1
|
Yu P, Tang X, Chen B, Chen Z, Cui W, Xing Y, Li Y, Zhang F, Barroso JB, Rodriguez LG, Yao Y, Gao Y. The melatonin synthase-encoding gene ASMT mediates poplar resistance to drought stress and fungi Dothiorella gregaria. Gene 2025; 937:149154. [PMID: 39647802 DOI: 10.1016/j.gene.2024.149154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/27/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
In recent years, the increase in extreme climates, such as persistent high temperatures and drought, has adversely affected the growth and development of fast-growing trees. Melatonin (MT) plays an important role in plant responses to biotic and abiotic stresses, yet there is a lack of research on the specific role of limiting enzyme genes for MT biosynthesis in fast-growing woody plants. In this study, we investigated the function of PtoASMT, a key rate-limiting enzyme encoding gene for MT biosynthesis, which can be induced by drought, salt, and the phytohormones ABA, SA and JA. Our results show that: (1) PtoASMT was widely expressed in all tissues of poplar, but was highly expressed in petioles, moderately expressed in roots, stems, shoots and young leaves, exhibiting a typical diurnal expression rhythm in leaves, with the encoded protein localized on chloroplasts; (2) the content of MT was significantly promoted in overexpressing PtoASMT transgenic poplar plants, but there were no obvious differences in their growth and development; (3) overexpressing PtoASMT plants exhibited stronger drought tolerance, accumulating less reactive oxygen species (ROS) under drought stress relative to wild-type plants, whereas knockout PtoASMT plants were more sensitive and accumulated more ROS; (4) overexpressing PtoASMT plants were more resistant to fungi Dothiorella gregaria than WT plants, while knockout plants showed higher sensitivity; meanwhile, the expression of disease resistance-related genes (PRs and JAZ10) was significantly altered. We conclude that PtoASMT enhances the resistance of poplar to drought and Dothiorella gregaria by mediating MT biosynthesis in poplar. These findings contribute to a better understanding the role of ASMT gene in MT accumulation and stress resistance in poplar.
Collapse
Affiliation(s)
- Peizhi Yu
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Xia Tang
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Banglan Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Zihao Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Wenli Cui
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Yuhang Xing
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Ying Li
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Fangfang Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Faculty of Experimental Sciences, University Institute of Research in Olive Groves and Olive Oils, University of Jaén, E-23071 Jaén, Spain
| | - Lucas Gutierrez Rodriguez
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Yinan Yao
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China.
| | - Yongfeng Gao
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China.
| |
Collapse
|
2
|
Jiang W, Jiang P, You S, Qiu H, Liu J, Zhang X, Chen M. Mechanisms of manganese uptake and long-distance transport in the hyperaccumulator Celosia argentea Linn. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117514. [PMID: 39667325 DOI: 10.1016/j.ecoenv.2024.117514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/01/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
Celosia argentea Linn. is a hyperaccumulator for the remediation of manganese (Mn)-contaminated soil owing to its rapid growth, high decontamination capacity, and strong stress resistance. However, little is known about the processes involved in long-distance transport of Mn in hyperaccumulators. In this study, synchrotron-based micro X-ray fluorescence (μ-XRF) imaging showed that root tips and root hairs may be the focal sites for root uptake of Mn. Furthermore, the high Mn intensity in the vascular bundles (xylem and phloem) of stems and petioles indicates that the xylem and phloem play crucial roles in Mn transport from roots to leaves. High concentrations of Mn and three organic acids (oxalic, citric, and malic) were detected in the xylem sap under Mn treatment, and Mn may be chelated with them in the xylem for transport from the root to the shoot. Additionally, rooting and leaf-sourcing experiments confirmed that accumulated Mn in mature leaves could be re-transported via the phloem. However, the majority of Mn exported from mature leaves was translocated upward to the shoots (approximately 96 %), and only 4 % was translocated to the roots. These results provide new insights into the mechanisms of long-distance transport of Mn in plants.
