1
|
Pan J, Cheng G, Liu M, Pan X, Ouyang Z, Lu Z, Du Y. Impact of Direct Contact and Ingestion of Selected Insecticides on the Predator Harmonia axyridis of Citrus Psyllids. INSECTS 2025; 16:126. [PMID: 40003756 PMCID: PMC11855586 DOI: 10.3390/insects16020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/17/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025]
Abstract
The Asian citrus psyllid, Diaphorina citri, serves as the primary vector for Huanglongbing (HLB) by transmitting Candidatus Liberibacter asiaticus. Lambda-cyhalothrin and thiamethoxam are commonly employed for the control of D. citri. The multicolored Asian lady beetle, or harlequin ladybird, Harmonia axyridis, is an important predator of D. citri in both greenhouse and field settings. The effectiveness of integrated pest management (IPM) relies on the judicious use of selective insecticides that minimize harm to natural enemies. However, the effects of these insecticides on H. axyridis' predation of D. citri remain thoroughly unexplored. In this study, we assessed the toxicity of lambda-cyhalothrin and thiamethoxam to H. axyridis and examined their impact on the functional response of this predator to D. citri using direct contact exposure methods. We also evaluated the indirect effects on predator voracity through ingestion exposure. Our results demonstrated that exposure to both insecticides at LC50 concentrations significantly prolonged the developmental durations of H. axyridis larval stages. The type-II functional response model effectively described the prey consumption patterns of H. axyridis, revealing a significant reduction in predation capacity across all life stages, particularly among second instar larvae, which experienced reductions of 85.30% and 88.58% following lambda-cyhalothrin and thiamethoxam treatments, respectively. Furthermore, H. axyridis' predation significantly declined when feeding on D. citri contaminated at LC50 concentrations. These findings indicate that lambda-cyhalothrin and thiamethoxam adversely affect the predation of H. axyridis, both via direct contact and ingestion. Evaluating the potential impacts of these insecticides on H. axyridis is critical for the development of effective IPM strategies targeting D. citri.
Collapse
Affiliation(s)
- Jing Pan
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (J.P.)
| | - Gaoqi Cheng
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (J.P.)
| | - Minjue Liu
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (J.P.)
| | - Xiangfeng Pan
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (J.P.)
| | - Zhigang Ouyang
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (J.P.)
- National Navel Orange Engineering Research Center, Ganzhou 341000, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Ganzhou 341000, China
| | - Zhanjun Lu
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (J.P.)
- National Navel Orange Engineering Research Center, Ganzhou 341000, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Ganzhou 341000, China
| | - Yimin Du
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (J.P.)
- National Navel Orange Engineering Research Center, Ganzhou 341000, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Ganzhou 341000, China
| |
Collapse
|
2
|
Yang SW, Zhang B, Tian Y, Peng L, Yuan GT, Chen GH, Zhang XM. Effects of injudicious use of spirotetramat on Encarsia formosa's ability to control Bemisia tabaci. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175324. [PMID: 39127202 DOI: 10.1016/j.scitotenv.2024.175324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/31/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
The excessive and frequent use of insecticides has led to serious problems with insecticide residues, impacting nontarget organisms such as the parasitoid Encarsia formosa. This study examined the growth, development, and enzyme activity of E. formosa exposed to spirotetramat at LC10, LC30, and LC50. The regression equation for the toxicity of spirotetramat toward E. formosa was Y = 5.25X-11.07. After exposure to spirotetramat, the survival rates of E. formosa sharply decreased, which occurred earlier than those in the control batch. Although the maximum daily parasitism quantity of E. formosa increased and the average parasitism number, enumerated from the 1st to the 5th day, was 53.97 after being exposed to spirotetramat at LC10, the life span of its F1 generation adults was only 8.47 days, which was significantly shorter than that in the control batch. After being exposed to spirotetramat at LC50, the average parasitism number of E. formosa was 63.30, and the developmental time of its F1 generation, enumerated from the 1st to the 5th day after exposure to spirotetramat, was significantly longer than that of the control batch. The activities of mixed function oxidase, acetylcholinesterase, carboxylesterase, and catalase increased significantly, and the rate of increase in enzyme activity was directly proportional to the increase in the concentration of spirotetramat. These results revealed that the parasitic ability of E. formosa decreased after exposure to spirotetramat at LC10, LC30, and LC50. This leads to a change in parasitoid control of pests, revealing the potential environmental threat of insecticide residues to nontarget organisms.
