1
|
Paul I, Biswas R, Halder G. Traversing the potential of phytoremediation and phycoremediation as pioneering technologies in microplastic mitigation - A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177200. [PMID: 39471944 DOI: 10.1016/j.scitotenv.2024.177200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
With the advent of numerous reports related to health and environmental hazards associated with microplastics (MPs), scientists have been engrossed in developing sustainable technologies for MP mitigation. Conventional methods for the remediation of MPs have several limitations, but with the increasing demand for biological mitigation methods, the latest technologies are prioritized. Among biological-driven methods, phytoremediation and phycoremediation are the two peaking approaches that have gained momentum because of their eco-friendliness, cost-effectiveness, and recyclability options. Investigations of the mechanisms underlying phytoremediation and phycoremediation processes can provide possible insights into practical applications in the present scenario. Modern instrumentation is a prerequisite for identifying and characterizing MPs and quantifying their removal efficiency. The current investigation highlights a unique combination of elaborate discussions on the use of plants in the mitigation of MPs, bibliometric analysis of the current status of research, their relevance to the modern context, and the development of a combinatorial strategy to amalgamate the advantages of these two unique processes via the concept of constructed wetlands for synergistically mitigating MPs. Thus, this review provides fresh insights into addressing MP pollution with sustainable ideologies to achieve improved mitigation outcomes without compromising the balance of the ecosystem.
Collapse
Affiliation(s)
- Indrani Paul
- Department of Biotechnology, Brainware University, Kolkata -700125, West Bengal, India
| | - Rupsa Biswas
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur-713209, West Bengal, India; Centre for Research on Environment and Water, National Institute of Technology Durgapur, Durgapur-713209, West Bengal, India
| | - Gopinath Halder
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur-713209, West Bengal, India.
| |
Collapse
|
2
|
Azeez L, Adejumo AL, Oladejo AA, Olalekan B, Basiru S, Oyelami OK, Makanjuola AO, Ogungbe V, Hammed A, Abdullahi M. Exploiting the synergistic influence of AgNPs-TiO 2NPs: enhancing phytostabilization of Pb and mitigating its toxicity in Vigna unguiculata. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024:1-11. [PMID: 39387443 DOI: 10.1080/15226514.2024.2412815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
In this study, a composite of silver and titanium dioxide nanoparticles (AgNPs-TiO2NPs) was examined for its synergistic effects on phytostabilization of lead (Pb) and mitigation of toxicity in cowpea (Vigna unguiculata (L) Walp). Seeds of V. unguiculata were wetted with water, 0.05 and 0.1 mgL-1 Pb and 25 mgmL-1 each of AgNPs, TiO2NPs, and AgNPs-TiO2NPs. Root lengths of V. unguiculata were reduced by 25% and 44% at 0.05 and 0.1 mgL-1 Pb, respectively, while shoot lengths were reduced by 2% and 7%. In V. unguiculata, AgNPs and TiO2NPs significantly improved physiological indicators and mitigated Pb effects, with TiO2NPs modulating physiological parameters more effectively than AgNPs. The composite (AgNPs-TiO2NPs) synergistically regulated V. unguiculata physiology better than individual nanoparticles. Compared to individual AgNPs and TiO2NPs, the composite (AgNPs-TiO2NPs) synergistically increased antioxidant activity by 12% and 9%, and carotenoid contents by 88%. Additionally, AgNPs-TiO2NPs effectively reduced malondialdehyde levels by 29%, thereby mitigating the effects of Pb on V. unguiculata better than individual nanoparticles. AgNPs-TiO2NPs enhanced Pb immobilization by 57%, reducing its translocation from soil to shoots compared to V. unguiculata wetted with water. The bioconcentration and translocation factors of Pb indicate that phytostabilization was most effective when the composite was used.
