investigate the possible relationship between SARS-CoV-2 infection, evaluated through antibody response, and the main sociodemographic, occupational, clinical-anamnestic, and biochemical factors in a population of Modena province (Northern Italy), mainly workers. Both workers who voluntarily joined the screening campaign proposed by companies and self-referred individuals who underwent serological testing were enrolled. Subjects with antibody positivity were recruited as cases (n = 166) and subjects tested negative (n = 239) as controls. A questionnaire on sociodemographic, occupational, and clinical data was administered through telephone interviews. Serum zinc/iron/copper/chromium/nickel, vitamins D/B12, folates, triglycerides, and LDL/HDL/total cholesterol were measured. Cases lived more often in urban areas (61.8% vs. 57%). Cases and controls did not differ significantly by working macrocategories, but the percentage of workers in the ceramic sector was higher among cases. Low adherence to preventive measures in the workplace was more frequent among seropositives. Folate concentration was significantly lower among cases. Therefore, adequate folate levels, living in rural areas, and good adherence to preventive strategies seem protective against infection. Workers in the ceramic sector seem to be at greater risk; specific factors involved are not defined, but preventive interventions are needed.
Collapse
Affiliation(s)
- Stefania Paduano
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (S.T.); (A.M.); (P.G.); (A.P.); (I.M.); (G.F.); (G.D.); (F.G.); (A.B.)
| | - Michele Granata
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (S.T.); (A.M.); (P.G.); (A.P.); (I.M.); (G.F.); (G.D.); (F.G.); (A.B.)
| | - Sara Turchi
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (S.T.); (A.M.); (P.G.); (A.P.); (I.M.); (G.F.); (G.D.); (F.G.); (A.B.)
| | - Alberto Modenese
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (S.T.); (A.M.); (P.G.); (A.P.); (I.M.); (G.F.); (G.D.); (F.G.); (A.B.)
| | - Pasquale Galante
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (S.T.); (A.M.); (P.G.); (A.P.); (I.M.); (G.F.); (G.D.); (F.G.); (A.B.)
| | - Alessandro Poggi
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (S.T.); (A.M.); (P.G.); (A.P.); (I.M.); (G.F.); (G.D.); (F.G.); (A.B.)
| | - Isabella Marchesi
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (S.T.); (A.M.); (P.G.); (A.P.); (I.M.); (G.F.); (G.D.); (F.G.); (A.B.)
| | - Giuseppina Frezza
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (S.T.); (A.M.); (P.G.); (A.P.); (I.M.); (G.F.); (G.D.); (F.G.); (A.B.)
| | - Giulia Dervishaj
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (S.T.); (A.M.); (P.G.); (A.P.); (I.M.); (G.F.); (G.D.); (F.G.); (A.B.)
| | - Roberto Vivoli
- Test Laboratory, 41100 Modena, Italy; (R.V.); (S.V.); (S.M.)
| | - Sara Verri
- Test Laboratory, 41100 Modena, Italy; (R.V.); (S.V.); (S.M.)
| | | | - Fabriziomaria Gobba
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (S.T.); (A.M.); (P.G.); (A.P.); (I.M.); (G.F.); (G.D.); (F.G.); (A.B.)
| | - Annalisa Bargellini
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (S.T.); (A.M.); (P.G.); (A.P.); (I.M.); (G.F.); (G.D.); (F.G.); (A.B.)
| |
Collapse
|
15
|
Goswami N, Naithani S, Mangalam J, Goswami T, Dubey R, Kumar P, Kumar P, Kumar S. Fluorescent and chromogenic organic probes to detect group 10 metal ions: design strategies and sensing applications. Dalton Trans 2023; 52:14704-14732. [PMID: 37750386 DOI: 10.1039/d3dt01723k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Group 10 metals including Ni, Pd and Pt have been extensively applied in various essential aspects of human social life, material science, industrial manufactures, medicines and biology. The ionic forms of these metals are involved in several biologically important processes due to their strong binding capability towards different biomolecules. However, the mishandling or overuse of such metals has been linked to serious contamination of our ecological system, more specifically in soil and water bodies with acute consequences. Therefore, the detection of group 10 metal ions in biological as well as environmental samples is of huge significance from the human health point of view. Related to this, considerable efforts are underway to develop adequately efficient and facile methods to achieve their selective detection. Optical sensing of metal ions has gained increasing attention of researchers, particularly in the environmental and biological settings. Innovatively designed optical probes (fluorescent or colorimetric) are usually comprised of three basic components: an explicitly tailored receptor unit, a signalling unit and a clearly defined reporter unit. This review deals with the recent progress in the design and fabrication of fluorescent or colorimetric organic sensors for the detection of group 10 metal ions (Ni(II), Pd(II) and Pt(II)), with attention to the general aspects for design of such sensors.
Collapse
Affiliation(s)
- Nidhi Goswami
- Department of Chemistry, Applied Science Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| | - Sudhanshu Naithani
- Department of Chemistry, Applied Science Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| | - Jimmy Mangalam
- Department of Chemistry, Applied Science Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| | - Tapas Goswami
- Department of Chemistry, Applied Science Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| | - Ritesh Dubey
- Department of Chemistry, Applied Science Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| | - Pramod Kumar
- Department of Chemistry, Mahamana Malviya College Khekra (Baghpat), C.C.S. University Meerut, India
| | - Pankaj Kumar
- Department of Chemistry, Applied Science Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| | - Sushil Kumar
- Department of Chemistry, Applied Science Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| |
Collapse
|
16
|
Fernández-Sanz H, Perrault JR, Stacy NI, Mancini A, Reyes-Bonilla H, Reséndiz E. Blood analyte reference intervals and correlations with trace elements of immature and adult Eastern Pacific green turtles (Chelonia mydas) in coastal lagoons of Baja California Sur, México. MARINE POLLUTION BULLETIN 2023; 195:115547. [PMID: 37717495 DOI: 10.1016/j.marpolbul.2023.115547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Sea turtles can bioaccumulate high concentrations of potentially toxic contaminants. To better understand trace element effects on sea turtles' health, we established reference intervals for hematological and plasma biochemical analytes in 40 in-water, foraging immature and adult Eastern Pacific green turtles (Chelonia mydas) from two coastal lagoons in Baja California Sur, quantified whole blood concentrations of eight trace elements, and assessed their correlations. Rank-order trace element concentrations in both immature and adult turtles was zinc > selenium > nickel > arsenic > copper > cadmium > lead > manganese. Immature turtles had significantly higher copper and lower nickel and zinc concentrations. Additionally, a number of relationships between trace elements and blood analytes were identified. These data provide baseline information useful for future investigations into this population, or in other geographic regions and various life-stage classes.