Collapse
Affiliation(s)
- Shao-Wu Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; Yunnan Urban Agricultural Engineering and Technological Research Center, College of Agronomy and Life Sciences, Kunming University, Kunming, China
| | - Bo Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Ye Tian
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Lu Peng
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guo-Ting Yuan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Guo-Hua Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Xiao-Ming Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
3
|
Nwanade CF, Wang M, Pei T, Meng J, Yu Z, Liu J. Toxicity and enzymatic mechanism of Citrus spp. essential oils and major constituents on Haemaphysalis longicornis (Acari: Ixodidae) and non-target Harmonia axyridis (Coleoptera: Coccinellidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106113. [PMID: 39277413 DOI: 10.1016/j.pestbp.2024.106113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/14/2024] [Accepted: 08/30/2024] [Indexed: 09/17/2024]
Abstract
Plant essential oils (EOs)-based acaricides have been recognized as environmentally-friendly alternatives to synthetic acaricides because of their low toxicity against non-target species. Despite this, there are knowledge gaps regarding the toxicity mechanisms of plant EOs against non-target species. Here, the toxicology and enzymatic mechanism of Citrus reticulata and Citrus lemon EOs were evaluated against the vector pest, Haemaphysalis longicornis, and non-target ladybird beetle, Harmonia axyridis. Both EOs were mainly composed of d-Limonene, followed by β-Myrcene and γ-Terpinene in C. reticulata, and (-)-β-Pinene and γ-Terpinene in C. lemon. Citrus reticulata and C. lemon EOs were toxic to Hae. longicornis, with 50 % lethal concentration (LC50) values estimated at 0.43 and 0.98 μL/mL via nymphal immersion test, and 42.52 and 46.38 μL/mL via spray application, respectively. Among the constituents tested, β-Myrcene was the most effective, with LC50 values of 0.17 and 47.87 μL/mL via immersion and spray treatment, respectively. A significant mortality of non-target Har. axyridis was found when treated by the EOs at concentrations two times greater than LC50 estimated against H. longicornis. The biochemical assay revealed that the EOs induced changes in the antioxidant enzyme activity of superoxide dismutases, catalase, and glutathione peroxidase in Hae. longicornis and Har. axyridis. The results demonstrated the acaricidal potential of citrus EOs and their major constituents for tick control, revealed the risk of the EOs to non-target species, and provided relevant insights into the mechanisms underlying their toxicity.
Collapse
Affiliation(s)
- Chuks Fidelis Nwanade
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Min Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Tingwei Pei
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Jianglei Meng
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhijun Yu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
4
|
Liu Q, Zhao W, Li W, Zhang F, Wang Y, Wang J, Gao Y, Liu H, Zhang L. Lipopeptides from Bacillus velezensis ZLP-101 and their mode of action against bean aphids Acyrthosiphon pisum Harris. BMC Microbiol 2024; 24:231. [PMID: 38951812 PMCID: PMC11218388 DOI: 10.1186/s12866-024-03378-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 06/17/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Natural products are important sources for the discovery of new biopesticides to control the worldwide destructive pests Acyrthosiphon pisum Harris. Here, insecticidal substances were discovered and characterized from the secondary metabolites of the bio-control microorganism Bacillus velezensis strain ZLP-101, as informed by whole-genome sequencing and analysis. RESULTS The genome was annotated, revealing the presence of four potentially novel gene clusters and eight known secondary metabolite synthetic gene clusters. Crude extracts, prepared through ammonium sulfate precipitation, were used to evaluate the effects of strain ZLP-101 on Acyrthosiphon pisum Harris aphid pests via exposure experiments. The half lethal concentration (LC50) of the crude extract from strain ZLP-101 against aphids was 411.535 mg/L. Preliminary exploration of the insecticidal mechanism revealed that the crude extract affected aphids to a greater extent through gastric poisoning than through contact. Further, the extracts affected enzymatic activities, causing holes to form in internal organs along with deformation, such that normal physiological activities could not be maintained, eventually leading to death. Isolation and purification of extracellular secondary metabolites were conducted in combination with mass spectrometry analysis to further identify the insecticidal components of the crude extracts. A total of 15 insecticidal active compounds were identified including iturins, fengycins, surfactins, and spergualins. Further insecticidal experimentation revealed that surfactin, iturin, and fengycin all exhibited certain aphidicidal activities, and the three exerted synergistic lethal effects. CONCLUSIONS This study improved the available genomic resources for B. velezensis and serves as a foundation for comprehensive studies of the insecticidal mechanism by Bacillus velezensis ZLP-101 in addition to the active components within biological control strains.