Collapse
Affiliation(s)
- Luqmon Azeez
- Department of Pure and Applied Chemistry, Osun State University, Osogbo, Nigeria
| | - Ayoade L Adejumo
- Department of Chemical Engineering, Osun State University, Osogbo, Nigeria
| | - Abayomi A Oladejo
- Department of Chemical Engineering, Osun State University, Osogbo, Nigeria
| | - Bukola Olalekan
- Department of Chemical Engineering, Osun State University, Osogbo, Nigeria
| | - Saheed Basiru
- Department of Chemical Engineering, Osun State University, Osogbo, Nigeria
| | - Oyeyinka K Oyelami
- Department of Biochemistry, Federal University of Health Sciences, Ila, Nigeria
| | | | - Victoria Ogungbe
- Department of Chemical Engineering, Osun State University, Osogbo, Nigeria
| | - Aisha Hammed
- Department of Chemical Engineering, Osun State University, Osogbo, Nigeria
| | - Monsurat Abdullahi
- Department of Chemical Engineering, Osun State University, Osogbo, Nigeria
| |
Collapse
|
3
|
Budzyńska S, Niedzielski P, Bierła K, Mleczek M. Natural restoration of arsenic-contaminated environment with Quercus robur L. and Tilia cordata Mill.: 5-Year longitudinal study of dendroremediation dynamics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122315. [PMID: 39213846 DOI: 10.1016/j.jenvman.2024.122315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Investigating natural processes in arsenic (As) polluted areas and plants that have naturally chosen to grow there pose practical restoration recommendations. This study aimed to assess long-term changes in natural As dendroremediation dynamics for Quercus robur L. and Tilia cordata Mill., tree species capable of growing in areas polluted by mining activities. We examined total As and its forms, as well as B, Ca, K, Mg, Na and P, in soil and trees over 5 years. We also characterized pH and EC of soil, examined proline content in tree organs, and calculated Bioconcentration Factor (BCF) and Translocation Factor (TF) for As. Initial As concentrations in soil were 37.0 mg kg⁻1 under Q. robur and 34.7 mg kg⁻1 under T. cordata, significantly decreasing after 5 years to 10.5 mg kg⁻1 and 9.51 mg kg⁻1, respectively. This corresponds to pollution reduction of up to 71.8%. A notable decrease in As(III) and dimethylarsinic acid, along with increase in other organic As forms in soil, was observed. Additionally, concentrations of essential elements in soil, as well as its pH and EC, decreased over time. Both tree species accumulated substantial amounts of As in their organs, but the dynamics of this process were species-specific. During first 4 years, T. cordata accumulated more As and exhibited higher BCF, but in the 5th year, it was clearly surpassed by Q. robur. The highest TF was calculated for Q. robur in year 3, and for T. cordata in years 2 and 3. Generally, limited aboveground movement of As was indicated: BCF >1 were calculated for years 2 and 3, while TF were consistently <1. Proline content increased significantly in all organs, correlating with As, especially in Q. robur. In contrast, Q. robur leaves mapping revealed stable macroelement distributions, but clear variations were observed for T. cordata., which may suggest specific reaction to stress. These findings suggest that both species can effectively restore As-polluted areas, though with different dynamics. The selection of species for dendrorestoration should be based on whether the goal is faster remediation with lesser overall reduction (e.g. T. cordata) or slower remediation with ultimately greater pollution reduction (e.g. Q. robur).
Collapse
Affiliation(s)
- Sylwia Budzyńska
- Poznań University of Life Sciences, Faculty of Forestry and Wood Technology, Department of Chemistry, Wojska Polskiego 75, 60-625, Poznań, Poland.
| | - Przemysław Niedzielski
- Adam Mickiewicz University, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Katarzyna Bierła
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, UMR 5254, IPREM, 64053, Pau, France
| | - Mirosław Mleczek
- Poznań University of Life Sciences, Faculty of Forestry and Wood Technology, Department of Chemistry, Wojska Polskiego 75, 60-625, Poznań, Poland
| |
Collapse
|
4
|
Zarrabi A, Ghasemi-Fasaei R, Ronaghi A, Zeinali S, Safarzadeh S. Application of synthesized metal-trimesic acid frameworks for the remediation of a multi-metal polluted soil and investigation of quinoa responses. PLoS One 2024; 19:e0310054. [PMID: 39240855 PMCID: PMC11379216 DOI: 10.1371/journal.pone.0310054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/16/2024] [Indexed: 09/08/2024] Open
Abstract
Metal-organic frameworks (MOFs) are structures with high surface area that can be used to remove heavy metals (HMs) efficiently from the environment. The effect of MOFs on HMs removal from contaminated soils has not been already investigated. Monometallic MOFs are easier to synthesize with high efficiency, and it is also important to compare their structures. In the present study, Zn-BTC, Cu-BTC, and Fe-BTC as three metal-trimesic acid MOFs were synthesized from the combination of zinc (Zn), copper (Cu), and iron (Fe) nitrates with benzene-1,3,5-tricarboxylic acid (H3BTC) by solvothermal method. BET analysis showed that the specific surface areas of the Zn-BTC, Cu-BTC, and Fe-BTC were 502.63, 768.39 and 92.4 m2g-1, respectively. The synthesized MOFs were added at the rates of 0.5 and 1% by weight to the soils contaminated