1
|
Xu W, Xie X, Li Q, Yang X, Ren J, Shi Y, Liu D, Shaheen SM, Rinklebe J. Biochar co-pyrolyzed from peanut shells and maize straw improved soil biochemical properties, rice yield, and reduced cadmium mobilization and accumulation by rice: Biogeochemical investigations. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133486. [PMID: 38244456 DOI: 10.1016/j.jhazmat.2024.133486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/02/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
Biochar is an eco-friendly amendment for the remediation of soils contaminated with cadmium (Cd). However, little attention has been paid to the influence and underlying mechanisms of the co-pyrolyzed biochar on the bioavailability and uptake of Cd in paddy soils. The current study explored the effects of biochar co-pyrolyzed from peanut shells (P) and maize straw (M) at different mixing ratios (1:0, 1:1, 1:2, 1:3, 0:1, 2:1 and 3:1, w/w), on the bacterial community and Cd fractionation in paddy soil, and its uptake by rice plant. Biochar addition, particularly P1M3 (P/M 1:3), significantly elevated soil pH and cation exchange capacity, transferred the mobile Cd to the residual fraction, and reduced Cd availability in the rhizosphere soil. P1M3 application decreased the concentration of Cd in different rice tissues (root, stem, leaf, and grain) by 30.0%- 49.4%, compared to the control. Also, P1M3 enhanced the microbial diversity indices and relative abundance of iron-oxidizing bacteria in the rhizosphere soil. Moreover, P1M3 was more effective in promoting the formation of iron plaque, increasing the Cd sequestration by iron plaque than other treatments. Consequently, the highest yield and lowest Cd accumulation in rice were observed following P1M3 application. This study revealed the feasibility of applying P1M3 for facilitating paddy soils contaminated with Cd.
Collapse
Affiliation(s)
- Weijie Xu
- State Key Laboratory of Subtropical Silviculture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Lin'an 311300, China
| | - Xiaocui Xie
- State Key Laboratory of Subtropical Silviculture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Lin'an 311300, China
| | - Qi Li
- State Key Laboratory of Subtropical Silviculture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Lin'an 311300, China
| | - Xing Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, Renmin Road 58, Haikou 570228, China
| | - Jiajia Ren
- Agriculture and Rural of Jiaxing, Jiaxing 323500, China
| | - Yanping Shi
- Agriculture and Rural of Jiaxing, Jiaxing 323500, China
| | - Dan Liu
- State Key Laboratory of Subtropical Silviculture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Lin'an 311300, China.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany.
| |
Collapse
|
2
|
Zeng R, Liu H, Hong Z, Wang X, Cheng S, Xu J, Dai Z. Co-inoculation effects of B. licheniformis and P. aeruginosa on soil Cd and As availability and rice accumulation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119739. [PMID: 38061100 DOI: 10.1016/j.jenvman.2023.119739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 01/14/2024]
Abstract
There have been studies reporting the effects of multiple bacterial strains on the Cd/As immobilization and transformation in culture media. However, there is limited research to validate the effects of microbial strain combination on plant Cd/As accumulation and antioxidant system in the soil-plant system. By planting the rice (Zhefu 7) with the co-inoculation of bacterial strains (i.e. Bacillus licheniformis and Pseudomonas aeruginosa) after two months with the contaminations of Cd (2 mg/kg), As (80 mg/kg) and Cd + As (2 + 80 mg/kg), we found that the bacterial co-inoculation decreased Cd concentrations in the rhizosphere soil porewater, but had limited effects on mitigating plant Cd accumulation. By contrast, the co-inoculation did not affect the As(III) and As(V) concentrations in the rhizosphere soil porewater, but decreased As(III) and As(V) concentrations by 17% and 17% in the root respectively and by 17% and 37% in rice shoot respectively. Using DNA sequencing, we found the increased abundance in both exogenous Bacillus licheniformis and native microorganisms, indicating that the added strains had synergetic interactions with soil native microorganisms. Regarding on plant antioxidant enzyme system, the bacterial co-inoculation decreased the concentrations of superoxide dismutase (SOD), hydrogen peroxide (H2O2) and malondialdehyde (MDA) by 75%, 74% and 22%, mitigating the As damage to rice root and promote plant growth. However, under Cd and As co-stress, the effects of co-inoculation on mitigating plant As accumulation and enhancing plant stress resistance appear to be diminished. Our findings underscore the importance of microbial co-inoculation in reducing plant As accumulation and preserving plant health under heavy metal stress.