Collapse
Affiliation(s)
- Wenxuan Jiang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China.
| | - Pingping Jiang
- College of Earth Sciences, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China.
| | - Shaohong You
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China; Guangxi Science and Technology Normal University, Laibin 546199, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Gulin University of Technology, Guilin, Guangxi 541004, China.
| | - Hui Qiu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China.
| | - Jie Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China.
| | - Xuehong Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China.
| | - Mouyixing Chen
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
3
|
Jiang M, Wang M, Zhang X, Zhang Z, Sha J, Wan J, Wei L, Wang R, Wang W, Wang W, Hu Z, Leng P, He X. Genome-wide identification of metal tolerance protein genes in Quercus dentata and their roles in response to various heavy metal stresses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116942. [PMID: 39216217 DOI: 10.1016/j.ecoenv.2024.116942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Metal tolerance protein (MTP) is a cation transporter that plays an important role in tolerance to heavy metal stress. However, thus far, there has been no genome-wide investigation of the MTP gene family in Quercus plants. Quercus dentata is one of the main constructive species of forest in northern China. It has strong tolerance to a variety of heavy metal stresses. In this study, 25 MTPs were identified from the Q. dentata genome and classified into three subfamilies and seven groups according to their sequence characteristics and phylogenetic relationships. Both tandem and segmental duplication events contributed to the expansion of the QdMTP gene family. Interestingly, all 10 tandem duplication events contributed to the expansion of the Mn-CDF subfamily. The expression of Mn-CDF subfamily members in different organs and tissues of Q. dentata was different, and they responded differently to manganese, iron, zinc and cadmium stress treatments. QdMTP10.7, a member of the Mn-CDF subfamily, enhanced yeast growth under manganese, zinc and iron stresses. The subcellular localization in tobacco leaf epidermis cells showed that QdMTP10.7 was located in vacuoles. These data generated from this study provide an important foundation to elucidate the biological roles of QdMTP genes related to heavy metal tolerance in Q. dentata.
Collapse
Affiliation(s)
- Meng Jiang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China.
| | - Meijia Wang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China.
| | - Xuejiao Zhang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China.
| | - Zhen Zhang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China.
| | - Jingjing Sha
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China.
| | - Junyi Wan
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China.
| | - Liyi Wei
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China.
| | - Rui Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China.
| | - Wenbo Wang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China.
| | - Wenhe Wang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China.
| | - Zenghui Hu
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China.
| | - Pingsheng Leng
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China.
| | - Xiangfeng He
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
4
|
Gao Y, Chen Z, Feng Q, Long T, Ding J, Shu P, Deng H, Yu P, Tan W, Liu S, Rodriguez LG, Wang L, Resco de Dios V, Yao Y. ELONGATED HYPOCOTYL 5a modulates FLOWERING LOCUS T2 and gibberellin levels to control dormancy and bud break in poplar. THE PLANT CELL 2024; 36:1963-1984. [PMID: 38271284 PMCID: PMC11062467 DOI: 10.1093/plcell/koae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/15/2023] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
Photoperiod is a crucial environmental cue for phenological responses, including growth cessation and winter dormancy in perennial woody plants. Two regulatory modules within the photoperiod pathway explain bud dormancy induction in poplar (Populus spp.): the circadian oscillator LATE ELONGATED HYPOCOTYL 2 (LHY2) and GIGANTEA-like genes (GIs) both regulate the key target for winter dormancy induction FLOWERING LOCUS T2 (FT2). However, modification of LHY2 and GIs cannot completely prevent growth cessation and bud set under short-day (SD) conditions, indicating that additional regulatory modules are likely involved. We identified PtoHY5a, an orthologs of the photomorphogenesis regulatory factor ELONGATED HYPOCOTYL 5 (HY5) in poplar (Populus tomentosa), that directly activates PtoFT2 expression and represses the circadian oscillation of LHY2, indirectly activating PtoFT2 expression. Thus, PtoHY5a suppresses SD-induced growth cessation and bud set. Accordingly, PtoHY5a knockout facilitates dormancy induction. PtoHY5a also inhibits bud-break in poplar by controlling gibberellic acid (GA) levels in apical buds. Additionally, PtoHY5a regulates the photoperiodic control of seasonal growth downstream of phytochrome PHYB2. Thus, PtoHY5a modulates seasonal growth in poplar by regulating the PtoPHYB2-PtoHY5a-PtoFT2 module to determine the onset of winter dormancy, and by fine-tuning GA levels to control bud-break.
