1
|
Hu X, Chen Y, Xu W. Brassica rapa selenium transporter NPF2.20 (BrNPF2.20) accounts for Se-enrichment in Chinese cabbage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117466. [PMID: 39647368 DOI: 10.1016/j.ecoenv.2024.117466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
Selenium (Se) is an essential nutrient for the human body and breeding highly Se-enriched Chinese cabbage varieties is an important means of addressing Se deficiency in individuals in certain regions. The genus Brassica has a strong ability to enrich Se; however, the primary molecular mechanism of Se enrichment remains unclear. We screened for high- and low-Se-enriched Chinese cabbage varieties from 39 different genotypes and identified a key candidate gene for Se enrichment, namely, BrNPF2.20 (BraA07g035670.3.1 C), located on the cell membrane. The expression level of BrNPF2.20 in the high-Se-enriched Chinese cabbage variety P2 was significantly higher than that in the low-Se-enriched variety P6. Heterologous expression of BrNPF2.20 increased the sensitivity of yeast to Se. The overexpression of BrNPF2.20 significantly increased the Se content in Arabidopsis plants, whereas silencing BrNPF2.20 in Chinese cabbage leaves reduced the Se content. Cell selenium mainly in the cell wall may be the physiological and biochemical mechanism of the high-Se-enriched vareity in response to selenium stress. BrNPF2.20 promoted the transport and accumulation of Se from root to shoot in Chinese cabbage maybe by increasing GSH-Px activity or regulating sulfate transporter family genes related to Se absorption and transport. This study not only deepens our understanding of Se transport from Chinese cabbage root to the ground part, but also provides a new idea for breeding Se-rich Chinese cabbage varieties by promoting SeMet transport.
Collapse
Affiliation(s)
- Xiaoting Hu
- College of Resources and Environmental Sciences, Southwest University, Chongqing 400715, China
| | - Yucheng Chen
- College of Resources and Environmental Sciences, Southwest University, Chongqing 400715, China
| | - Weihong Xu
- College of Resources and Environmental Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Wang Q, Huang S, Huang Q, Yu Y, Li H, Wan Y. Absorption and Biotransformation of Selenomethionine and Selenomethionine-Oxide by Wheat Seedlings ( Triticum aestivum L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:380. [PMID: 38337913 PMCID: PMC10857051 DOI: 10.3390/plants13030380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
An in-depth understanding of Se uptake and metabolism in plants is necessary for developing Se biofortification strategies. Thus, hydroponic experiments were conducted to investigate the associated processes and mechanisms of organic Se (selenomethionine (SeMet) and selenomethionine-oxide (SeOMet)) uptake, translocation, transformation and their interaction in wheat, in comparison to inorganic Se. The results showed that Se uptake by the roots and the root-to-shoot translocation factor under the SeMet treatment were higher than those under the selenite, selenate and SeOMet treatments. The uptake and translocation of SeMet were higher than those of SeOMet within 72 h, although the differences gradually narrowed with time. The uptake of SeMet and SeOMet was also sensitive to the aquaporin inhibitor: AgNO3 addition resulted in 99.5% and 99.9% inhibitions of Se in the root in the SeMet and SeOMet treatments, respectively. Once absorbed by the root, they rapidly assimilated to other Se forms, and SeMet and Se-methyl-selenocysteine (MeSeCys) were the dominant species in SeMet- and SeOMet-treated plants, while notably, an unidentified Se form was also found in the root and xylem sap under the SeMet treatment. In addition, within 16 h, SeOMet inhibited the uptake and translocation of SeMet, while the inhibition was weakened with longer treatment time. Taken together, the present study provides new insights for the uptake and transformation processes of organic Se within plants.