Collapse
Affiliation(s)
- Helena Fernández-Sanz
- Departamento Académico de Ciencias Marinas y Costeras, Universidad Autónoma de Baja California Sur, Carretera al Sur km 5.5, El Mezquitito 19-B, 23080 La Paz, Baja California Sur, Mexico; Health Assessments in Sea Turtles From Baja California Sur, Villa Ballena 330, Villas del Encanto, 23085 La Paz, Baja California Sur, Mexico.
| | - Justin R Perrault
- Loggerhead Marinelife Center, 14200 US Highway 1, Juno Beach, FL 33408, USA.
| | - Nicole I Stacy
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, 2015 SW 16th Ave, Gainesville, FL 32610, USA.
| | - Agnese Mancini
- Grupo Tortuguero de las Californias A.C., Calle Seis 141, Azaleas, 23098 La Paz, Baja California Sur, Mexico.
| | - Héctor Reyes-Bonilla
- Departamento Académico de Ciencias Marinas y Costeras, Universidad Autónoma de Baja California Sur, Carretera al Sur km 5.5, El Mezquitito 19-B, 23080 La Paz, Baja California Sur, Mexico.
| | - Eduardo Reséndiz
- Health Assessments in Sea Turtles From Baja California Sur, Villa Ballena 330, Villas del Encanto, 23085 La Paz, Baja California Sur, Mexico; Laboratorio de Investigación y Medicina de Organismos Acuáticos, Departamento Académico de Ciencia Animal y Conservación del Hábitat, Universidad Autónoma de Baja California Sur, Carretera al Sur km 5.5, El Mezquitito 19-B, 23080 La Paz, Baja California Sur, Mexico.
| |
Collapse
|
17
|
Yang Q, Zuo Z, Zeng Y, Ouyang Y, Cui H, Deng H, Zhu Y, Deng J, Geng Y, Ouyang P, Lai W, Du Z, Ni X, Yin H, Fang J, Guo H. Autophagy-mediated ferroptosis involved in nickel-induced nephrotoxicity in the mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115049. [PMID: 37235900 DOI: 10.1016/j.ecoenv.2023.115049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Nickel, as a widely polluted metal, has been shown nephrotoxicity. Ferroptosis is a new type of cell death driven by iron-dependent lipid peroxidation. Our study found that nickel chloride (NiCl2) induced ferroptosis in mouse kidney and TCMK-1 cells. The iron content was significantly increased in the kidney and TCMK-1 cells after NiCl2 treatment. Lipid peroxidation and MDA content were significantly increased, and GSH content and T-SOD activity were significantly decreased after exposure to NiCl2. Moreover, NiCl2 increased COX-2 protein levels, decreased SLC7A11 and GPX4 protein levels, and elevated Ptgs2 mRNA levels. Next, the mechanism of Ni-induced ferroptosis was investigated. The results showed that NiCl2 induced autophagy in TCMK-1 cells, which promoted ferroptosis induced by NiCl2. Furthermore, the data of autophagy activation or inhibition experiment showed that autophagy facilitated ferroptosis through the degradation of the iron regulation protein NCOA4 and FTH1. Otherwise, iron chelator DFOM treatment inhibited ferroptosis induced by NiCl2. Finally, ferroptosis inhibitor Fer-1 treatment significantly alleviated cytotoxicity induced by NiCl2. To sum up, our above results showed that ferroptosis is involved in NiCl2-induced nephrotoxicity, and NiCl2 induces autophagy-dependent ferritin degradation, releases iron ions, leads to iron overload, and induces ferroptosis. This study supplies a new theoretical foundation for the study of nickel and renal toxicity.
Collapse
Affiliation(s)
- Qing Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Yuxin Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Yujuan Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Yanqiu Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Weiming Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Zongjun Du
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Xueqin Ni
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Heng Yin
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China.
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China.
| |
Collapse
|
18
|
Guo H, Wei L, Wang Y, Cui H, Deng H, Zhu Y, Deng J, Geng Y, Ouyang P, Lai W, Du Z, Ni X, Yin H, Fang J, Zuo Z. Nickel induces hepatotoxicity by mitochondrial biogenesis, mitochondrial dynamics, and mitophagy dysfunction. ENVIRONMENTAL TOXICOLOGY 2023; 38:1185-1195. [PMID: 36794572 DOI: 10.1002/tox.23758] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/18/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Nickel (Ni) is an important and widely hazardous chemical industrial waste. Excessive Ni exposure could cause multi-organs toxicity in human and animals. Liver is the major target organ of Ni accumulation and toxicity, however, the precise mechanism is still unclear. In this study, nickel chloride (NiCl2 )-treatment induced hepatic histopathological changes in the mice, and, transmission electron microscopy results showed mitochondrial swollen and deformed of hepatocyte. Next, the mitochondrial damages including mitochondrial biogenesis, mitochondrial dynamics, and mitophagy were measured after NiCl2 administration. The results showed that NiCl2 suppressed mitochondrial biogenesis by decreasing PGC-1α, TFAM, and NRF1 protein and mRNA expression levels. Meanwhile, the proteins involved in mitochondrial fusion were reduced by NiCl2 , such as Mfn1 and Mfn2, however, mitochondrial fission proteins Drip1 and Fis1 were significantly increased. The up-regulation of mitochondrial p62 and LC3II expression indicated that NiCl2 increased mitophagy in the liver. Moreover, the receptor-mediated mitophagy and ubiquitin (Ub)-dependent mitophagy were detected. NiCl2 promoted PINK1 accumulation and Parkin recruitment on mitochondria. And, the receptor proteins of mitophagy Bnip3 and FUNDC1 were increased in the NiCl2 -treated mice liver. Overall, these results show that NiCl2 could induce mitochondria damage in the liver of mice, and, dysfunction of mitochondrial biogenesis, mitochondrial dynamics and mitophagy involved in the molecular mechanism of NiCl2 -induced hepatotoxicity.