Collapse
Affiliation(s)
- Qiuyue Liu
- Institute of Biology, Hebei Academy of Science, Shijiazhuang, 050081, PR China
- Hebei Normal University, Shijiazhuang, 050024, PR China
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, PR China
| | - Wenya Zhao
- Institute of Biology, Hebei Academy of Science, Shijiazhuang, 050081, PR China
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, PR China
| | - Wenya Li
- Institute of Biology, Hebei Academy of Science, Shijiazhuang, 050081, PR China
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, PR China
| | - Feiyan Zhang
- Institute of Biology, Hebei Academy of Science, Shijiazhuang, 050081, PR China
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, PR China
| | - Yana Wang
- Institute of Biology, Hebei Academy of Science, Shijiazhuang, 050081, PR China
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, PR China
| | - Jiangping Wang
- Institute of Biology, Hebei Academy of Science, Shijiazhuang, 050081, PR China
- Hebei Normal University, Shijiazhuang, 050024, PR China
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, PR China
| | - Yumeng Gao
- Institute of Biology, Hebei Academy of Science, Shijiazhuang, 050081, PR China
- Hebei Normal University, Shijiazhuang, 050024, PR China
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, PR China
| | - Hongwei Liu
- Institute of Biology, Hebei Academy of Science, Shijiazhuang, 050081, PR China.
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, PR China.
| | - Liping Zhang
- Institute of Biology, Hebei Academy of Science, Shijiazhuang, 050081, PR China.
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, PR China.
| |
Collapse
|
5
|
Zhao SW, Pan Y, Wang Z, Wang X, Wang S, Xi JH. 1-nonene plays an important role in the response of maize-aphid-ladybird tritrophic interactions to nitrogen. FRONTIERS IN PLANT SCIENCE 2024; 14:1296915. [PMID: 38259937 PMCID: PMC10800950 DOI: 10.3389/fpls.2023.1296915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024]
Abstract
Plant volatile organic compounds (VOCs) are the key distress signals involved in tritrophic interactions, by which plants recruit predators to protect themselves from herbivores. However, the effect of nitrogen fertilization on VOCs that mediate tritrophic interactions remains largely unidentified. In this study, a maize (Zea mays)-aphid (Rhopalosiphum padi)-ladybird (Harmonia axyridis) tritrophic interaction model was constructed under high-nitrogen (HN) and low-nitrogen (LN) regimens. H. axyridis had a stronger tendency to be attracted by aphid-infested maize under HN conditions. Then, volatiles were collected and identified from maize leaves on which aphids had fed. All of the HN-induced volatiles (HNIVs) elicited an electroantennogram (EAG) response from H. axyridis. Of these HNIVs, 1-nonene was attractive to H. axyridis under simulated natural volatilization. Furthermore, our regression showed that the release of 1-nonene was positively correlated with H. axyridis visitation rates. Supplying 1-nonene to maize on which aphids had fed under LN enhanced attractiveness to H. axyridis. These results supported the conclusion that 1-nonene was the active compound that mediated the response to nitrogen in the tritrophic interaction. In addition, the 1-nonene synthesis pathway was hypothesized, and we found that the release of 1-nonene might be related to the presence of salicylic acid (SA) and abscisic acid (ABA). This research contributes to the development of novel environmentally friendly strategies to optimize nitrogen fertilizer application and to improve pest control in maize crops.