Collapse
Affiliation(s)
- Qi Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Q.W.); (S.H.); (H.L.)
| | - Siyu Huang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Q.W.); (S.H.); (H.L.)
| | - Qingqing Huang
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China;
| | - Yao Yu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China;
| | - Huafen Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Q.W.); (S.H.); (H.L.)
| | - Yanan Wan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Q.W.); (S.H.); (H.L.)
| |
Collapse
|
3
|
Mao Y, Chang D, Cui X, Wu Y, Cai B. Changes in sulfur in soybean rhizosphere soil and the response of microbial flora in a continuous cropping system mediated by Funneliformis mosseae. Front Microbiol 2023; 14:1235736. [PMID: 37692404 PMCID: PMC10484799 DOI: 10.3389/fmicb.2023.1235736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Soybean is an S-loving crop, and continuous cropping might cause soil sulfur shortage. The primary objectives of this study are to determine whether Funneliformis mosseae (F. mosseae) can enhance the content of available S in S-deficient soil and thereby improve the sulfur utilization rate in soybean. The experiment used Heinong 48 (HN48), a soybean variety with a vast planting area in Heilongjiang Province, and F. mosseae was inoculated in the soil of soybean that had been continuously cropped for 0 and 3 years. The results of the barium sulfur turbidimetric assay show that the sulfur content in the soil and soybean was reduced by continuous cropping and increased by inoculation with F. mosseae; the results of the macro-genome sequencing technology, show that the diversity and abundance of bacteria in the soil was decreased by continuous cropping and increased by inoculation with F. mosseae. The sulfur-oxidizing bacteria (SOB) activity and sulfur-related gene expression levels were lower in the continuous crop group compared to the control group and higher in the F.mosseae-inoculated group compared to the control group. Continuous cropping reduced the sulfur content and ratio of soybean rhizosphere soil, affecting soil flora activity and thus soybean growth; F. mosseae inoculation increased the sulfur content of soybean root-perimeter soil and plants, increased the diversity and abundance of rhizosphere soil microorganisms, increased the expression of genes for sulfur transport systems, sulfur metabolism, and other metabolic functions related to elemental sulfur, and increased the species abundance and metabolic vigor of most SOB. In summary, continuous cropping inhibits soil sulfur uptake and utilization in soybean while the inoculation with F. mosseae can significantly improve this situation. This study offers a theoretical research foundation for using AMF as a bio-fungal agent to enhance soil sulfur use. It also supports the decrease of chemical fertilizers, their substitution, and the protection of native soil.
Collapse
Affiliation(s)
- Yizhi Mao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region and Key Laboratory of Molecular Biology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, China
| | - Donghao Chang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region and Key Laboratory of Molecular Biology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, China
| | - Xiaoying Cui
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region and Key Laboratory of Molecular Biology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, China
| | - Yunshu Wu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region and Key Laboratory of Molecular Biology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, China
| | - Baiyan Cai
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region and Key Laboratory of Molecular Biology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, China
- Hebei Key Laboratory of Agroecological Safety, Hebei University of Environmental Engineering, Qinhuangdao, China
| |
Collapse
|
4
|
Ran S, He T, Li S, Yin D, Wu P, Xu Y, Zhao J. Selenium/sulfur-modified montmorillonite materials mitigate mercury pollution in farmland. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121719. [PMID: 37105467 DOI: 10.1016/j.envpol.2023.121719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Selenium (Se) amendment could reduce mercury (Hg) bioaccumulation in crops, but sometimes it could cause excessive Se accumulation in crops and potential Se exposure risks for humans. In this study, we designed and synthesized selenium and sulfur-modified montmorillonite materials (Se/S-Mont) to effectively reduce mercury levels and avoid excessive Se enrichment in plants. The results of pot experiments (1 g Se/S-Mont/100 g soil) and field microplot trials (0.3 g Se/S-Mont/100 g soil, 8 t/ha) showed that Se/S-Mont amendments significantly reduced the Hg concentrations in water spinach and hybrid Pennisetum by 28-68% and 57%-92% (P < 0.05), respectively, while they did not lead to excessive Se bioaccumulation in the plants. Se/S-Mont was more efficient in mitigating soil Hg pollution than adding raw materials (e.g., NaSeO₃) and their combinations, and they significantly reduced the available Se fraction in the soil and the Se levels in the plants (P < 0.05). The potential mechanisms revealed by X-ray absorption near-edge spectra (XANES) and pot experiments were the adsorption and slow release of Hg, S, and Se by Se/S-Mont, the high affinity between Hg and Se, competition between Se and S, and the formation of stable complexes containing Se-S-Hg. The Se/S-Mont immobilizer was easy to prepare and required the application of small amounts, and the remediation effect was relatively stable and exhibited few negative effects; therefore, the approach showed high environmental and economic potentials.