Collapse
Affiliation(s)
- Rujiong Zeng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Huaiting Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zhiqi Hong
- Agricultural Experiment Station, Zhejiang University, Hangzhou, 310058, China
| | - Xiu Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Shuxun Cheng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; The Rural Development Academy at Zhejiang University, Zhejiang University, Hangzhou, 310058, China
| | - Zhongmin Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; The Rural Development Academy at Zhejiang University, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Mehmood S, Ahmed W, Alatalo JM, Mahmood M, Asghar RMA, Imtiaz M, Ullah N, Li WD, Ditta A. A systematic review on the bioremediation of metal contaminated soils using biochar and slag: current status and future outlook. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:961. [PMID: 37454303 DOI: 10.1007/s10661-023-11561-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
Heavy metals contaminated soils are posing severe threats to food safety worldwide. Heavy metals absorbed by plant roots from contaminated soils lead to severe plant development issues and a reduction in crop yield and growth. The global population is growing, and the demand for food is increasing. Therefore, it is critical to identify soil remediation strategies that are efficient, economical, and environment friendly. The use of biochar and slag as passivators represents a promising approach among various physicochemical and biological strategies due to their efficiency, cost-effectiveness, and low environmental impact. These passivators employ diverse mechanisms to reduce the bioavailability of metals in contaminated soils, thereby improving crop growth and productivity. Although studies have shown the effectiveness of different passivators, further research is needed globally as this field is still in its early stages. This review sheds light on the innovative utilization of biochar and slag as sustainable strategies for heavy metal remediation, emphasizing their novelty and potential for practical applications. Based on the findings, research gaps have been identified and future research directions proposed to enable the full potential of passivators to be utilized effectively and efficiently under controlled and field conditions.
Collapse
Affiliation(s)
- Sajid Mehmood
- College of Ecology and Environment, Hainan University, Haikou City, 570100, China
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou, 570228, China
| | - Waqas Ahmed
- College of Ecology and Environment, Hainan University, Haikou City, 570100, China
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou, 570228, China
| | - Juha M Alatalo
- Environmental Science Center, Qatar University, Doha, Qatar
| | - Mohsin Mahmood
- College of Ecology and Environment, Hainan University, Haikou City, 570100, China
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou, 570228, China
| | | | - Muhammad Imtiaz
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Naseer Ullah
- Environmental Chemistry Laboratory, Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing, China
| | - Wei-Dong Li
- College of Ecology and Environment, Hainan University, Haikou City, 570100, China.
| | - Allah Ditta
- Department of Environmental Sciences, Shaheed Benazir Bhutto University Sheringal, Dir (U), Khyber Pakhtunkhwa, 18000, Pakistan.
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.
| |
Collapse
|
4
|
Tan WT, Zhou H, Tang SF, Chen Q, Zhou X, Liu XH, Zeng P, Gu JF, Liao BH. Simultaneous alleviation of Cd availability in contaminated soil and accumulation in rice (Oryza sativa L.) by Fe-Mn oxide-modified biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159730. [PMID: 36306853 DOI: 10.1016/j.scitotenv.2022.159730] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Fe-Mn oxide-modified biochar (BC-FM) was used to remediate Cd-contaminated soil and mitigate Cd accumulation in rice. The roles of Fe and Mn in soil Cd immobilization and in controlling Cd uptake by rice were investigated via X-ray photoelectron spectroscopy (XPS) characterization and chemical analysis. Fe and Mn loaded on BC-FM increased the removal efficiencies of CaCl2 extractable Cd in soil and Cd in pore water compared to those in only biochar (BC)-treated soil, with maximum removal rates at 67.9 % and 77.8 %, respectively. The XPS results indicated that the redox reactions of the Fe-Mn oxides on BC-FM surface affected Cd immobilization in the soil. The Fe (II/III) components on BC-FM were primarily converted to Fe3O4 in the soil system, which may form stable complexes with Cd2+ (Fe-O-Cd) during the entire rice growth period, and Cd may be bound to MnO or Mn2O3 in the form of CdMn2O4. The excellent adsorption performance of BC-FM enhanced by Fe-Mn oxides reduced the available Cd in the soil and stimulated Fe and Mn transport in rice, thereby inhibiting Cd accumulation in the aerial parts of rice. Cd concentrations in brown rice under BC-FM treatments reached the national safety standard (0.2 mg/kg, GB2762-2017). And BC-FM significantly increased the biomass of brown rice with a maximum rate of 26.8 %. These findings suggest that BC-FM could be used as an efficient material for Cd-contaminated soil remediation, and Fe-Mn plays important role in immobilizing Cd in soil and reducing Cd transport in rice.