with 100 mgkg-1 of Zn, nickel (Ni), lead (Pb), and cadmium (Cd). Then quinoa seeds were sown in the treated soils. According to the results, the uptakes of all four HMs by quinoa were the lowest in the Cu-BTC 1% treated pots and the lowest uptakes were observed for Pb in shoot and root (4.87 and 0.39, μgpot-1, respectively). The lowest concentration of metal extracted with EDTA in the post-harvest soils was for Pb (11.86 mgkg-1) in the Cu-BTC 1% treatment. The lowest metal pollution indices were observed after the application of Cu-BTC 1%, which were 20.29 and 11.53 for shoot and root, respectively. With equal molar ratios, highly porous and honeycomb-shaped structure, the most crystallized and the smallest constituent particle size (34.64 nm) were obtained only from the combination of Cu ions with H3BTC. The lowest porosity, crystallinity, and a semi-gel like feature was found for the Fe-BTC. The synthesized Cu-BTC showed the highest capacity of stabilizing HMs, especially Pb in the soil compared to the Zn-BTC and the Fe-BTC. The highly porous characteristic of the Cu-BTC can make the application of this MOF as a suitable environmental solution for the remediation of high Pb-contaminated soils.
Collapse
Affiliation(s)
- Amir Zarrabi
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Reza Ghasemi-Fasaei
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Abdolmajid Ronaghi
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Sedigheh Zeinali
- Department of Nanochemical Engineering Faculty of Advanced Technology, Shiraz University, Shiraz, Iran
| | - Sedigheh Safarzadeh
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
5
|
Kotowska U, Piekutin J, Polińska W, Kotowski A. Removal of contaminants of emerging concern by Wolffia arrhiza and Lemna minor depending on the process conditions, pollutants concentration, and matrix type. Sci Rep 2024; 14:15898. [PMID: 38987638 PMCID: PMC11237155 DOI: 10.1038/s41598-024-66962-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024] Open
Abstract
Research was carried out on the removal of a group of six contaminants of emerging concern: bisphenol A, N,N-diethyl-m-toluamide, diethylstilbestrol, triclosan, estrone and estradiol from the water matrix during contact with small floating macrophytes Wolffia arrhiza and Lemna minor. The optimal conditions for the process, such as pH, light exposure per day, and plant mass, were determined using the design of experiments chemometric approach based on central composite design. Experiments conducted under the designated optimal conditions showed that after 7 days, the removal efficiency equals 88-98% in the case of W. arrhiza and 87-97% in the case of L. minor, while after 14 days of the experiment, these values are 93-99.6% and 89-98%, respectively. The primary mechanism responsible for removing CECs is the plant uptake, with the mean uptake rate constant equal to 0.299 day-1 and 0.277 day-1 for W. arrhiza and L. minor, respectively. Experiments conducted using municipal wastewater as a sample matrix showed that the treatment efficiency remains high (the average values 84% and 75%; in the case of raw wastewater, 93% and 89%, and in the case of treated wastewater, for W. arrhiza and L. minor, respectively). Landfill leachate significantly reduces plants' ability to remove pollutants (the average removal efficiency equals 59% and 56%, for W. arrhiza and L. minor, respectively).
Collapse
Affiliation(s)
- Urszula Kotowska
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Ciołkowskiego 1K Str., 15-245, Bialystok, Poland.
| | - Janina Piekutin
- Department of Environmental Engineering Technology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E, 15-351, Bialystok, Poland
| | - Weronika Polińska
- Doctoral School of Exact and Natural Sciences, University of Bialystok, Ciolkowskiego 1K Str., 15-245, Bialystok, Poland
| | - Adam Kotowski
- Department of Automatic Control and Robotics, Faculty of Electrical Engineering, Bialystok University of Technology, Wiejska 45D, 15-351, Bialystok, Poland
| |
Collapse
|
6
|
Mohan I, Joshi B, Pathania D, Dhar S, Bhau BS. Phytobial remediation advances and application of omics and artificial intelligence: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37988-38021. [PMID: 38780844 DOI: 10.1007/s11356-024-33690-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Industrialization and urbanization increased the use of chemicals in agriculture, vehicular emissions, etc., and spoiled all environmental sectors. It causes various problems among living beings at multiple levels and concentrations. Phytoremediation and microbial association are emerging as a potential method for removing heavy metals and other contaminants from soil. The treatment uses plant physiology and metabolism to remove or clean up various soil contaminants efficiently. In recent years, omics and artificial intelligence have been seen as powerful techniques for phytobial remediation. Recently, AI and modeling are used to analyze large data generated by omics technologies. Machine learning algorithms can be used to develop predictive models that can help guide the selection of the most appropriate plant and plant growth-promoting rhizobacteria combination that is most effective at remediation. In this review, emphasis is given to the phytoremediation techniques being explored worldwide in soil contamination.