Collapse
Affiliation(s)
- Shu Ran
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Tianrong He
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China.
| | - Shengpeng Li
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Deliang Yin
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China
| | - Pan Wu
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China
| | - Yiyuan Xu
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Jiating Zhao
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; CAS Key Laboratory of Nuclear Analytical Techniques. Institute of High Energy Physics, Chinese Academy of Science, Beijing, 100049, China
| |
Collapse
|
5
|
Hall JA, Bobe G, Filley SJ, Bohle MG, Pirelli GJ, Wang G, Davis TZ, Bañuelos GS. Impact of selenium biofortification on production characteristics of forages grown following standard management practices in Oregon. FRONTIERS IN PLANT SCIENCE 2023; 14:1121605. [PMID: 37063195 PMCID: PMC10102540 DOI: 10.3389/fpls.2023.1121605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION Low selenium (Se) concentrations in soils and plants pose a health risk for ruminants consuming locally-grown forages. Previous studies have shown that Se concentrations in forages can be increased using soil-applied selenate amendments. However, the effects of foliar selenate amendments applied with traditional nitrogen-phosphorus-potassium-sulfur (NPKS) fertilizers on forage yields, and nutrient contents, and agronomic efficiencies are unknown. METHODS Using a split plot design, we determined the effects of springtime sodium selenate foliar amendment rates (0, 45, and 90 g Se ha-1) and NPKS application (none, NPK for grasses/PK for alfalfa, and NPKS/PKS fertilization at amounts adapted to meet local forage and soil requirements) on forage growth and N, S, and Se concentrations, yields, and agronomic efficiencies. This 2-year study was conducted across Oregon on four representative forage fields: orchardgrass (Dactylis glomerata L.) in Terrebonne (central Oregon), grass-clover mixture in Roseburg (southwestern Oregon), and both grass mixture and alfalfa (Medicago sativa L.) fields in Union (eastern Oregon). RESULTS Grasses grew poorly and were low in N content without NPK fertilization. Fertilization with NPK/PK promoted forage growth, increased forage N concentrations, and had to be co-applied with S when plant available S was low. Without Se amendment, forage Se concentrations were low and further decreased with NPKS/PKS fertilization. Selenate amendment linearly increased forage Se concentration without adversely affecting forage yields, N and S concentrations, or N and S agronomic efficiencies. DISCUSSION Importantly, S fertilization did not interfere with Se uptake in Se amended plots. In conclusion, co-application of NPKS/PKS fertilizers and foliar sodium selenate in springtime is an effective strategy to increase forage total Se concentrations, while maintaining optimal growth and quality of Oregon forages.