Collapse
Affiliation(s)
- Shi-Wen Zhao
- College of Plant Science, Jilin University, Changchun, China
| | - Yu Pan
- College of Plant Science, Jilin University, Changchun, China
| | - Zhun Wang
- Plant Quarantine Laboratory, Changchun Customs Technology Center, Changchun, China
| | - Xiao Wang
- College of Plant Science, Jilin University, Changchun, China
| | - Shang Wang
- College of Plant Science, Jilin University, Changchun, China
| | - Jing-Hui Xi
- College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
6
|
Li T, Yuan L, Huang Y, Zhang A, Jiang D, Yan S. Assessment of cytisine as an insecticide candidate for Hyphantria cunea management: Toxicological, biochemical, and control potential insights. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105638. [PMID: 37945268 DOI: 10.1016/j.pestbp.2023.105638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 11/12/2023]
Abstract
In the present study, the toxicological effects of cytisine on the H. cunea larvae were investigated, and the potential of cytisine as a botanical insecticide through field simulation experiments was evaluated. The results showed that cytisine treatment (0.25-2.5%) exerted significant biotoxic effects on the H. cunea larvae, including diminished weight, disruption of both positive (HcCKS1, HcPLK, HcCCNA) and negative (HcGADD and HcCDKN) regulatory genes associated with larval growth, increased mortality, and heightened oxidative damage (H2O2 and MDA). Cytisine treatment significantly reduced glucose content and inhibited the expression of key rate-limiting enzyme genes (HcPFK, HcPK, HcHK1, HcCS, and HcIDH2) within glycolysis and the tricarboxylic acid cycle pathways. Under cytisine treatment, detoxification enzyme activities (CarE and GST) and expression of detoxification genes (HcCarE1, HcCarE2, HcCarE3, HcGST1, and HcGST3) were inhibited in H. cunea larvae. An increased contents of SOD, CAT, ASA and T-AOC, as well as expression of antioxidant enzyme genes HcSOD1 and HcCAT2, was found in cytisine-treated H. cunea larvae. Simultaneously, this is accompanied by a significant reduction in the expression of four antioxidant enzyme genes (e.g., HcPOD1 and HcPOD2). In the field experiment, a cytisine aqueous solution (25 g/L) with pre-sprayed and directly sprayed ways demonstrated potent insecticidal activity against H. cunea larvae, achieving a mortality rate of 53.75% and 100% at 24 h, respectively. Taken together, cytisine has significantly weight inhibition and lethal toxicity on the H. cunea larvae, and can be developed as a botanical insecticide for H. cunea control.
Collapse
Affiliation(s)
- Tao Li
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Lisha Yuan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Yi Huang
- Heilongjiang Forestry Vocational Technical College, Mudanjiang 157011, PR China
| | - Aoying Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Dun Jiang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| | - Shanchun Yan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
7
|
Zhang L, Zhao H, Yang Y, Ge Y, Shi W. Effects of Nutritional Composition of Different Prey Eggs on Development and Reproduction of the Predatory Bug, Orius sauteri (Hemiptera: Anthocoridae). JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1869-1876. [PMID: 36240118 DOI: 10.1093/jee/toac159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 06/16/2023]
Abstract
Orius sauteri (Poppius) is an important predator of many economically important insect pests. The mass rearing of O. sauteri is difficult, limiting its application in pest control. Here we assessed the nutritional quality of eggs of Sitotroga cerealella (Olivier), Agrotis ypsilon (Rottemberg), or Spodoptera litura (Fabricius), and their potential for rearing O. sauteri in the laboratory for two generations. Of species tested, S. cerealella eggs resulted in the highest survival and reproduction of O. sauteri compared to the other two lepidopteran species. Eggs of A. ypsilon were a suitable diet for the nymphal stage, which developed faster on A. ysilon eggs than those of S. cerealella eggs. Conversely, eggs of S. litura were not a suitable diet for O. sauteri, and they disrupted the development and reproduction of O. sauteri. Sitotroga cerealella eggs showed advantages in all the nutritional components evaluated. Orius sauteri fed S. litura eggs contained significantly lower protein levels than those fed on the other eggs tested. Spodoptera litura eggs significantly enhanced the CAT activity in O. sauteri, which suggests that some components from S. litura eggs harmed the development and reproduction of O. sauteri. Based on these results, we suggest using a combined diet for mass rearing of the pirate bug, feeding the nymphs and adults with A. ypsilon eggs and S. cerealella eggs, respectively. This study contributes to the discovery of artificial diets for mass rearing O. sauteri and other Orius species in the future.