Collapse
Affiliation(s)
- Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Chengdu, China
| | - Ling Wei
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yihan Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Chengdu, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Chengdu, China
| | - Yanqiu Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Chengdu, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Weiming Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zongjun Du
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xueqin Ni
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Heng Yin
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Chengdu, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Chengdu, China
| |
Collapse
|
19
|
Zheng K, Zeng Z, Tian Q, Huang J, Zhong Q, Huo X. Epidemiological evidence for the effect of environmental heavy metal exposure on the immune system in children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161691. [PMID: 36669659 DOI: 10.1016/j.scitotenv.2023.161691] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/28/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Heavy metals exist widely in daily life, and exposure to heavy metals caused by environmental pollution has become a serious public health problem worldwide. Due to children's age-specific behavioral characteristics and imperfect physical function, the adverse health effects of heavy metals on children are much higher than in adults. Studies have found that heavy metal exposure is associated with low immune function in children. Although there are reviews describing the evidence for the adverse effects of heavy metal exposure on the immune system in children, the summary of evidence from epidemiological studies involving the level of immune molecules is not comprehensive. Therefore, this review summarizes the current epidemiological study on the effect of heavy metal exposure on childhood immune function from multiple perspectives, emphasizing its risks to the health of children's immune systems. It focuses on the effects of six heavy metals (lead (Pb), cadmium (Cd), arsenic (As), mercury (Hg), nickel (Ni), and manganese (Mn)) on children's innate immune cells, lymphocytes and their subpopulations, cytokines, total and specific immunoglobulins, and explores the immunotoxicological effects of heavy metals. The review finds that exposure to heavy metals, particularly Pb, Cd, As, and Hg, not only reduced lymphocyte numbers and suppressed adaptive immune responses in children, but also altered the innate immune response to impair the body's ability to fight pathogens. Epidemiological evidence suggests that heavy metal exposure alters cytokine levels and is associated with the development of inflammatory responses in children. Pb, As, and Hg exposure was associated with vaccination failure and decreased antibody titers, and increased risk of immune-related diseases in children by altering specific immunoglobulin levels. Cd, Ni and Mn showed activation effects on the immune response to childhood vaccination. Exposure age, sex, nutritional status, and co-exposure may influence the effects of heavy metals on immune function in children.
Collapse
Affiliation(s)
- Keyang Zheng
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Zhijun Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China
| | - Qianwen Tian
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Jintao Huang
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Qi Zhong
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China.
| |
Collapse
|
20
|
Ma W, Liu Y, Xu L, Gai X, Sun Y, Qiao S, Liu P, Liu Q, Zhang Z. The role of selenoprotein M in nickel-induced pyroptosis in mice spleen tissue via oxidative stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34270-34281. [PMID: 36504304 DOI: 10.1007/s11356-022-24597-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Nickel (Ni) is a heavy metal element and a pollutant that threatens the organism's health. Melatonin (Mel) is an antioxidant substance that can be secreted by the organism and has a protective effect against heavy metals. Selenoprotein M (SelM) is a selenoprotein widely distributed of the body, and its role is to protect these tissues from oxidative damage. To study the mechanism of Ni, Mel, and SelM in mouse spleen, 80 SelM+/+ wild-type and 80 SelM-/- homozygous mice were divided into 8 groups with 20 mice in each group. The Ni group was intragastric at a concentration of 10 mg/kg, while the Mel group was intragastric at 2 mg/kg. Mice were injected with 0.1 mL/10 g body weight for 21 days. Histopathological and ultrastructural observations showed the changes in Ni, such as the destruction of white and red pulp and the appearance of pyroptosomes. SelM knockout showed more severe injury, while Mel could effectively interfere with Ni-induced spleen toxicity. The results of antioxidant capacity determination showed that Ni could cause oxidative stress in the spleen, and Mel could also effectively reduce oxidative stress. Finally, Ni exposure increased the expression levels of the pyroptotic genes, including apoptosis-associated speck protein (ASC), absent in melanoma-2 (AIM2), NOD-like receptor thermal protein domain-associated protein 3 (NLRP3), Caspase-1, interleukin- (IL-) 18, and IL-1β (p < 0.05). Loss of SelM significantly increased these (p < 0.05), while Mel decreased the alleviated impact of Ni. In conclusion, the loss of SelM aggravated Ni-induced pyroptosis of the spleen via activating oxidative stress, which was alleviated by Mel, but the effect of Mel was not obvious in the absence of SelM, which reflected the important role of SelM in Ni-induced pyroptosis.
Collapse
Affiliation(s)
- Wenxue Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yue Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Lihua Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaoxue Gai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yue Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Senqiu Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Pinnan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Qiaohan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, People's Republic of China.
| |
Collapse
|
21
|
Bibi K, Shah MH. Elemental Analysis of Laryngeal Cancer Patients in Comparison with Controls Using Scalp Hair as an Analytical Tool. Biol Trace Elem Res 2022:10.1007/s12011-022-03468-0. [PMID: 36355263 DOI: 10.1007/s12011-022-03468-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022]
Abstract
Laryngeal cancer, a rare form of head and neck cancer, is more common in men, and various factors play important roles in its etiology. In the current study, trace elemental contents in the scalp hair of laryngeal cancer patients and healthy subjects were evaluated. Selected essential and toxic elements were measured using flame atomic absorption spectrophotometry after the hair samples were digested with HNO3-HClO4. The mean/median levels of Pb in the scalp hair of patients were significantly higher than the healthy donors, but Sr, Zn, and Co exhibited comparatively lower levels in the laryngeal cancer patients. In comparison to healthy donors, the correlation pattern among the elements in the hair of the patients exhibited diverse mutual relationships. The multivariate apportionment of the elemental levels in the scalp hair of both donor groups was significantly divergent. The average elemental levels varied significantly among the cancer types (glottic, supraglottic, transglottic, and subglottic) as well as the cancer stages (I, II, III, IV). The average levels of the elements also exhibited considerable variations depending on the donors' habitat, gender, food, and smoking habits. Overall, the study revealed significantly divergent disparities among the elemental contents in the scalp hair of the laryngeal cancer patients in comparison with counterpart controls.