Collapse
Affiliation(s)
- Jean A. Hall
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | - Gerd Bobe
- Department of Animal and Rangeland Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Shelby J. Filley
- Department of Animal and Rangeland Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
| | - Mylen G. Bohle
- Department of Crop and Soil Science, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
| | - Gene J. Pirelli
- Department of Animal and Rangeland Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
| | - Guogie Wang
- Department of Crop and Soil Science, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
| | - T. Zane Davis
- United States Department of Agriculture (USDA), Agricultural Research Service-Poisonous Plant Research Lab, Logan, UT, United States
| | - Gary S. Bañuelos
- United States Department of Agriculture (USDA), Agricultural Research Service-San Joaquin Valley Agricultural Sciences Center, Parlier, CA, United States
| |
Collapse
|
6
|
Interaction between Sulfate and Selenate in Tetraploid Wheat (Triticum turgidum L.) Genotypes. Int J Mol Sci 2023; 24:ijms24065443. [PMID: 36982516 PMCID: PMC10055959 DOI: 10.3390/ijms24065443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Selenium (Se) is an essential micronutrient of fundamental importance to human health and the main Se source is from plant-derived foods. Plants mainly take up Se as selenate (SeO42−), through the root sulfate transport system, because of their chemical similarity. The aims of this study were (1) to characterize the interaction between Se and S during the root uptake process, by measuring the expression of genes coding for high-affinity sulfate transporters and (2) to explore the possibility of increasing plant capability to take up Se by modulating S availability in the growth medium. We selected different tetraploid wheat genotypes as model plants, including a modern genotype, Svevo (Triticum turgidum ssp. durum), and three ancient Khorasan wheats, Kamut, Turanicum 21, and Etrusco (Triticum turgidum ssp. turanicum). The plants were cultivated hydroponically for 20 days in the presence of two sulfate levels, adequate (S = 1.2 mM) and limiting (L = 0.06 mM), and three selenate levels (0, 10, 50 μM). Our findings clearly showed the differential expression of genes encoding the two high-affinity transporters (TdSultr1.1 and TdSultr1.3), which are involved in the primary uptake of sulfate from the rhizosphere. Interestingly, Se accumulation in shoots was higher when S was limited in the nutrient solution.
Collapse
|
7
|
Selenium Speciation in Se-Enriched Soybean Grains from Biofortified Plants Grown under Different Methods of Selenium Application. Foods 2023; 12:foods12061214. [PMID: 36981141 PMCID: PMC10048027 DOI: 10.3390/foods12061214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Since soybean is widely cultivated around the world and has a high protein content, it is a great nutritional vehicle for increasing the dietary uptake of selenium (Se). Several studies have evaluated biofortification with Se through fertilizer application in several crops. However, it is not clear how each method and source affect the total Se content or Se species in soybean grains. This work aimed to assess the total Se content and Se speciation in Se-enriched soybean grains produced under different Se application methods in the field. The treatments consisted of Se application (soil or foliar), using organic or inorganic Se sources at 10 g ha−1 or 80 g ha−1, in two genotypes. The results showed that all treatments with inorganic Se (soil and foliar) increased the Se content in grains compared with the control. More than 80% of the total Se in grains was present as selenomethionine (SeMet), and the speciation was affected by the Se source and the method of application. The treatments using inorganic Se, applied via soil or foliar, produced the highest content of Se as SeMet in soybean grains. Finally, we propose that the preservation of the Se species in products derived from soybean grains be evaluated as the following step.
Collapse
|
8
|
Silva MA, de Sousa GF, Corguinha APB, de Lima Lessa JH, Dinali GS, Oliveira C, Lopes G, Amaral D, Brown P, Guilherme LRG. Selenium biofortification of soybean genotypes in a tropical soil via Se-enriched phosphate fertilizers. FRONTIERS IN PLANT SCIENCE 2022; 13:988140. [PMID: 36186079 PMCID: PMC9517938 DOI: 10.3389/fpls.2022.988140] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/16/2022] [Indexed: 06/16/2023]
Abstract
Soybean is a major crop in Brazil and is usually grown in oxidic soils that need high rates of phosphate (P) fertilizers. Soybean is also very suitable for biofortification with Se, since its grains have high protein contents and are widely consumed worldwide (directly or indirectly). Few studies have addressed Se application under field conditions for soybean biofortification, especially in tropical soils. Here, we evaluated agronomic and physiological responses resulting from different strategies for biofortifying soybean grains with Se by applying this element via soil, using both conventional and enhanced-efficiency P fertilizers as Se carriers. The experiment was carried out at the Uva Farm, in Capão Bonito (São Paulo), Brazil. The experimental design was a randomized block split-plot design, with four fertilizer sources-conventional monoammonium phosphate (C-MAP), conventional monoammonium phosphate + Se (C-MAP + Se), enhanced-efficiency monoammonium phosphate (E-MAP), and enhanced-efficiency monoammonium phosphate + Se (E-MAP + Se), and four soybean genotypes (M5917, 58I60 LANÇA, TMG7061, and NA5909). The selenium rate applied via C-MAP + Se and E-MAP + Se was 80 g ha-1. The application of the tested fertilizers was carried out at the sowing of the 2018/2019 cropping season, with their residual effect being also assessed in the 2019/2020 cropping season. Selenium application increased grain yield for the TMG7061 genotype. For all evaluated genotypes, Se content in grains increased in the 2018/2019 harvest with the application of Se via C-MAP + Se and E-MAP + Se. In general, the application of Se via C-MAP favored an increase in amino acid contents in grains and decreased lipid peroxidation. In summary, the application of Se-enriched P fertilizers via soil increased soybean grain yield, leading to better grain quality. No residual effects for biofortifying soybean grains were detected in a subsequent soybean cropping season.