Collapse
Affiliation(s)
- Liu Zhang
- Department of Entomology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Hongyan Zhao
- Department of Entomology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yuxi Yang
- Department of Entomology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yang Ge
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, State Key Laboratory Breeding Base of Dao-di Herbs, Beijing 100700, China
| | - Wangpeng Shi
- Department of Entomology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572019, China
| |
Collapse
|
8
|
Hu ZJ, Yang JW, Chen ZH, Chang C, Ma YP, Li N, Deng M, Mao GL, Bao Q, Deng SZ, Liu H. Exploration of Clove Bud ( Syzygium aromaticum) Essential Oil as a Novel Attractant against Bactrocera dorsalis (Hendel) and Its Safety Evaluation. INSECTS 2022; 13:918. [PMID: 36292866 PMCID: PMC9603929 DOI: 10.3390/insects13100918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The oriental fruit fly Bactrocera dorsalis (Hendel) is a destructive polyphagous species that targets many economically important fruits and vegetables. The primary control of B. dorsalis relies mainly on the use of synthetic chemicals, and excessive use of these chemicals has adverse effects on both the environment and human health. Environmentally friendly management of pests involving plant essential oils is useful for controlling the populations of pests responsible for decreasing the yields and quality of crops. In the present study, we demonstrate that clove bud essential oil (CBEO) is strongly attractive to sexually mature males. Mature males responded to the CBEO differently throughout the day; the strongest response was elicited during the day and decreased at dusk. Virgin and mated mature males did not respond differently to CBEO. No obvious response behaviour to the CBEO was observed in two species of beneficial natural predator ladybirds. In addition, a cytotoxicity assessment demonstrated that CBEO is nontoxic to normal human and mouse cells. Based on our laboratory experiments, CBEO may serve as a promising, sustainable, and environmentally friendly attractant for B. dorsalis males; however, field experiments are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Zhen-Jie Hu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Jing-Wei Yang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Zi-Han Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Cheng Chang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Yu-Pei Ma
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Nan Li
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Meng Deng
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Gen-Lin Mao
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China
| | - Qiang Bao
- Hunan Provincial Tea Research Institute, Hunan Provincial Academy of Agricultural Sciences, Changsha 410125, China
| | - Shu-Zhen Deng
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Huan Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China
| |
Collapse
|
9
|
Sun R, Xu Y, Liu J, Yang L, Cui G, Zhong G, Yi X. Proteomic profiling for ovarian development and azadirachtin exposure in Spodoptera litura during metamorphosis from pupae to adults. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113548. [PMID: 35487172 DOI: 10.1016/j.ecoenv.2022.113548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Azadirachtin is one of the most successful botanical pesticides in agricultural pest control. To build a repertoire of proteins and pathways in response to azadirachtin exposure during ovarian development, iTRAQ-based comparative proteomic was conducted. 1423 and 1686 proteins were identified as differentially accumulated proteins (DAPs) by comparing the protein abundance in adult ovary with that in pupal ovary under normal and azadirachtin exposure condition, respectively. Bioinformatics analysis indicated that pupae-to-adult transition requires proteins related to proteasome and branched chain amino acids (BCAAs) degradation for ovary development. Azadirachtin exposure strongly affected glycosylation-related pathway. And proteins related to vitamin B6 synthesis were necessary for ovary development under normal and AZA-exposure condition. RNAi assays confirmed the essential roles of DAPs related to glycosylation and vitamin B6 synthesis in moth growth and ovary development. The results enhance our understanding of the molecular regulatory network for ovary development and provide valuable resources for using AZA-responsive proteins to develop novel bio-rational insecticides.
Collapse
Affiliation(s)
- Ranran Sun
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.
| | - Yuanhao Xu
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.
| | - Jin Liu
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.
| | - Liying Yang
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.
| | - Gaofeng Cui
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.
| | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.
| | - Xin Yi
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
10
|
Zhao K, Wu H, Hou R, Wu J, Wang Y, Huang S, Cheng D, Xu H, Zhang Z. Effects of sublethal azadirachtin on the immune response and midgut microbiome of Apis cerana cerana (Hymenoptera: Apidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113089. [PMID: 34929506 DOI: 10.1016/j.ecoenv.2021.113089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
As a wildly used plant-derived insecticide, azadirachtin (AZA) is commonly reported as harmless to a range of beneficial insects. However, with the research on the effect of AZA against pollinators in recent years, various negative physiological effects on other Apidae species have been demonstrated. Thus to explore the safety of azadirachtin to Apis cerana cerana, the different physiological effects of sublethal concentration of azadirachtin on worker bees A.c.cerana has been studied. With the exposure of 5 mg·L-1 and 10 mg·L-1 azadirachtin for 5 d, the relative expression of Apidaecin, Abaecin and Lysosome genes in workers has decreased significantly at 1, 2,3 and 5 d, and the mRNA levels of Defensin 2 and Hymenoptaecin were also significantly inhibited by 10 mg·L-1 azadirachtin at each check point. Besides, the activity of midgut antioxidant enzymes Superoxide Dismutase (SOD) and Catalase (CAT) which are the first line of defence in antioxidant systems was not affected by AZA, the activity of Peroxidase (POD) showed a fluctuating pattern at 24 h and 48 h, while the activity of polyphenol oxidase (PPO) has significantly inhibited by AZA. However, through 16sRNA analysis it was observed that 5 mg·L-1 AZA did not affect the midgut microbiome colony composition and relative abundance, as well as its main function. Therefore, to a certain extent, azadirachtin is safe for workers, but we should pay more attention to the sublethal effect of AZA that also detrimental to the healthy development of the honeybee colony.
