1
|
Zou B, Yuan Q, Luo H, Wang M, Chen X, Gao Z, Wang J, Peng Y, Yang H, Dai F, Huang X. Combination of Fushengong decoction with Western medicine on patients with chronic renal failure: An observational study. Medicine (Baltimore) 2024; 103:e37473. [PMID: 38608120 PMCID: PMC11018180 DOI: 10.1097/md.0000000000037473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/12/2024] [Indexed: 04/14/2024] Open
Abstract
Chronic renal failure (CRF) causes a reduction in glomerular filtration rate and damage to renal parenchyma. Fushengong decoction (FSGD) showed improvement in renal function in CRF rats. This study aims to analyze the differentially expressed proteins in CRF patients treated with Western medicine alone or in combination with FSGD. Sixty patients with CRF recruited from Yongchuan Traditional Chinese Medicine Hospital affiliated to Chongqing Medical University were randomly assigned into control (treated with Western medicine alone) and observation groups (received additional FSGD treatment thrice daily for 8 weeks). The clinical efficacy and changes in serum Bun, serum creatinine, Cystatin C, and transforming growth factor beta 1 (TGF-β1) before and after treatment were observed. We employed isotope relative labeling absolute quantification labeling and liquid chromatography-mass spectrometry to identify differentially expressed proteins and carried out bioinformatics Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Patients in the observation group showed greater clinical improvement and lower levels of serum Bun, serum creatinine, Cyc-c, and TGF-β1 than the control group. We identified 32 differentially up-regulated and 52 down-regulated proteins in the observation group. These proteins are involved in the blood coagulation system, protein serine/threonine kinase activity, and TGF-β, which are closely related to the pathogenesis of CRF. Protein-protein-interaction network analysis indicated that candidate proteins fibronectin 1, fibrinogen alpha chain, vitronectin, and Serpin Family C Member 1 were in the key nodes. This study provided an experimental basis suggesting that FSGD combined with Western medicine could significantly improve renal function and renal fibrosis of CRF patients, which may be through the regulation of fibronectin 1, fibrinogen alpha chain, vitronectin, Serpin Family C Member 1, TGF-β, and the complement coagulation pathway (see Graphical abstract S1, Supplemental Digital Content, http://links.lww.com/MD/L947).
Collapse
Affiliation(s)
- Bo Zou
- Department of Nephrology, Yongchuan Traditional Chinese Medicine Affiliated to Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Qiaoqiao Yuan
- Department of Nephrology, Yongchuan Traditional Chinese Medicine Affiliated to Chongqing Medical University, Chongqing, China
| | - Hongyu Luo
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Munan Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Xin Chen
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Zuling Gao
- Department of Nephrology, Yongchuan Traditional Chinese Medicine Affiliated to Chongqing Medical University, Chongqing, China
| | - Jianwei Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Yongbo Peng
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, The Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Haijun Yang
- Department of Nephrology, Yongchuan Traditional Chinese Medicine Affiliated to Chongqing Medical University, Chongqing, China
| | - Feng Dai
- Department of Nephrology, Yongchuan Traditional Chinese Medicine Affiliated to Chongqing Medical University, Chongqing, China
| | - Xuekuan Huang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Ma Z, Xiao H, Li H, Lu X, Yan J, Nie H, Yin Q. Prodigiosin as an Antibiofilm Agent against the Bacterial Biofilm-Associated Infection of Pseudomonas aeruginosa. Pathogens 2024; 13:145. [PMID: 38392883 PMCID: PMC10891946 DOI: 10.3390/pathogens13020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Pseudomonas aeruginosa is known to generate bacterial biofilms that increase antibiotic resistance. With the increase of multi-drug resistance in recent years, the formulation of a new therapeutic strategy has seemed urgent. Preliminary findings show that Prodigiosin (PG), derived from chromium-resistant Serratia marcescens, exhibited efficient anti-biofilm activity against Staphylococcus aureus. However, its anti-biofilm activity against P. aeruginosa remains largely unexplored. The anti-biofilm activity of PG against three clinical single drug-resistant P. aeruginosa was evaluated using crystal violet staining, and the viability of biofilms and planktonic cells were also assessed. A model of chronic lung infection was constructed to test the in vivo antibiofilm activity of PG. The results showed that PG inhibited biofilm formation and effectively inhibited the production of pyocyanin and extracellular polysaccharides in vitro, as well as moderated the expression of interleukins (IL-1β, IL-6, IL-10) and tumor necrosis factor (TNF-α) in vivo, which might be attributed to the downregulation of biofilm-related genes such as algA, pelA, and pslM. These findings suggest that PG could be a potential treatment for drug-resistant P aeruginosa and chronic biofilm infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qi Yin
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, No. 61 Daxuecheng Middle Road, Shapingba District, Chongqing 401334, China
| |
Collapse
|
3
|
Yan J, Yin Q, Nie H, Liang J, Liu XR, Li Y, Xiao H. Prodigiosin as an antibiofilm agent against multidrug-resistant Staphylococcus aureus. BIOFOULING 2023:1-15. [PMID: 37369552 DOI: 10.1080/08927014.2023.2226613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
Staphylococcus aureus is known for forming bacterial biofilms that confer increased antimicrobial resistance. Combining antibiotics with antibiofilm agents is an alternative approach, but the antibiofilm ability of prodigiosin (PG), a potential antibiotic synergist, against antimicrobial-resistant (AMR) S. aureus remains to be understood. The antibiofilm activity of PG against 29 clinical AMR S. aureus strains was evaluated using crystal violet staining, and its synergistic effects with vancomycin (VAN) was confirmed using the checkerboard test. The viability and metabolic activity of biofilms and planktonic cells were also assessed. The results revealed that PG exhibited promising inhibitory activity against biofilm formation and synergistic activity with VAN. It effectively reduced the metabolic activity of biofilms and suppressed the production of exopolysaccharides, which might be attributed to the downregulation of biofilm-related genes such as sarA, agrA, and icaA. These findings suggest that PG could be used as a preventive coating or adjuvant against biofilms in clinical settings.
Collapse
Affiliation(s)
- Jing Yan
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, PR China
| | - Qi Yin
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, PR China
| | - Hao Nie
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, PR China
| | - Jinyou Liang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, PR China
| | - Xiang-Ru Liu
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, PR China
| | - Yingli Li
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, PR China
| | - Hong Xiao
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, PR China
| |
Collapse
|