1
|
Zhai C, Li Y, Wang R, Zhang Y, Ma B. Differential Cell Death Pathways Induced by Oxidative Stress in Multi-Organs of Amur Grayling ( Thymallus grubii) Under Gradient Ammonia Stress. Antioxidants (Basel) 2025; 14:499. [PMID: 40298868 PMCID: PMC12023975 DOI: 10.3390/antiox14040499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/09/2025] [Accepted: 04/18/2025] [Indexed: 04/30/2025] Open
Abstract
Ammonia nitrogen is a common contaminant in aquatic environments, and its potential toxicity to organisms has attracted extensive attention. However, few studies have comprehensively evaluated the negative impacts of ammonia stress on cold-water fish. In this study, liver, gill, and intestine specimens of Amur grayling (Thymallus grubii) from three treatment groups (control (0 mg/L), low ammonia (43.683 mg/L), and high ammonia (436.8 mg/L)), were collected for histological observation, biochemical examination, and transcriptomic, metabolomic, and intestinal microbiome analysis. Our results showed that excessive ammonia nitrogen blocked the normal immune function and compromised the integrity of liver and gill tissues through oxidative stress-mediated differential cell death pathways. Meanwhile, the multi-omics analysis revealed that ammonia exposure predominantly altered the carbohydrate, lipid, and amino acid metabolism modes. In addition, it was also demonstrated that ammonia nitrogen stress affected the composition of intestinal microbiota taxa. This study provides insights into the potential risks and hazards of ammonia stress on cold fish in natural waters and provides a reference for the environment control of the water quality in aquaculture.
Collapse
Affiliation(s)
- Cunhua Zhai
- Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China (Y.L.); (R.W.)
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Yutao Li
- Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China (Y.L.); (R.W.)
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Ruoyu Wang
- Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China (Y.L.); (R.W.)
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Ying Zhang
- Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China (Y.L.); (R.W.)
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Bo Ma
- Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China (Y.L.); (R.W.)
- National Agricultural Experimental Station for Fishery Resources and Environment, Fuyuan, Ministry of Agriculture, Harbin 150070, China
- Scientific Observation Station of Fisheries Resource and Environment in Heilongjiang River Basin, Ministry of Agriculture, Harbin 150070, China
| |
Collapse
|
2
|
Han D, Bi Y, Yu T, Chen X, Xu S. Glyphosate combined with TBBPA exposure decreased quality and flavor of common carp (Cyprinus carpio) involved inhibiting muscle growth and collagen synthesis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 209:106344. [PMID: 40082035 DOI: 10.1016/j.pestbp.2025.106344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/06/2025] [Accepted: 02/19/2025] [Indexed: 03/16/2025]
Abstract
Glyphosate (N-[phosphonomethyl] glycine, GLY) is the active ingredient of the most widely used commercialized herbicide, and its use increases the potential for co-occurrence with flame retardants such as Tetrabromobisphenol A (TBBPA), posing a threat to aquatic systems and food safety. Therefore, it is important to prioritize evaluating these two compounds' combined toxicity. However, only a few studies have analyzed the effects of pollutant mixing on fish from the perspectives of molecular and nutritional components. In this study, the impact of TBBPA and GLY on muscle development and flesh quality was investigated by exposing common carp to water-borne TBBPA and/or GLY for 30 days. The results showed that TBBPA and GLY exposure decreased the anti-oxidant capacity and content of most free amino acids in common carp muscle. Textural analysis suggested that the meat flesh's hardness, cohesiveness, and chewiness were decreased under TBBPA and GLY exposure. In addition, the decreased cross-sectional area of muscle fibers and collagen deposition were observed in the carp muscle exposed to TBBPA and/or GLY. Further analysis of related genes indicated the co-exposure of TBBPA and GLY significantly upregulated the levels of FoxO1 and MuRF-1, and decreased the levels of MyoD1, Collagen I, α-SMA, and TGF-β. Collectively, our results illustrated that exposure to TBBPA and GLY could inhibit muscle growth and decrease nutritional value in common carp.