Collapse
Affiliation(s)
- Kunyu Zhao
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Hao Wu
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Ruiquan Hou
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Jiyingzi Wu
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Yongqing Wang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Suqing Huang
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Dongmei Cheng
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Hanhong Xu
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China.
| | - Zhixiang Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
11
|
Li C, Yuan W, Gou Y, Zhang K, Zhang Q, Zhou JJ, Liu C. The Impact of Ultraviolet-B Radiation on the Sugar Contents and Protective Enzymes in Acyrthosiphon pisum. INSECTS 2021; 12:1053. [PMID: 34940141 PMCID: PMC8708437 DOI: 10.3390/insects12121053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022]
Abstract
Natural and anthropogenic changes have been altering many environmental factors. These include the amount of solar radiation reaching the Earth's surface. However, the effects of solar radiation on insect physiology have received little attention. As a pest for agriculture and horticulture, aphids are one of the most difficult pest groups to control due to their small size, high fecundity, and non-sexual reproduction. Study of the effects of UV-B radiation on aphid physiology may provide alternative control strategies in pest management. In this study, we examined the effects of UV-B radiation on protein and sugar contents, as well as the activities of protective enzymes, of the red and green morphs of the pea aphid over eight generations. The results indicated a significant interaction between UV-B radiation and aphid generations. Exposure of the pea aphids to UV-B radiation caused a significant decrease in the protein content and a significant increase in the glycogen and trehalose contents at each generation as measured in whole aphid bioassays. The enzyme activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) of the pea aphids changed significantly at each generation with UV-B treatments. The SOD activity increased over eight generations to the highest level at G7 generation. However, the enzyme activity of CAT first increased and then decreased with UV-B treatments, and POD mostly gradually decreased over the eight generations. Therefore, UV-B radiation is an environmental factor that could result in physiological changes of the pea aphid. Moreover, our study discovered that red and green aphids did not display a significant consistent difference in the response to the UV-B treatments. These results may prove useful in future studies especially for assessing their significance in the adaptation and management against UV-B radiation.
Collapse
Affiliation(s)
- Chunchun Li
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (C.L.); (W.Y.); (Y.G.); (K.Z.); (Q.Z.); (J.-J.Z.)
| | - Weining Yuan
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (C.L.); (W.Y.); (Y.G.); (K.Z.); (Q.Z.); (J.-J.Z.)
| | - Yuping Gou
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (C.L.); (W.Y.); (Y.G.); (K.Z.); (Q.Z.); (J.-J.Z.)
| | - Kexin Zhang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (C.L.); (W.Y.); (Y.G.); (K.Z.); (Q.Z.); (J.-J.Z.)
| | - Qiangyan Zhang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (C.L.); (W.Y.); (Y.G.); (K.Z.); (Q.Z.); (J.-J.Z.)
| | - Jing-Jiang Zhou
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (C.L.); (W.Y.); (Y.G.); (K.Z.); (Q.Z.); (J.-J.Z.)
- State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Changzhong Liu
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (C.L.); (W.Y.); (Y.G.); (K.Z.); (Q.Z.); (J.-J.Z.)
| |
Collapse
|
12
|
Wu YM, Yang XQ, Zhao TD, Shi WZ, Sun LJ, Cen RH, Yang YB, Ding ZT. Antifeedant and Antifungal Activities of Metabolites Isolated from the Coculture of Endophytic Fungus Aspergillus tubingensis S1120 with Red Ginseng. Chem Biodivers 2021; 19:e202100608. [PMID: 34786852 DOI: 10.1002/cbdv.202100608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/16/2021] [Indexed: 11/06/2022]
Abstract
A new globoscinic acid derivative, aspertubin A (1) along with four known compounds, were obtained from the co-culture of Aspergillus tubingensis S1120 with red ginseng. The chemical structures of compounds were characterized by using spectroscopic methods, the calculated and experimental electronic circular dichroism. Panaxytriol (2) from red ginseng, and asperic acid (4) showed significant antifeedant effect with the antifeedant rates of 75 % and 80 % at the concentrations of 50 μg/cm2 . Monomeric carviolin (3) and asperazine (5) displayed weak attractant activity on silkworm. All compounds were assayed for antifungal activities against phytopathogens A. tubingensis, Nigrospora oryzae and Phoma herbarum and the results indicated that autotoxic aspertubin A (1) and panaxytriol (2) possessed selective inhibition against A. tubingensis with MIC values at 8 μg/mL. The co-culture extract showed higher antifeedant and antifungal activities against P. herbarum than those of monoculture of A. tubingensis in ordinary medium. So the medicinal plant and endophyte showed synergistic effect on the plant disease resistance by active compounds from the coculture of A. tubingensis S1120 and red ginseng.