Collapse
Affiliation(s)
- Indica Mohan
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
- Department of Botany, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
| | - Babita Joshi
- Plant Molecular Genetics Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P., 226001, India
| | - Deepak Pathania
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
- Department of Botany, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
| | - Sunil Dhar
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
- Department of Botany, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
| | - Brijmohan Singh Bhau
- Department of Botany, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India.
| |
Collapse
|
7
|
Ghandali MV, Safarzadeh S, Ghasemi-Fasaei R, Zeinali S. Heavy metals immobilization and bioavailability in multi-metal contaminated soil under ryegrass cultivation as affected by ZnO and MnO 2 nanoparticle-modified biochar. Sci Rep 2024; 14:10684. [PMID: 38724636 PMCID: PMC11082237 DOI: 10.1038/s41598-024-61270-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
Pollution by heavy metals (HMs) has become a global problem for agriculture and the environment. In this study, the effects of pristine biochar and biochar modified with manganese dioxide (BC@MnO2) and zinc oxide (BC@ZnO) nanoparticles on the immobilization and bioavailability of Pb, Cd, Zn, and Ni in soil under ryegrass (Lolium perenne L.) cultivation were investigated. The results of SEM-EDX, FTIR, and XRD showed that ZnO and MnO2 nanoparticles were successfully loaded onto biochar. The results showed that BC, BC@MnO2 and BC@ZnO treatments significantly increased shoots and roots dry weight of ryegrass compared to the control. The maximum dry weight of root and shoot (1.365 g pot-1 and 4.163 g pot-1, respectively) was reached at 1% BC@MnO2. The HMs uptake by ryegrass roots and shoots decreased significantly after addition of amendments. The lowest Pb, Cd, Zn and Ni uptake in the plant shoot (13.176, 24.92, 32.407, and 53.88 µg pot-1, respectively) was obtained in the 1% BC@MnO2 treatment. Modified biochar was more successful in reducing HMs uptake by ryegrass and improving plant growth than pristine biochar and can therefore be used as an efficient and cost effective amendment for the remediation of HMs contaminated soils. The lowest HMs translocation (TF) and bioconcentration factors were related to the 1% BC@MnO2 treatment. Therefore, BC@MnO2 was the most successful treatment for HMs immobilization in soil. Also, a comparison of the TF values of plant showed that ryegrass had a good ability to accumulate all studied HMs in its roots, and it is a suitable plant for HMs phytostabilization.
Collapse
Affiliation(s)
| | - Sedigheh Safarzadeh
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Reza Ghasemi-Fasaei
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
8
|
Zamani N, Sabzalian MR, Afyuni M. Elevated atmospheric CO 2 combined with Epichloë endophyte may improve growth and Cd phytoremediation potential of tall fescue (Festuca arundinacea L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8164-8185. [PMID: 38172319 DOI: 10.1007/s11356-023-31496-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
Complex environmental conditions like heavy metal contamination and elevated CO2 concentration may cause numerous plant stresses and lead to considerable crop losses worldwide. Cadmium is a non-essential element and potentially highly toxic soil metal pollution, causing oxidative stress in plants and human toxicity. In order to assess a combination of complex factors on the responses of two genotypes of Festuca arundinacea (75B and 75C), a greenhouse experiment was conducted on plants grown in two Cd-contaminated soil conditions and two soil textures under combined effects of elevated ambient CO2 (700 ppm) and Epichloë endophyte infection. Plant biomass, Cd, Fe, Cu, Zn, and Mn concentrations in the plant shoots and roots, Fv/Fm, chlorophyll (a & b), and carotenoid contents were measured after 7 months of growth in pots. Our results showed that endophyte-infected plants (E+) grown in elevated CO2 atmosphere (CO2+), clay-loam soil texture (H) with no Cd amendment (Cd-) in the genotype 75B had significantly greater shoot and root biomass than non-infected plants (E-) grown in ambient CO2 concentration (CO2-), sandy-loam soil texture (L) with amended Cd (Cd+) in the genotype 75C. Increased CO2 concentration and endophyte infection, especially in the genotype 75B, enabled Festuca for greater phytoremediation of Cd because of higher tolerance to Cd stress and higher biomass accumulation in the plant genotype. However, CO2 enrichment negatively influenced the plant mineral absorption due to the inhibitory effects of high Cd concentration in shoots and roots. It is concluded that Cd phytoremediation can be positively affected by the increased atmospheric CO2 concentration, tolerant plant genotype, heavy soil texture, and Epichloë endophyte. Using Taguchi and AIC design methodologies, it was also predicted that the most critical factors affecting Cd phytoremediation potential were CO2 concentration and plant genotype.