Collapse
Affiliation(s)
- Yongfeng Gao
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Zihao Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Qian Feng
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Tao Long
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Jihua Ding
- College of Horticulture and Forestry, Huazhong Agricultural University, 430070 Wuhan, China
| | - Peng Shu
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, 400037 Chongqing, China
| | - Heng Deng
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Peizhi Yu
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Wenrong Tan
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Siqin Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Lucas Gutierrez Rodriguez
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Lijun Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Víctor Resco de Dios
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Yinan Yao
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| |
Collapse
|
5
|
Long T, Yang F, Chen Z, Xing Y, Tang X, Chen B, Cui W, Rodriguez LG, Wang L, Gao Y, Yao Y. Overexpression of PtoMYB99 diminishes poplar tolerance to osmotic stress by suppressing ABA and JA biosynthesis. JOURNAL OF PLANT PHYSIOLOGY 2024; 292:154149. [PMID: 38064888 DOI: 10.1016/j.jplph.2023.154149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/09/2023] [Accepted: 11/28/2023] [Indexed: 02/10/2024]
Abstract
Drought poses a serious challenge to sustained plant growth and crop yields in the context of global climate change. Drought tolerance in poplars and their underlying mechanisms still remain largely unknown. In this article, we investigated the overexpression of PtoMYB99 - both a drought and abscisic acid (ABA) induced gene constraining drought tolerance in poplars (as compared with wild type poplars). First, we found that PtoMYB99-OE lines exhibited increased stomatal opening and conductance, higher transpiration and photosynthetic rates, as well as reduced levels of ABA and jasmonic acid (JA). Second, PtoMYB99-OE lines accumulated more reactive oxygen species (ROS), including H2O2 and O2-, as well as malonaldehyde (MDA), proline, and soluble sugar under osmotic stress; conversely, the activity of antioxidant enzymes (SOD, POD, and CAT), was weakened in the PtoMYB99-OE lines. Third, the expression of ABA biosynthetic genes, PtoNCED3.1 and PtoNCED3.2, as well as JA biosynthetic genes, PtoOPR3.1 and PtoOPR3.2, was significantly reduced in the PtoMYB99-OE lines under both normal conditions and osmotic stress. Based on our results, we conclude that the overexpression of PtoMYB99 compromises tolerance to osmotic stress in poplar. These findings contribute to the understanding of the role of the MYB genes in drought stress and the biosynthesis of ABA and JA.
Collapse
Affiliation(s)
- Tao Long
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, China
| | - Fengming Yang
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, China
| | - Zihao Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, China
| | - Yuhang Xing
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, China
| | - Xia Tang
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, China
| | - Banglan Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, China
| | - Wenli Cui
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, China
| | - Lucas Gutierrez Rodriguez
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, China
| | - Lijun Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, China
| | - Yongfeng Gao
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, China.
| | - Yinan Yao
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, China.
| |
Collapse
|
6
|
Feng S, Hou K, Zhang H, Chen C, Huang J, Wu Q, Zhang Z, Gao Y, Wu X, Wang H, Shen C. Investigation of the role of TmMYB16/123 and their targets (TmMTP1/11) in the tolerance of Taxus media to cadmium. TREE PHYSIOLOGY 2023; 43:1009-1022. [PMID: 36808461 DOI: 10.1093/treephys/tpad019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 02/13/2023] [Indexed: 06/11/2023]
Abstract
The toxicity and stress caused by heavy metal contamination has become an important constraint to the growth and flourishing of trees. In particular, species belonging to the genus Taxus, which are the only natural source for the anti-tumor medicine paclitaxel, are known to be highly sensitive to environmental changes. To investigate the response of Taxus spp. to heavy metal stress, we analyzed the transcriptomic profiles of Taxus media trees exposed to cadmium (Cd2+). In total, six putative genes from the metal tolerance protein (MTP) family were identified in T. media, including two Cd2+ stress inducible TMP genes (TmMTP1, TmMTP11 and Taxus media). Secondary structure analyses predicted that TmMTP1 and TmMTP11, which are members of the Zn-CDF and Mn-CDF subfamily proteins, respectively, contained six and four classic transmembrane domains, respectively. The introduction of TmMTP1/11 into the ∆ycf1 yeast cadmium-sensitive mutant strain showed that TmMTP1/11 might regulate the accumulation of Cd2+ to yeast cells. To screen the upstream regulators, partial promoter sequences of the TmMTP1/11 genes were isolated using the chromosome walking method. Several myeloblastosis (MYB) recognition elements were identified in the promoters of these genes. Furthermore, two Cd2+-induced R2R3-MYB TFs, TmMYB16 and TmMYB123, were identified. Both in vitro and in vivo assays confirmed that TmMTB16/123 play a role in Cd2+ tolerance by activating and repressing the expression of TmMTP1/11 genes. The present study elucidated new regulatory mechanisms underlying the response to Cd stress and can contribute to the breeding of Taxus species with high environmental adaptability.