Collapse
Affiliation(s)
- Kalsoom Bibi
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Munir H Shah
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
22
|
Syurin S, Vinnikov D. Occupational disease predictors in the nickel pyrometallurgical production: a prospective cohort observation. J Occup Med Toxicol 2022; 17:21. [PMID: 36335380 PMCID: PMC9636620 DOI: 10.1186/s12995-022-00362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/10/2022] [Accepted: 10/24/2022] [Indexed: 11/08/2022] Open
Abstract
Background Pyrometallurgical nickel production exposes workers to a wide range of occupational risk factors, including nickel aerosol, occupational noise and heat, but occupational (compensation) claims do not get enough attention in the literature. We, therefore, aimed to identify and analyze new occupational disease predictors in order to tailor prevention measures in the nickel pyrometallurgical production workers. Methods In a prospective observational study, a cohort of workers grouped in 16 occupations (N = 1424, 88% males, median age 39 (interquartile range (IQR) 31–47 years)), was fixed in 2007 at a large nickel production plant in the Russian High North. We then followed the cohort until 2021 and analyzed the association of selected predictors, including exposure to nickel and occupational group, with the risk of an occupational (compensation) claim in a Cox regression analysis. Results With 18,843 person-years of observation, occupational disease claims were confirmed in 129 workers (9% of the initial cohort, N = 108 men (84%)). Top three diagnoses were chronic bronchitis (3.81 cases/1000 workers/year), sensorineural deafness (2.36 cases/1000 workers /year) and musculoskeletal disorders (1.90 cases/1000 workers/year). Smoking was significantly associated with each diagnosis (adjusted hazard ratio (HR) ranged from 2.56 (95% confidence interval (CI) 1.17–5.57) for bronchitis to 6.69 (95% CI 1.46–30.64) for chronic obstructive pulmonary disease (COPD)). High nickel exposure was associated with occupational bronchitis and occupational asthma, whereas associations of occupational groups were also identified for COPD, asthma and musculoskeletal disorders. Conclusion Smoking, high exposure to nickel and specific exposure in the occupational groups increase the risk of occupational disease claims and should be prioritized directions for targeted intervention.
Collapse
|
23
|
Effects of Nickel at Environmentally Relevant Concentrations on Human Corneal Epithelial Cells: Oxidative Damage and Cellular Apoptosis. Biomolecules 2022; 12:biom12091283. [PMID: 36139122 PMCID: PMC9496594 DOI: 10.3390/biom12091283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/20/2022] Open
Abstract
Nickel (Ni) is ubiquitous in the environment and evidence has suggested that Ni can cause ocular surface inflammation, especially in fine particulate matter and personal products. Continuous daily exposure to Ni-containing dust may adversely impact the human cornea, whereas the underlying mechanism of this phenomenon remains not fully understood. Here, human corneal epithelial cells (HCEC) were employed to analyze the toxicity of Ni via detections of cell morphology, cell viability, reactive oxygen species production, cell apoptosis rate, and apoptotic gene expression levels after exposure for 24 h to uncover the damage of Ni to the cornea. A concentration-dependent inhibition of HCECs’ viability and growth was observed. In particular, Ni at 100 μM significantly decreased cell viability to 76%, and many cells displayed an abnormal shape and even induced oxidative damage of HCEC by increasing ROS to 1.2 times, and further led to higher apoptosis (24%), evidenced by up-regulation of apoptotic genes Caspase-8, Caspase-9, NF-κB, IL-1β, and Caspase-3, posing a risk of dry eye. Our study suggested that Ni induces apoptosis of HCEC through oxidative damage. Therefore, Ni pollution should be comprehensively considered in health risks or toxic effects on the ocular surface.
Collapse
|
24
|
Wang C, Hao L, Sun X, Yang Y, Yin Q, Li M. Response mechanism of psychrotolerant Bacillus cereus D2 towards Ni (II) toxicity and involvement of amino acids in Ni (II) toxicity reduction. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128363. [PMID: 35183050 DOI: 10.1016/j.jhazmat.2022.128363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/05/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The toxic effect of Nickel (Ni (II)) on humans and animals has been previously addressed. Owing to the important application of psychrotolerant bacteria in Ni (II) damage remediation in contamination sites at low temperatures, the response mechanism of psychrotolerant bacteria to Ni (II) toxicity must be elucidated. Therefore, the effect of Ni (II) toxicity on a psychrotolerant Bacillus cereus D2 was studied, showing a way to alleviate the Ni (II) toxicity in strain D2. The results showed that strain D2 growth was completely inhibited at a concentration of 100 mg/L of Ni (II). The main effects of Ni (II) toxicity on strain D2 were membrane damage and reactive oxygen species-dependent oxidative stress. Additionally, Ni (II) toxicity resulted in dysregulation of the cell cycle in strain D2. Furthermore, metabolomic analysis showed that the biosynthesis of amino acids and ABC transporters were significantly affected, and the relative abundance of seven important amino acids changed in a concentration-dependent manner. Addition of 20 mM or 5 mM amino acids to 100 mg/L Ni (II)-treated strain D2 restored its growth. This study provides insights into the way to alleviate the Ni (II) toxicity in strain D2, thus contributing to the development of bioremediation strategies.