Collapse
Affiliation(s)
- Narges Zamani
- Department of Soil Science, College of Agriculture, Isfahan University of Technology, Isfahan, 84156 83111, Iran
| | - Mohammad R Sabzalian
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 84156 83111, Iran.
| | - Majid Afyuni
- Department of Soil Science, College of Agriculture, Isfahan University of Technology, Isfahan, 84156 83111, Iran
| |
Collapse
|
9
|
Paridar Z, Ghasemi-Fasaei R, Yasrebi J, Ronaghi A, Moosavi AA. Applicability of the sigmoid model to estimate heavy metal uptake in maize and sorghum as affected by organic acids. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3222-3238. [PMID: 38085482 DOI: 10.1007/s11356-023-31410-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 12/03/2023] [Indexed: 01/18/2024]
Abstract
Although assisted phytoremediation using chemical treatments is a suitable technique for the removal of heavy metals (HMs), the estimation of this process using simple models is also crucial. For this purpose, a greenhouse trial was designed to evaluate the effectiveness of citric, oxalic, and tartaric acid on Cd, Pb, Ni, and Zn phytoremediation by maize and sorghum and to estimate this process using sigmoid HMs uptake model. Results showed that mean values of root and shoot dry weight and metals uptake, translocation factor (TF) of Pb and Zn, and uptake efficiency (UE) of Cd in maize were higher than sorghum but the TF of Cd and the phytoextraction efficiency (PEE) and UE of Pb in sorghum were higher than maize. Citric, oxalic, and tartaric acid significantly increased the UE of Pb by 17.7%, 22.5%, and 32.5%, respectively. Tartaric acid significantly increased the mean values of shoot dry weight, shoot Cd, Pb, and Ni uptake, and PEE of Pb and Ni, but decreased TF of Zn. The R2, NRMSE, and KM values indicated the ability of sigmoid HM uptake model in estimating HMs uptake in maize and sorghum treated with organic acids. Thus, tartaric acid was more effective than citric and oxalic acids to enhance phytoremediation potential. Sigmoid HM uptake model is suitable to estimate the HMs uptake in plants treated with organic acids at different growth stages.
Collapse
Affiliation(s)
- Zeynab Paridar
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Reza Ghasemi-Fasaei
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Jafar Yasrebi
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Abdolmajid Ronaghi
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Akbar Moosavi
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
10
|
Mohammed AE, Pawelzik E, Nour MM, Alotaibi MO, Abdelgawad H, Saleh AM. Mycorrhized wheat and bean plants tolerate bismuth contaminated soil via improved metal detoxification and antioxidant defense systems. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108148. [PMID: 37977026 DOI: 10.1016/j.plaphy.2023.108148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/09/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023]
Abstract
Contamination of agricultural fields with bismuth (Bi) reduces crop yield and quality. Arbuscular mycorrhizal fungi (AMF) are known to enhance plant growth and crop production, even under stressful conditions such as soil contamination with heavy metals. The objective of this study was to investigate the effect of AMF on the mitigation of Bi-phytotoxicity in wheat (Triticum aestivum) and beans (Phaseolus vulgaris) and to provide a comprehensive evaluation of the physiological and biochemical basis for the growth and development of AMF-induced plants under Bi stress conditions. Wheat and bean were treated by Bi and AMF individually and in combination. Then the physiological and biochemical responses in the shoot and roots of the two crop species were studied. Evident retardations in plant growth and key photosynthesis-related parameters and accumulation of MDA, H2O2, as markers of oxidative stress, were observed in plants subjected to Bi. AMF colonization reduced the uptake and translocation of Bi in the plant organs by enhancing the exudation of polyphenols and organic acids into the rhizospheric soil. Mycorrhized wheat and bean plants were able to attenuate the effects of Bi by improving metal detoxification (phytochelatins, metallothionein, total glutathione, and glutathione-S-transferase activity) and antioxidant defense systems (both enzymatic and non-enzymatic) and maintaining C assimilation and nutrient status. The current results suggest the manipulation of AMF as a powerful approach to alleviate the phytotoxicity of Bi in legumes and grasses.