Collapse
Affiliation(s)
- Ya-Mei Wu
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, 2nd Cuihu North Road, Kunming, 650091, P. R. China
| | - Xue-Qiong Yang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, 2nd Cuihu North Road, Kunming, 650091, P. R. China
| | - Tong-De Zhao
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, 2nd Cuihu North Road, Kunming, 650091, P. R. China
| | - Wen-Zhi Shi
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, 2nd Cuihu North Road, Kunming, 650091, P. R. China
| | - Li-Jingfei Sun
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, 2nd Cuihu North Road, Kunming, 650091, P. R. China
| | - Rong-Huan Cen
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, 2nd Cuihu North Road, Kunming, 650091, P. R. China
| | - Ya-Bin Yang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, 2nd Cuihu North Road, Kunming, 650091, P. R. China
| | - Zhong-Tao Ding
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, 2nd Cuihu North Road, Kunming, 650091, P. R. China.,College of Pharmacy, Dali University, Dali, 671003, P. R. China
| |
Collapse
|
13
|
Qasim M, Xiao H, He K, Omar MAA, Hussain D, Noman A, Rizwan M, Khan KA, Al-Zoubi OM, Alharbi SA, Wang L, Li F. Host-pathogen interaction between Asian citrus psyllid and entomopathogenic fungus (Cordyceps fumosorosea) is regulated by modulations in gene expression, enzymatic activity and HLB-bacterial population of the host. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109112. [PMID: 34153507 DOI: 10.1016/j.cbpc.2021.109112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 12/15/2022]
Abstract
The host-pathogen interaction has been explored by several investigations, but the impact of fungal pathogens against insect resistance is still ambiguous. Therefore, we assessed the enzymatic activity and defense-related gene expression of Asian citrus psyllid (ACP) nymphal and adult populations on Huanglongbing-diseased citrus plants under the attack of Cordyceps fumosorosea. Overall, five enzymes viz. superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutathione S-transferase (GST), carboxylesterase (CarE), and four genes, namely SOD, 16S, CYP4C68, CYP4BD1, were selected for respective observations from ACP populations. Enzymatic activity of four enzymes (SOD, POD, GST, CarE) was significantly decreased after 5-days post-treatment (dpt) and 3-dpt fungal exposure in fungal treated ACP adult and nymphal populations, respectively, whereas the activity of CAT was boosted substantially post-treatment time schedule. Besides, we recorded drastic fluctuations in the expression of CYP4 genes among fungal treated ACP populations. After 24 hours post-treatment (hpt), expression of both CYP4 genes was boosted in fungal treated populations than controlled populations (adult and nymph). After 3-dpt, however, the expression of CYP4 genes was declined in the given populations. Likewise, fungal attack deteriorated the resistance of adult and nymphal of ACP population, as SOD expression was down-regulated in fungal-treated adult and nymphs after 5-dpt and 3-dpt exposure, respectively. Moreover, bacterial expression via the 16S gene was significantly increased in fungal-treated adult and nymphal ACP populations with increasing post-treatment time. Overall, our data illustrate that the fungal application disrupted the insect defense system. The expression of these genes and enzymes suppress the immune function of adult and nymphal ACP populations. As it is reported first time that the applications of C. fumosorosea against ACP reduce insect resistance by interfering with the CYP4 and SOD system. Therefore, we propose new strategies to discover the role of certain toxic compounds from fungus, which can reduce insect resistance, focusing on resistance-related genes and enzymes.