Collapse
Affiliation(s)
- Chunli Wang
- College of Resource and Environment, Jilin Agricultural University, Changchun 130118, China; College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Linlin Hao
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Xiaotong Sun
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Yi Yang
- College of Resource and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Qiuxia Yin
- College of Resource and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Mingtang Li
- College of Resource and Environment, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
25
|
Khan MS, Buzdar SA, Hussain R, Afzal G, Jabeen G, Javid MA, Iqbal R, Iqbal Z, Mudassir KB, Saeed S, Rauf A, Ahmad HI. Hematobiochemical, Oxidative Stress, and Histopathological Mediated Toxicity Induced by Nickel Ferrite (NiFe 2O 4) Nanoparticles in Rabbits. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5066167. [PMID: 35308168 PMCID: PMC8933065 DOI: 10.1155/2022/5066167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/15/2022] [Indexed: 12/02/2022]
Abstract
From the past few decades, attention towards the biological evaluation of nanoparticles (NPs) has increased due to the persistent and extensive application of NPs in various fields, including biomedical science, modern industry, magnetic resonance imaging, and the construction of sensors. Therefore, in the current study, magnetic nickel ferrite (NiFe2O4) nanoparticles (NFNPs) were synthesized and evaluated for their possible adverse effects in rabbits. The crystallinity of the synthesized NFNPs was confirmed using X-ray diffraction (XRD) technique. The saturation magnetization (46.7 emug-1) was measured using vibrating sample magnetometer (VSM) and 0.35-tesla magnetron by magnetic resonance imaging (MRI). The adverse effects of NFNPs on blood biochemistry and histoarchitecture of the liver, kidneys, spleen, brain, and heart of the rabbits were determined. A total of sixteen adult rabbits, healthy and free from any apparent infection, were blindly placed in two groups. The rabbits in group A served as control, while the rabbits in group B received a single dose (via ear vein) of NFNPs for ten days. The blood and visceral tissues were collected from each rabbit at days 5 and 10 of posttreatment. The results on blood and serum biochemistry profile indicated significant variation in hematological and serum biomarkers in NFNP-treated rabbits. The results showed an increased quantity of oxidative stress and depletion of antioxidant enzymes in treated rabbits. Various serum biochemical tests exhibited significantly higher concentrations of different liver function tests, kidney function tests, and cardiac biomarkers. Histopathologically, the liver showed congestion, edema, atrophy, and degeneration of hepatocytes. The kidneys exhibited hemorrhages, atrophy of renal tubule, degeneration, and necrosis of renal tubules, whereas coagulative necrosis, neutrophilic infiltration, and severe myocarditis were seen in different sections of the heart. The brain of the treated rabbits revealed necrosis of neurons, neuron atrophy, and microgliosis. In conclusion, the current study results indicated that the highest concentration of NPs induced adverse effects on multiple tissues of the rabbits.
Collapse
Affiliation(s)
| | - Saeed Ahmad Buzdar
- Institute of Physics, The Islamia University, Bahawalpur 63100, Pakistan
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University, Bahawalpur 63100, Pakistan
| | - Gulnaz Afzal
- Department of Zoology (Life sciences), The Islamia University, Bahawalpur 63100, Pakistan
| | - Ghazala Jabeen
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Muhammad Arshad Javid
- Department of Basic Sciences, University of Engineering and Technology, Taxila, Pakistan
| | - Rehana Iqbal
- Institute of Pure and Applied Biology, Zoology Division, Bhauddin Zakariya University, Multan, Pakistan
| | - Zahid Iqbal
- Department of Pharmacology, Faculty of Veterinary and Animal Sciences, The Islamia University, Bahawalpur 63100, Pakistan
| | - Khola Bint Mudassir
- Department of Zoology (Life sciences), The Islamia University, Bahawalpur 63100, Pakistan
| | - Saba Saeed
- Institute of Physics, The Islamia University, Bahawalpur 63100, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi-Anbar KPK, Pakistan
| | - Hafiz Ishfaq Ahmad
- Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
26
|
OUP accepted manuscript. Metallomics 2022; 14:6515965. [DOI: 10.1093/mtomcs/mfac002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 01/14/2022] [Indexed: 11/14/2022]
|
27
|
Yang Y, Zuo Z, Yang Z, Yin H, Wei L, Fang J, Guo H, Cui H, Ouyang P, Chen X, Chen J, Geng Y, Chen Z, Huang C, Zhu Y, Liu W. Nickel chloride induces spermatogenesis disorder by testicular damage and hypothalamic-pituitary-testis axis disruption in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112718. [PMID: 34478984 DOI: 10.1016/j.ecoenv.2021.112718] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
As a common environmental pollutant, nickel chloride (NiCl2) poses serious threat to human and animals health. NiCl2 has adverse effects on reproductive function in male, however, the underlying mechanisms are not fully illuminated. In this study, 64 male ICR mice were divided into four groups (8 mice per each period/ group), in which mice orally administrated with 0, 7.5, 15 or 30 mg/kg body weight for 14 or 28 consecutive days, respectively. The results showed that the sperm concentration (12.95%, 29.78% and 37.63% -) and sperm motility (19.79%, 34.88% and 43.10%) were dose-dependent significantly reduced, and the total sperm malformation rates (110.15%, 206.84% and 292.27%) were dose-dependent significantly elevated in the 7.5, 15 and 30 mg/kg NiCl2 treatment groups (vs control at 28 days), respectively (P < 0.05). Meanwhile, NiCl2 also decreased the relative weights of testis and epididymis and caused histopathological lesions of testis and epididymis. Furthermore, serum testosterone levels were significantly decreased after NiCl2 treatment. And the findings showed that NiCl2 down-regulated the expression of LH-R, StAR, P450scc, 3β-HSD, 17β-HSD, ABP and INHβB in the testis, however, the relative genes in the hypothalamus (Kiss-1, GPR54 and GnRH) and pituitary (GnRH-R, LHβ and FSHβ) did not exhibit noticeable change. In summary, NiCl2 induced spermatogenesis disorder by testicular damage and hypothalamic-pituitary-testis axis disruption in mice, and only impaired the genes on the testis of HPT axis.
Collapse
Affiliation(s)
- Yue Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhuangzhi Yang
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan 611130, PR China
| | - Heng Yin
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Ling Wei
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, PR China.