Collapse
Affiliation(s)
- Afrah E Mohammed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.
| | - Elke Pawelzik
- Division Quality of Plant Products, Department of Crop Science, Faculty of Agricultural Sciences, University of Göttingen, Carl-Sprengel-Weg 1, 37075, Göttingen, Germany.
| | - Mudawi M Nour
- Nurseries Department, Habitat Regeneration & Landscaping, Wildlife and Natural Heritage, Royal Commission for AlUla Province, Saudi Arabia.
| | - Modhi O Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.
| | - Hamada Abdelgawad
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp, Belgium; Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, 62521, Beni-Suef, Egypt.
| | - Ahmed M Saleh
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
11
|
Mukkanti VB, Tembhurkar AR. Taguchi optimization for water defluoridation by thermally treated biosorbent developed from the waste snail shells. J DISPER SCI TECHNOL 2023. [DOI: 10.1080/01932691.2023.2194383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
12
|
Adejumo AL, Azeez L, Kolawole TO, Aremu HK, Adedotun IS, Oladeji RD, Adeleke AE, Abdullah M. Silver nanoparticles strengthen Zea mays against toxic metal-related phytotoxicity via enhanced metal phytostabilization and improved antioxidant responses. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:1676-1686. [PMID: 36905097 DOI: 10.1080/15226514.2023.2187224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This study investigated the phytostabilization and plant-promoting abilities of silver nanoparticles (AgNPs). Twelve Zea mays seeds were planted in water and AgNPs (10, 15 and 20 mg mL-1) irrigated soil for 21 days on soil containing 0.32 ± 0.01, 3.77 ± 0.03, 3.64 ± 0.02, 69.91 ± 9.44 and 13.17 ± 0.11 mg kg-1 of As, Cr, Pb, Mn and Cu, respectively. In soil treated with AgNPs, the metal contents were reduced by 75%, 69%, 62%, 86%, and 76%. The different AgNPs concentrations significantly reduced accumulation of As, Cr, Pb, Mn, and Cu in Z. mays roots by 80%, 40%, 79%, 57%, and 70%, respectively. There were also reductions in shoots by 100%, 76%, 85%, 64%, and 80%. Translocation factor, bio-extraction factor and bioconcentration factor demonstrated a phytoremediation mechanism based on phytostabilization. Shoots, roots, and vigor index improved by 4%, 16%, and 9%, respectively in Z. mays grown with AgNPs. Also, AgNPs increased antioxidant activity, carotenoids, chlorophyll a and chlorophyll b by 9%, 56%, 64%, and 63%, respectively, while decreasing malondialdehyde contents in Z. mays by 35.67%. This study discovered that AgNPs improved the phytostabilization of toxic metals while also contributing to Z. mays' health-promoting properties.