Collapse
Affiliation(s)
- Muhammad Qasim
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Huamei Xiao
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Crop Growth and Development Regulation of Jiangxi Province, College of Life Sciences and Resource Environment, Yichun University, Yichun 336000, PR China
| | - Kang He
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China
| | - Mohamed A A Omar
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China
| | - Dilbar Hussain
- Entomological Research Institute, Ayub Agricultural Research Institute, Faisalabad 38850, Pakistan
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad 38040, Pakistan
| | - Muhammad Rizwan
- Department of Entomology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Khalid Ali Khan
- Research Center for Advanced Materials Science (RCAMS), Unit of Bee Research and Honey Production, Biology Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | | | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O Box 2455, Riyadh 11451, Saudi Arabia
| | - Liande Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Fei Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
14
|
Dai C, Ricupero M, Wang Z, Desneux N, Biondi A, Lu Y. Transgenerational Effects of a Neonicotinoid and a Novel Sulfoximine Insecticide on the Harlequin Ladybird. INSECTS 2021; 12:681. [PMID: 34442247 PMCID: PMC8396657 DOI: 10.3390/insects12080681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022]
Abstract
The harlequin ladybird, Harmonia axyridis Pallas (Coleoptera: Coccinellidae), is a generalist predator and an effective biocontrol agent of various insect pests that has been exploited for the control of aphid pests in the greenhouse and field. However, insecticides are widely used to control aphid pests worldwide and the potential non-target effects of sulfoxaflor and imidacloprid for controlling aphid pests towards this biocontrol agent are little known. Although both sulfoxaflor and imidacloprid act on nicotinic acetylcholine receptors of insects, sulfoxaflor has a novel chemical structure compared with neonicotinoids. We assessed the lethal, sublethal and transgenerational effects of sulfoxaflor and imidacloprid on H. axyridis simultaneously exposed via ingestion of contaminated prey and via residual contact on the host plant at LC20 and LC50 doses estimated for the cotton aphid. Imidacloprid significantly reduced the survival of H. axyridis adults compared to sulfoxaflor at the same lethal concentration against cotton aphid. Both concentrations of imidacloprid and sulfoxaflor reduced the proportion of ovipositing females, and both concentrations of imidacloprid and sulfoxaflor, except LC20 dose of sulfoxaflor, reduced the fecundity and fertility of the parental generation. In the progeny of imidacloprid- and sulfoxaflor-exposed parents, both tested LC50 concentrations significantly decreased the juvenile survival rate, and both concentrations of imidacloprid and sulfoxaflor, except LC20 dose of sulfoxaflor, prolonged the development time. Our findings provide evidence of the negative influence of imidacloprid and sulfoxaflor at low lethal concentrations on the harlequin ladybird and on the progeny of exposed individuals, i.e., transgenerational effects. Hence, these findings stress the importance of optimizing the applications of imidacloprid and sulfoxaflor for the control of aphid pests, aiming at preserving the biocontrol services provided by H. axyridis throughout the integrated pest management approach.
Collapse
Affiliation(s)
- Changchun Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Department of Plant Protection, College of Agriculture, Northeast Agricultural University, Harbin 150030, China;
- Langfang Experimental Station of the Chinese Academy of Agricultural Sciences, Langfang 065005, China
| | - Michele Ricupero
- Department of Agriculture Food and Environment, University of Catania, 95123 Catania, Italy; (M.R.); (A.B.)
| | - Zequn Wang
- Department of Plant Protection, College of Agriculture, Northeast Agricultural University, Harbin 150030, China;
| | - Nicolas Desneux
- Université Côte d’Azur, INRAE, CNRS, UMR ISA, 06000 Nice, France;
| | - Antonio Biondi
- Department of Agriculture Food and Environment, University of Catania, 95123 Catania, Italy; (M.R.); (A.B.)
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| |
Collapse
|
15
|
Functional response of Harmonia axyridis preying on Acyrthosiphon pisum nymphs: the effect of temperature. Sci Rep 2021; 11:13565. [PMID: 34193927 PMCID: PMC8245531 DOI: 10.1038/s41598-021-92954-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/11/2021] [Indexed: 11/08/2022] Open
Abstract
In the current study, we investigated the functional response of Harmonia axyridis adults and larvae foraging on Acyrthosiphon pisum nymphs at temperatures between 15 and 35 °C. Logistic regression and Roger’s random predator models were employed to determine the type and parameters of the functional response. Harmonia axyridis larvae and adults exhibited Type II functional responses to A. pisum, and warming increased both the predation activity and host aphid control mortality. Female and 4th instar H. axyridis consumed the most aphids. For fourth instar larvae and female H. axyridis adults, the successful attack rates were 0.23 ± 0.014 h−1 and 0.25 ± 0.015 h−1; the handling times were 0.13 ± 0.005 h and 0.16 ± 0.004 h; and the estimated maximum predation rates were 181.28 ± 14.54 and 153.85 ± 4.06, respectively. These findings accentuate the high performance of 4th instar and female H. axyridis and the role of temperature in their efficiency. Further, we discussed such temperature-driven shifts in predation and prey mortality concerning prey-predator foraging interactions towards biological control.
Collapse
|