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, PR China.
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, PR China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Xia Chen
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan 611130, PR China
| | - Jian Chen
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan 611130, PR China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhengli Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Chao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yanqiu Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Wentao Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| |
Collapse
|
28
|
Kostoff RN, Briggs MB, Kanduc D, Shores DR, Kovatsi L, Drakoulis N, Porter AL, Tsatsakis A, Spandidos DA. Contributing factors common to COVID‑19 and gastrointestinal cancer. Oncol Rep 2021; 47:16. [PMID: 34779496 PMCID: PMC8611322 DOI: 10.3892/or.2021.8227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022] Open
Abstract
The devastating complications of coronavirus disease 2019 (COVID-19) result from the dysfunctional immune response of an individual following the initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Multiple toxic stressors and behaviors contribute to underlying immune system dysfunction. SARS-CoV-2 exploits the dysfunctional immune system to trigger a chain of events, ultimately leading to COVID-19. The authors have previously identified a number of contributing factors (CFs) common to myriad chronic diseases. Based on these observations, it was hypothesized that there may be a significant overlap between CFs associated with COVID-19 and gastrointestinal cancer (GIC). Thus, in the present study, a streamlined dot-product approach was used initially to identify potential CFs that affect COVID-19 and GIC directly (i.e., the simultaneous occurrence of CFs and disease in the same article). The nascent character of the COVID-19 core literature (~1-year-old) did not allow sufficient time for the direct effects of numerous CFs on COVID-19 to emerge from laboratory experiments and epidemiological studies. Therefore, a literature-related discovery approach was used to augment the COVID-19 core literature-based ‘direct impact’ CFs with discovery-based ‘indirect impact’ CFs [CFs were identified in the non-COVID-19 biomedical literature that had the same biomarker impact pattern (e.g., hyperinflammation, hypercoagulation, hypoxia, etc.) as was shown in the COVID-19 literature]. Approximately 2,250 candidate direct impact CFs in common between GIC and COVID-19 were identified, albeit some being variants of the same concept. As commonality proof of concept, 75 potential CFs that appeared promising were selected, and 63 overlapping COVID-19/GIC potential/candidate CFs were validated with biological plausibility. In total, 42 of the 63 were overlapping direct impact COVID-19/GIC CFs, and the remaining 21 were candidate GIC CFs that overlapped with indirect impact COVID-19 CFs. On the whole, the present study demonstrates that COVID-19 and GIC share a number of common risk/CFs, including behaviors and toxic exposures, that impair immune function. A key component of immune system health is the removal of those factors that contribute to immune system dysfunction in the first place. This requires a paradigm shift from traditional Western medicine, which often focuses on treatment, rather than prevention.
Collapse
Affiliation(s)
- Ronald Neil Kostoff
- School of Public Policy, Georgia Institute of Technology, Gainesville, VA 20155, USA
| | | | - Darja Kanduc
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, I‑70125 Bari, Italy
| | - Darla Roye Shores
- Department of Pediatrics, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Leda Kovatsi
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | | | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
29
|
Guo H, Yin H, Zuo Z, Yang Z, Yang Y, Wei L, Cui H, Deng H, Chen X, Chen J, Zhu Y, Ouyang P, Geng Y, Du Z, Tang H, Wang F, Fang J. Oxidative stress-mediated apoptosis and autophagy involved in Ni-induced nephrotoxicity in the mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112954. [PMID: 34739934 DOI: 10.1016/j.ecoenv.2021.112954] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
As an extensively environmental pollution, Nickel (Ni) represents a serious hazard to human health. The present study focused on exploring the mechanism of Ni-mediated nephrotoxicity, such as apoptosis, autophagy and oxidative stress. In the current work, NiCl2 treatment could induce kidney damage. Meanwhile, NiCl2 treatment elevated ROS production and MDA content and suppressed the antioxidant activity, which was characterized by reducing T-AOC, CAT, SOD activity and GSH content. For investigating the role of oxidative stress on NiCl2-mediated nephrotoxicity, N-acetyl cysteine (NAC, effective antioxidant and free radical scavenger) was co-treated with NiCl2. The results showed that NAC significantly suppressed the NiCl2-mediated oxidative stress and mitigated NiCl2-induced the kidney damage. Then, whether oxidative stress-induced autophagy and apoptosis were involved in NiCl2-induced nephrotoxicity was explored. The findings demonstrated that NAC relieved NiCl2-induced autophagy and reversed the activation of Akt/AMPK/mTOR pathway. Concurrently, the results indicated that NAC attenuated NiCl2-induced apoptosis, as evidenced by reduction of apoptotic cells and cleaved-caspase-3/- 8/- 9 together with cleaved-PARP protein levels. To sum up, our findings suggested that NiCl2-mediated renal injury was associated with oxidative stress-induced apoptosis and autophagy. This study provides new theoretical basis for excess Ni exposure nephrotoxic researches.
Collapse
Affiliation(s)
- Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Heng Yin
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Zhuangzhi Yang
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan 611130, China
| | - Yue Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Ling Wei
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan 611130, China
| | - Xia Chen
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan 611130, China
| | - Jian Chen
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan 611130, China
| | - Yanqiu Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Zongjun Du
- College of Animal Science and Technology, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Huaqiao Tang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Fengyuan Wang
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan 611130, China.
| |
Collapse
|
30
|
Yin H, Zuo Z, Yang Z, Guo H, Fang J, Cui H, Ouyang P, Chen X, Chen J, Geng Y, Chen Z, Huang C, Zhu Y. Nickel induces autophagy via PI3K/AKT/mTOR and AMPK pathways in mouse kidney. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112583. [PMID: 34352574 DOI: 10.1016/j.ecoenv.2021.112583] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Nickel (Ni), a widely distributed metal, is an important pollutant in the environment. Although kidney is a crucial target of Ni toxicity, information on autophagy and the potential mechanisms of Ni-induced renal toxicity are still poorly described. As we discovered, NiCl2 could induce renal damage including decrease in renal weight, renal histological alterations, and renal function injury. According to the obtained results, NiCl2 could obviously increase autophagy, which was characterized by increase of LC3 expression and decrease of p62 expression. Meanwhile, the result of ultrastructure observation showed increased autolysosomes numbers in the kidney of NiCl2-treated mice. In addition, NiCl2 increased mRNA and protein levels of autophagy flux proteins including Beclin1, Atg5, Atg12, Atg16L1, Atg7, and Atg3. Furthermore, NiCl2 induced autophagy through AMPK and PI3K/AKT/mTOR pathways which featured down-regulated expression levels of p-PI3K, p-AKT and p-mTOR and up-regulated expression levels of p-AMPK and p-ULK1. In summary, the above results indicate involvement of autophagy in renal injury induced by NiCl2, and NiCl2 induced autophagy via PI3K/AKT/mTOR and AMPK pathways in mouse kidney.