Collapse
Affiliation(s)
- Wen-Tao Tan
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Hang Zhou
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha 410004, China.
| | - Shang-Feng Tang
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qiong Chen
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xia Zhou
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xin-Hui Liu
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Peng Zeng
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha 410004, China
| | - Jiao-Feng Gu
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha 410004, China
| | - Bo-Han Liao
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha 410004, China
| |
Collapse
|
5
|
Rashid MH, Rahman MM, Naidu R. Zinc Biofortification through Basal Zinc Supply Reduces Grain Cadmium in Mung Beans: Metal Partitioning and Health Risks Assessment. TOXICS 2022; 10:689. [PMID: 36422897 PMCID: PMC9692611 DOI: 10.3390/toxics10110689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Grain zinc (Zn) biofortification with less cadmium (Cd) accumulation is of paramount importance from human health and environmental point of view. A pot experiment was carried out to determine the influence of Zn and Cd on their accumulations in Mung bean tissues (Vigna radiata) in two contrast soil types (Dermosol and Tenosol). The soil types with added Zn and Cd exerted a significant effect on translocation and accumulation of metals in different tissues. The accumulation of Zn and Cd was higher for Tenosol than that for Dermosol. At control, the concentration of Cd followed a pattern, e.g., root > stem > petiole > pod > leaflet > grain for both soils. A basal Zn supply (5 mg kg−1) increased the grain Zn concentration to a significant amount (up to 67%). It also reduced Cd accumulation in tissues, including grains (up to 34%). No non-carcinogenic effect was observed for either the children or the adults as the EDI and PTDI values were below the safety limit; however, the ILCR values exceeded the safety limit, indicating the possibility of some carcinogenic effects. Added Zn helped to reduce the carcinogenic and non-carcinogenic health risks on humans.
Collapse
Affiliation(s)
- Md Harunur Rashid
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
- Bangladesh Agricultural Research Institute (BARI), Gazipur 1701, Bangladesh
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
- Department of General Educational Development, Faculty of Science & Information Technology, Daffodil International University, Dhaka 1207, Bangladesh
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
6
|
Effects of Modified Biochar on the Mobility and Speciation Distribution of Cadmium in Contaminated Soil. Processes (Basel) 2022. [DOI: 10.3390/pr10050818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cadmium-contaminated soil poses a threat to the environment and human health. Biochar materials have received widespread attention as an in situ immobilizer for the efficient remediation of heavy-metal-contaminated soils. In this study, a modified biochar material (E–CBC) was developed for the immobilization of Cd in contaminated soil. E–CBC was characterized by XPS, SEM, BET, and FTIR. The effects of pristine biochar (BC) and E–CBC on soil physicochemical properties (pH and soil organic matter (SOM)), CaCl2-extractable Cd, total characteristics leaching procedure (TCLP) Cd, and speciation distribution of Cd were studied by incubation experiments. The results showed that the application of BC and E–CBC increased soil pH slightly and SOM significantly. A 2% dosage BC and E–CBC treatment reduced CaCl2-extractable Cd by 14.62% and 91.79%, and reduced TCLP Cd by 9.81% and 99.8%, respectively. E–CBC was shown to effectively induce the transition of Cd in the soil to a stable state. The application of a 0.25% dosage of E–CBC reduced the acid-extractable fraction of Cd from 58.06% to 10.66%. The functional groups increased after modification and may play an important role in the immobilization of Cd in the contaminated soil. In conclusion, E–CBC is a promising in situ immobilizer for the remediation of Cd-contaminated soil.
Collapse
|