Collapse
Affiliation(s)
| | | | | | | | | | - Cynthia Oliveira
- Soil Science Department, Federal University of Lavras, Lavras, Brazil
| | - Guilherme Lopes
- Soil Science Department, Federal University of Lavras, Lavras, Brazil
| | - Douglas Amaral
- University of California, Handord—Agriculture and Natural Resources, Hanford, CA, United States
| | - Patrick Brown
- Department of Plant Science, University of California, Davis, Davis, CA, United States
| | | |
Collapse
|
9
|
Jiang T, Yu T, Qi H, Li F, Yang Z. Analysis of phosphorus and sulfur effect on soil selenium bioavailability based on diffusive gradients in thin films technique and sequential extraction. CHEMOSPHERE 2022; 302:134831. [PMID: 35523297 DOI: 10.1016/j.chemosphere.2022.134831] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
Human intake of selenium (Se) mainly occurs through the food chain, and is largely dependent on the bioavailability of soil Se. Sulfur (S) and phosphorus (P) also as essential nutrients for plants, their antagonistic with Se effects on Se bioavailability should be considered. We conducted pot experiments to investigate the interaction effect on the bioavailability of Se in the soil using a sequential extraction method and diffusive gradients in thin films (DGT). The results showed that the root and shoot Se of pak choi increased at most 340%-360% with S and P application, while the Se uptake by pak choi was slightly inhibited when S and P application was 100 mg kg-1. With high S and P application, pak choi Se had a high bioaccumulation factor (BAF) and low translocation factor (TF), and soil Soluble-Se (SOL-Se) increased 178%-299%, which due to the competitive adsorption of S, P with Se and changes in soil pH that lead to the transformation of soil Se fractions. In addition, the available Se concentration in soil measured by the DGT (CDGT-Se) increased by 866% with exogenous S and P application, and its source was HA-Se. However, CDGT-Se failed to show a good linear relationship with the Se content of pak choi. The application of DGT to assess the bioavailability of Se in soils where Se is present in the steady state needs to be further explored. We discuss the effect of S and P application on the bioavailability of soil Se and provide evidence for agricultural production and rational fertilizer use on Se-rich land.
Collapse
Affiliation(s)
- Tianyu Jiang
- School of Science, China University of Geosciences, Beijing, 100083, China
| | - Tao Yu
- School of Science, China University of Geosciences, Beijing, 100083, China; Key Laboratory of Ecogeochemistry, Ministry of Natural Resources, Beijing, 100037, China.
| | - Hongbin Qi
- School of Science, China University of Geosciences, Beijing, 100083, China
| | - Fengyan Li
- School of Science, China University of Geosciences, Beijing, 100083, China
| | - Zhongfang Yang
- School of Earth Science and Resources, China University of Geosciences, Beijing, 100083, China
| |
Collapse
|