Collapse
Affiliation(s)
- Ayoade L Adejumo
- Department of Chemical Engineering, Osun State University, Osogbo, Nigeria
| | - Luqmon Azeez
- Department of Pure and Applied Chemistry, Osun State University, Osogbo, Nigeria
| | - Tesleem O Kolawole
- Department of Geological Sciences, Osun State University, Osogbo, Nigeria
| | - Harun K Aremu
- Department of Biochemistry, Osun State University, Osogbo, Nigeria
| | | | - Ruqoyyah D Oladeji
- Department of Chemistry, School of Science, Federal College of Education (Special), Oyo, Iya Ibadan, Nigeria
| | | | - Monsurat Abdullah
- Department of Pure and Applied Chemistry, Osun State University, Osogbo, Nigeria
| |
Collapse
|
13
|
Espada JJ, Rodríguez R, Gari V, Salcedo-Abraira P, Bautista LF. Coupling phytoremediation of Pb-contaminated soil and biomass energy production: A comparative Life Cycle Assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156675. [PMID: 35716747 DOI: 10.1016/j.scitotenv.2022.156675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Phytoremediation is an in-situ remediation technology based on the ability of plants to fix pollutants from the soil. In this sense, plants such as Festuca arundinacea are a promising for heavy metal removal in contaminated soils. The present work studies phytoremediation for Pb removal from a contaminated soil located in Spain using F. arundinacea by applying the Life Cycle Assessment (LCA) approach. Two different options for biomass management were assessed: direct disposal in a security landfill (case 1A) and energy recovery (case 1B). For the latter option, cogeneration was simulated using SuperPro Designer 9.5. In addition, traditional treatments such as soil washing (case 2) and excavation + landfill (case 3) were evaluated in terms of environmental impacts by LCA. The former was simulated using SuperPro Designer 9.5, whereas data from literature were used for the latter to perform the LCA. Results showed that biomass disposal in a landfill was the most important contributor to the overall impact in case 1A. In contrast, biomass conditioning and cogeneration were the main steps responsible for environmental impacts in case 1B. Comparing cases 1A and 1B, the energy recovery from biomass was superior to direct landfill disposal, reducing the environmental impacts in most of the studied categories. Regarding the rest of the treatments, chemical production and soil disposal presented the most critical environmental burdens in cases 2 and 3, respectively. Finally, the comparison between the studied cases revealed that phytoextraction + energy recovery was the most environmentally friendly option for the studied conditions, reducing impacts by 30-100%.
Collapse
Affiliation(s)
- Juan J Espada
- Department of Chemical, Energy and Mechanical Technology, ESCET, Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain.
| | - Rosalía Rodríguez
- Department of Chemical, Energy and Mechanical Technology, ESCET, Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain
| | - Vanessa Gari
- Department of Chemical, Energy and Mechanical Technology, ESCET, Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain
| | - Pablo Salcedo-Abraira
- Institut des Matériaux de Nantes Jean Rouxel (IMN), UMR 6502, CNRS, Université de Nantes, 2 rue de la Houssinière, Nantes 44322, France
| | - Luis Fernando Bautista
- Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain
| |
Collapse
|
14
|
Effects of an Arbuscular Mycorrhizal Fungus on the Growth of and Cadmium Uptake in Maize Grown on Polluted Wasteland, Farmland and Slopeland Soils in a Lead-Zinc Mining Area. TOXICS 2022; 10:toxics10070359. [PMID: 35878264 PMCID: PMC9322003 DOI: 10.3390/toxics10070359] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022]
Abstract
Arbuscular mycorrhizal fungi (AMF) exist widely in soil polluted by heavy metals and have significant effects on plant growth and cadmium (Cd) uptake. Cd contents differ among wasteland, farmland and slopeland soils in a lead-zinc mining area in Yunnan Province, Southwest China. The effects of AMF on maize growth, root morphology, low-molecular-weight organic acid (LMWOA) concentrations and Cd uptake were investigated via a root-bag experiment. The results show that AMF increased maize growth on Cd-polluted soils, resulting in increases in root length, surface area, volume and branch number, with the effects being stronger in farmland than in wasteland and slopeland soils; increased malic acid and succinic acid secretion 1.3-fold and 1.1-fold, respectively, in roots on farmland soil; enhanced the iron- and manganese-oxidized Cd concentration by 22.6%, and decreased the organic-bound Cd concentration by 12.9% in the maize rhizosphere on farmland soil; and increased Cd uptake 12.5-fold and 1.7-fold in shoots and by 25.7% and 86.6% in roots grown on farmland and slopeland soils, respectively. Moreover, shoot Cd uptake presented significant positive correlations with root surface area and volume and LMWOA concentrations. Thus, these results indicated the possible mechanism that the increased maize Cd uptake induced by AMF was closely related to their effect on root morphology and LMWOA secretion, with the effects varying under different Cd pollution levels.