Collapse
Affiliation(s)
- Heng Yin
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhuangzhi Yang
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan 611130, PR China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Xia Chen
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan 611130, PR China
| | - Jian Chen
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan 611130, PR China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhengli Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Chao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yanqiu Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| |
Collapse
|
31
|
Riedel F, Aparicio-Soto M, Curato C, Thierse HJ, Siewert K, Luch A. Immunological Mechanisms of Metal Allergies and the Nickel-Specific TCR-pMHC Interface. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10867. [PMID: 34682608 PMCID: PMC8535423 DOI: 10.3390/ijerph182010867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022]
Abstract
Besides having physiological functions and general toxic effects, many metal ions can cause allergic reactions in humans. We here review the immune events involved in the mediation of metal allergies. We focus on nickel (Ni), cobalt (Co) and palladium (Pd), because these allergens are among the most prevalent sensitizers (Ni, Co) and immediate neighbors in the periodic table of the chemical elements. Co-sensitization between Ni and the other two metals is frequent while the knowledge on a possible immunological cross-reactivity using in vivo and in vitro approaches remains limited. At the center of an allergic reaction lies the capability of a metal allergen to form T cell epitopes that are recognized by specific T cell receptors (TCR). Technological advances such as activation-induced marker assays and TCR high-throughput sequencing recently provided new insights into the interaction of Ni2+ with the αβ TCR-peptide-major histocompatibility complex (pMHC) interface. Ni2+ functionally binds to the TCR gene segment TRAV9-2 or a histidine in the complementarity determining region 3 (CDR3), the main antigen binding region. Thus, we overview known, newly identified and hypothesized mechanisms of metal-specific T cell activation and discuss current knowledge on cross-reactivity.
Collapse
Affiliation(s)
- Franziska Riedel
- Department for Chemicals and Product Safety, Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (H.-J.T.); (K.S.); (A.L.)
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2, 14195 Berlin, Germany
| | - Marina Aparicio-Soto
- Department for Chemicals and Product Safety, Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (H.-J.T.); (K.S.); (A.L.)
| | - Caterina Curato
- Department for Chemicals and Product Safety, Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (H.-J.T.); (K.S.); (A.L.)
| | - Hermann-Josef Thierse
- Department for Chemicals and Product Safety, Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (H.-J.T.); (K.S.); (A.L.)
| | - Katherina Siewert
- Department for Chemicals and Product Safety, Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (H.-J.T.); (K.S.); (A.L.)
| | - Andreas Luch
- Department for Chemicals and Product Safety, Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (H.-J.T.); (K.S.); (A.L.)
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2, 14195 Berlin, Germany
| |
Collapse
|
32
|
Kostoff RN, Briggs MB, Kanduc D, Shores DR, Kovatsi L, Vardavas AI, Porter AL. Common contributing factors to COVID-19 and inflammatory bowel disease. Toxicol Rep 2021; 8:1616-1637. [PMID: 34485092 PMCID: PMC8406546 DOI: 10.1016/j.toxrep.2021.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/17/2021] [Accepted: 08/28/2021] [Indexed: 12/11/2022] Open
Abstract
The devastating complications of coronavirus disease 2019 (COVID-19) result from an individual's dysfunctional immune response following the initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Multiple toxic stressors and behaviors contribute to underlying immune system dysfunction. SARS-CoV-2 exploits the dysfunctional immune system to trigger a chain of events ultimately leading to COVID-19. We have previously identified many contributing factors (CFs) (representing toxic exposure, lifestyle factors and psychosocial stressors) common to myriad chronic diseases. We hypothesized significant overlap between CFs associated with COVID-19 and inflammatory bowel disease (IBD), because of the strong role immune dysfunction plays in each disease. A streamlined dot-product approach was used to identify potential CFs to COVID-19 and IBD. Of the fifty CFs to COVID-19 that were validated for demonstration purposes, approximately half had direct impact on COVID-19 (the CF and COVID-19 were mentioned in the same record; i.e., CF---→COVID-19), and the other half had indirect impact. The nascent character of the COVID-19 core literature (∼ one year old) did not allow sufficient time for the direct impacts of many CFs on COVID-19 to be identified. Therefore, an immune system dysfunction (ID) literature directly related to the COVID-19 core literature was used to augment the COVID-19 core literature and provide the remaining CFs that impacted COVID-19 indirectly (i.e., CF---→immune system dysfunction---→COVID-19). Approximately 13000 potential CFs for myriad diseases (obtained from government and university toxic substance lists) served as the starting point for the dot-product identification process. These phrases were intersected (dot-product) with phrases extracted from a PubMed-derived IBD core literature, a nascent COVID-19 core literature, and the COVID-19-related immune system dysfunction (ID) core literature to identify common ID/COVID-19 and IBD CFs. Approximately 3000 potential CFs common to both ID and IBD, almost 2300 potential CFs common to ID and COVID-19, and over 1900 potential CFs common to IBD and COVID-19 were identified. As proof of concept, we validated fifty of these ∼3000 overlapping ID/IBD candidate CFs with biologic plausibility. We further validated 24 of the fifty as common CFs in the IBD and nascent COVID-19 core literatures. This significant finding demonstrated that the CFs indirectly related to COVID-19 -- identified with use of the immune system dysfunction literature -- are strong candidates to emerge eventually as CFs directly related to COVID-19. As discussed in the main text, many more CFs common to all these core literatures could be identified and validated. ID and IBD share many common risk/contributing factors, including behaviors and toxic exposures that impair immune function. A key component to immune system health is removal of those factors that contribute to immune system dysfunction in the first place. This requires a paradigm shift from traditional Western medicine, which often focuses on treatment, rather than prevention.