Collapse
Affiliation(s)
- Shangguo Feng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Kailin Hou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Hongshan Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Cheng Chen
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiefang Huang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Qicong Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhenhao Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Yadi Gao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaomei Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
7
|
Chen Z, Peng Z, Liu S, Leng H, Luo J, Wang F, Yi Y, Resco de Dios V, Lucas GR, Yao Y, Gao Y. Overexpression of PeNAC122 gene promotes wood formation and tolerance to osmotic stress in poplars. PHYSIOLOGIA PLANTARUM 2022; 174:e13751. [PMID: 36004736 DOI: 10.1111/ppl.13751] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/28/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Finding the adequate balance between wood formation and abiotic stress resistance is still an important challenge for industrial woody crops. In this study, PeNAC122, a member of the NAC transcription factor (TF) family highly expressed in xylem, was cloned from Populus euphratica. Tissue expression and β-glucuronidase (GUS) staining showed that PeNAC122 was exclusively expressed in phloem fiber and secondary xylem of stems. Subcellular and yeast transactivation assays confirmed that PeNAC122 protein existed in the nucleus and did not have transcriptional activation and inhibitory activity. Overexpression of PeNAC122 poplar lines exhibited reduced plant height, thickened xylem, and accumulated lignin content in stems, and also upregulates the expression of secondary cell wall biosynthetic genes. Moreover, overexpression of PeNAC122 lines displayed more tolerance to PEG6000-induced osmotic stress, with stronger photosynthetic performance, higher antioxidant enzyme activity, and less accumulation of reactive oxygen species in leaves, and higher expression levels of stress response genes DREB2A, RD29, and NCED3. These results indicate that PeNAC122 plays a crucial role in wood formation and abiotic stress tolerance, which, in addition to potential use in improving wood quality, provides further insight into the role of NAC family TFs in balancing wood development and abiotic stress resistance.
Collapse
Affiliation(s)
- Zihao Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Zhuoxi Peng
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Siqin Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Haiqin Leng
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Jianxun Luo
- Institute of Forestry, Sichuan Academy of Forestry, Chengdu, People's Republic of China
| | - Fei Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Yuanyuan Yi
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Víctor Resco de Dios
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Gutiérrez Rodríguez Lucas
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Yinan Yao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Yongfeng Gao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| |
Collapse
|
8
|
Wu D, Saleem M, He T, He G. The Mechanism of Metal Homeostasis in Plants: A New View on the Synergistic Regulation Pathway of Membrane Proteins, Lipids and Metal Ions. MEMBRANES 2021; 11:membranes11120984. [PMID: 34940485 PMCID: PMC8706360 DOI: 10.3390/membranes11120984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/04/2021] [Accepted: 12/11/2021] [Indexed: 12/15/2022]
Abstract
Heavy metal stress (HMS) is one of the most destructive abiotic stresses which seriously affects the growth and development of plants. Recent studies have shown significant progress in understanding the molecular mechanisms underlying plant tolerance to HMS. In general, three core signals are involved in plants' responses to HMS; these are mitogen-activated protein kinase (MAPK), calcium, and hormonal (abscisic acid) signals. In addition to these signal components, other regulatory factors, such as microRNAs and membrane proteins, also play an important role in regulating HMS responses in plants. Membrane proteins interact with the highly complex and heterogeneous lipids in the plant cell environment. The function of membrane proteins is affected by the interactions between lipids and lipid-membrane proteins. Our review findings also indicate the possibility of membrane protein-lipid-metal ion interactions in regulating metal homeostasis in plant cells. In this review, we investigated the role of membrane proteins with specific substrate recognition in regulating cell metal homeostasis. The understanding of the possible interaction networks and upstream and downstream pathways is developed. In addition, possible interactions between membrane proteins, metal ions, and lipids are discussed to provide new ideas for studying metal homeostasis in plant cells.
Collapse
Affiliation(s)
- Danxia Wu
- College of Agricultural, Guizhou University, Guiyang 550025, China;
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA;
| | - Tengbing He
- College of Agricultural, Guizhou University, Guiyang 550025, China;
- Institute of New Rural Development, West Campus, Guizhou University, Guiyang 550025, China
- Correspondence: (T.H.); (G.H.)
| | - Guandi He
- College of Agricultural, Guizhou University, Guiyang 550025, China;
- Correspondence: (T.H.); (G.H.)
| |
Collapse
|