Collapse
|
15
|
Mukkanti VB, Tembhurkar AR. Taguchi’s experimental design for the optimization of the defluoridation process using a novel biosorbent developed from the clamshell waste. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2056480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Veera Brahmam Mukkanti
- Civil Engineering Department, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| | - A. R. Tembhurkar
- Civil Engineering Department, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| |
Collapse
|
16
|
Abdullah Al-Dhabi N, Arasu MV. Biosorption of hazardous waste from the municipal wastewater by marine algal biomass. ENVIRONMENTAL RESEARCH 2022; 204:112115. [PMID: 34563525 DOI: 10.1016/j.envres.2021.112115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 05/18/2023]
Abstract
Lead is one of the highly toxic heavy metals causes various diseases even at very lower concentrations to human and affects eco-system. It is mainly released into the water through industrial activities. Phytoremediation is useful to degrade, reduce, metabolize and assimilate lead from wastewater. In this study, Turbinaria ornata was collected from the sea and dried biomass was used for biosorption of heavy metals. Adsorption of heavy metal was maximum after 100 min incubation with alga powder at acidic pH (4.5). The interactive effects of lead concentration, contact times, pH, biomass concentration and agitation speed was evaluated by a two-level full factorial design. Initial lead concentration, agitation speed and biomass concentration were the most important variables affecting lead removal (p < 0.001) were selected for optimization using central composite rotatable design. Lead removal was found to be maximum (99.8%) in optimized conditions: initial lead 99.8 mg/L, 250 rpm agitation speed and 16.2 g/L biomass concentrations. Municipal wastewater was collected and lead concentration (0.013 mg/L) and physiochemical factors were analyzed. Algal biomass removed >98.5% lead form the wastewater within 10 min in an optimized condition. The present study confirmed the potential application of T. ornata for the removal of lead from contaminated environment.
Collapse
Affiliation(s)
- Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. BOX 2455, Riyadh, 11451, Saudi Arabia.
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. BOX 2455, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
17
|
Saha L, Tiwari J, Bauddh K, Ma Y. Recent Developments in Microbe-Plant-Based Bioremediation for Tackling Heavy Metal-Polluted Soils. Front Microbiol 2021; 12:731723. [PMID: 35002995 PMCID: PMC8733405 DOI: 10.3389/fmicb.2021.731723] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Soil contamination with heavy metals (HMs) is a serious concern for the developing world due to its non-biodegradability and significant potential to damage the ecosystem and associated services. Rapid industrialization and activities such as mining, manufacturing, and construction are generating a huge quantity of toxic waste which causes environmental hazards. There are various traditional physicochemical techniques such as electro-remediation, immobilization, stabilization, and chemical reduction to clean the contaminants from the soil. However, these methods require high energy, trained manpower, and hazardous chemicals make these techniques costly and non-environment friendly. Bioremediation, which includes microorganism-based, plant-based, microorganism-plant associated, and other innovative methods, is employed to restore the contaminated soils. This review covers some new aspects and dimensions of bioremediation of heavy metal-polluted soils. The bioremediation potential of bacteria and fungi individually and in association with plants has been reviewed and critically examined. It is reported that microbes such as Pseudomonas spp., Bacillus spp., and Aspergillus spp., have high metal tolerance, and bioremediation potential up to 98% both individually and when associated with plants such as Trifolium repens, Helianthus annuus, and Vallisneria denseserrulata. The mechanism of microbe's detoxification of metals depends upon various aspects which include the internal structure, cell surface properties of microorganisms, and the surrounding environmental conditions have been covered. Further, factors affecting the bioremediation efficiency and their possible solution, along with challenges and future prospects, are also discussed.
Collapse
Affiliation(s)
- Lala Saha
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, India
| | - Jaya Tiwari
- Department of Community Medicine and School of Public Health, PGIMER, Chandigarh, India
| | - Kuldeep Bauddh
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, India
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing, China
| |
Collapse
|
18
|
Optimization of Photogrammetric Flights with UAVs for the Metric Virtualization of Archaeological Sites. Application to Juliobriga (Cantabria, Spain). APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Three-dimensional models are required to virtualize heritage sites. In recent years, different techniques that ease their generation have been consolidated, such as photogrammetry with Unmanned Aerial Vehicles (UAVs). Nonmetric cameras allow relatively inexpensive data collections. Traditional aerial photogrammetry has established methodologies, but there are not commonly used recommendations for the selection of parameters when working with UAV platforms. This research applies the Taguchi Design of Experiments Method, with four parameters (height of flight, forward and lateral overlaps, and inclination angle of the sensor) and three levels (L9 matrix and nine flights), to determine the set that offers the best metric goodness and, therefore, the most faithful model. The Roman civitas of Juliobriga (Cantabria, North of Spain) was selected for this experiment. The optimal flight results of the average signal-to-noise ratio analysis were height of 15 m, forward and lateral overlaps of 80%, and inclination of 0° (nadiral). This research also highlights the noticeable contribution of the inclination in the accuracy of the model with respect to the others, which is 16.4 times higher than that of the less relevant one (height of flight). This leads to propose avoiding inclination angle as a variable, and the sole development of nadiral flights to obtain accurate models.
Collapse
|