Collapse
Affiliation(s)
- Ronald Neil Kostoff
- School of Public Policy, Georgia Institute of Technology, Gainesville, VA, 20155, United States
| | | | - Darja Kanduc
- Dept. of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Via Orabona 4, Bari, 70125, Italy
| | - Darla Roye Shores
- Department of Pediatrics, Division of Gastroenterology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States
| | - Leda Kovatsi
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124, Greece
| | - Alexander I. Vardavas
- Laboratory of Toxicology & Forensic Sciences, Faculty of Medicine, University of Crete, Greece
| | - Alan L. Porter
- R&D, Search Technology, Inc., Peachtree Corners, GA, 30092, United States
- School of Public Policy, Georgia Institute of Technology, Atlanta, GA, 30332, United States
| |
Collapse
|
33
|
Bou Zerdan M, Moussa S, Atoui A, Assi HI. Mechanisms of Immunotoxicity: Stressors and Evaluators. Int J Mol Sci 2021; 22:8242. [PMID: 34361007 PMCID: PMC8348050 DOI: 10.3390/ijms22158242] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/12/2022] Open
Abstract
The immune system defends the body against certain tumor cells and against foreign agents such as fungi, parasites, bacteria, and viruses. One of its main roles is to distinguish endogenous components from non-self-components. An unproperly functioning immune system is prone to primary immune deficiencies caused by either primary immune deficiencies such as genetic defects or secondary immune deficiencies such as physical, chemical, and in some instances, psychological stressors. In the manuscript, we will provide a brief overview of the immune system and immunotoxicology. We will also describe the biochemical mechanisms of immunotoxicants and how to evaluate immunotoxicity.
Collapse
Affiliation(s)
- Maroun Bou Zerdan
- Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, 1107 2020 Beirut, Lebanon; (M.B.Z.); (A.A.)
| | - Sara Moussa
- Faculty of Medicine, University of Balamand, 1100 Beirut, Lebanon;
| | - Ali Atoui
- Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, 1107 2020 Beirut, Lebanon; (M.B.Z.); (A.A.)
| | - Hazem I. Assi
- Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, 1107 2020 Beirut, Lebanon; (M.B.Z.); (A.A.)
| |
Collapse
|
34
|
Chai N, Yi X, Xiao J, Liu T, Liu Y, Deng L, Jin Z. Spatiotemporal variations, sources, water quality and health risk assessment of trace elements in the Fen River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143882. [PMID: 33316508 DOI: 10.1016/j.scitotenv.2020.143882] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
As the largest river in Shanxi Province, the Fen River is the main water source for regional economic and ecological development. Water deficiency and industrialization have led to serious water pollution in the Fen River. The major and trace elements of seasonal river waters were measured to determine the spatiotemporal variations and assess the water quality as well as its controlling factors in the Fen River. Trace elements are divided into high abundance elements (B, Ba, Li, and Mn) and low abundance elements (As, Cu, Fe, Ni, Rb, Se, U, and V). The spatial variation of trace elements is obvious, with low values upstream, intermediate values downstream, and very high values midstream. The average values of the trace elements showed different seasonal variations, with high values of As, B, Ba, Mn, and Rb in the wet season, high Cu, V, and Li values in the dry season, and minor seasonal variations of Fe, Ni, Se, and U concentrations. Principal component analysis (PCA) and correlation analysis (CA) showed natural origins of Ba, Mn, Ni, and U, anthropogenic input of As, B, Cu, Li, Rb, Se, and V. According to the results of absolute principal component sore-multivariate linear regression (APCS-MLR), the major pollution sources in the Fen River basin were related to human activities. The land use type significantly influenced the concentrations of trace elements, with high values in the cropland and low values in the forest. The water quality index (WQI) values were higher in the midstream and wet season. In comparison with other rivers in the world, the pollution of the Fen River is at a moderate level. Health risk assessment showed that As, Ba, Mn, Ni, V, and Se were the potential pollutants damaging in the Fen River, especially for children. This study highlights the importance of seasonal sample analysis and can provide vital data for water quality conservation in the Fen River basin.
Collapse
Affiliation(s)
- Ningpan Chai
- School of Water and Environment, Chang'an University, Xi'an, Shaanxi 710054, China
| | - Xiu Yi
- School of Water and Environment, Chang'an University, Xi'an, Shaanxi 710054, China
| | - Jun Xiao
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China.
| | - Ting Liu
- College of Geomatics, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yujie Liu
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Li Deng
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Zhangdong Jin
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| |
Collapse
|
35
|
de Jesus JR, de Araújo Andrade T. Understanding the relationship between viral infections and trace elements from a metallomics perspective: implications for COVID-19. Metallomics 2020; 12:1912-1930. [PMID: 33295922 PMCID: PMC7928718 DOI: 10.1039/d0mt00220h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022]
Abstract
Recently, the World Health Organization (WHO) declared a pandemic situation due to a new viral infection (COVID-19) caused by a novel virus (Sars-CoV-2). COVID-19 is today the leading cause of death from viral infections in the world. It is known that many elements play important roles in viral infections, both in virus survival, and in the activation of the host's immune system, which depends on the presence of micronutrients to maintain the integrity of its functions. In this sense, the metallome can be an important object of study for understanding viral infections. Therefore, this work presents an overview of the role of trace elements in the immune system and the state of the art in metallomics, highlighting the challenges found in studies focusing on viral infections.
Collapse
Affiliation(s)
- Jemmyson Romário de Jesus
- University of Campinas, Institute of Chemistry, Dept of Analytical Chemistry, Campinas, São Paulo, Brazil.
| | | |
Collapse
|