Collapse
Affiliation(s)
- Dongxu Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yanju Bi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Tingting Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xuewei Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
3
|
Liu T, Nie H, Huo Z, Yan X. The characteristics of aminotransferases gene family in Ruditapes philippinarum and its response to salinity stresses. Comp Biochem Physiol C Toxicol Pharmacol 2025; 290:110133. [PMID: 39870227 DOI: 10.1016/j.cbpc.2025.110133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/14/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
Aminotransferase is involved in the regulation of amino acid metabolism, which can affect the balance and distribution of amino acids in the organism, help maintain the homeostasis of amino acids in the organism, and play an important role in the environmental adaptation of aquatic animals. In this study, a total of 28 aminotransferase genes were identified in the genome of R. philippinarum. The gene structure, protein structure, chromosome localization, and phylogenetic analysis of aminotransferase were conducted using bioinformatics. According to the gene structure and phylogenetic analysis of aminotransferase proteins, aminotransferase proteins can be categorized into class I and II, class III, and class V. RNA-seq data analysis showed that aminotransferase genes were differentially expressed at different developmental stages, tissues, and salinity stress. In addition, qPCR demonstrated that the expression levels of most aminotransferase genes increased significantly during salinity changes. We also measured the free amino acids content in the gills of R. philippinarum after 48 h of low and high salinity stress. The results indicated that the total free amino acids under low salinity stress (75.89 ± 3.31 mg/g) and high salinity stress (91.01 ± 3.31 mg/g) at 48 h were significantly decreased and increased compared with the control group (83.01 ± 3.12 mg/g), respectively. The results of this study provide a valuable reference for further research on the salinity adaptation of the aminotransferase gene in R. philippinarum.
Collapse
Affiliation(s)
- Tao Liu
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China.
| | - Zhongming Huo
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Xiwu Yan
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| |
Collapse
|
4
|
Xia B, Zhao D, Hao Q, Yu J, Han Y, Ling L, Zhao R, Zhao J. Effects of fishing stress on fatty acid and amino acid composition and glycolipid metabolism in triploid rainbow trout. Food Chem 2024; 461:140904. [PMID: 39181054 DOI: 10.1016/j.foodchem.2024.140904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
Triploid Oncorhynchus mykiss is an important economic fish worldwide. Fishing stress can affect its growth and meat quality. This study first explored the effects of fishing stress on fatty acid and amino acid in triploid O. mykiss. Results showed fishing stress significantly reduced the content of docosadienoic acid, Gly, Arg, and DAA (P < 0.05). Targeted lipidomics analysis furthered suggested that some lipid molecules belonging to TG, DG, PC, Cer, ChE, and So were significantly up-regulated; while some lipid molecules belonging to Cer, LPE, LPC, PS, PC, and SM were significantly down-regulated, suggesting an accelerated glycolipid metabolism. Eventually, the glycolipid metabolism-related enzyme activity and gene expressions were examined, and the results indicated that O. mykiss was anti-oxidative stress by affecting relevant glycolipid metabolism signaling pathways and participating in cellular redox homeostasis. Findings of this study provide a theoretical foundation for further investigation into the mechanisms through which fishing stress affects O. mykiss.
Collapse
Affiliation(s)
- Banghua Xia
- Northeast Agricultural University, Harbin 150030, China
| | - Dandan Zhao
- Northeast Agricultural University, Harbin 150030, China
| | - Qirui Hao
- Northeast Agricultural University, Harbin 150030, China; Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Junfei Yu
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Yue Han
- Liaoyang Development and Reform Service Center, Liaoyang 111001, China
| | - Ling Ling
- Northeast Agricultural University, Harbin 150030, China
| | - Rongwei Zhao
- Harbin Agricultural Technology Extension Master station, Harbin 150023, China
| | - Junwei Zhao
- Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
5
|
Jin F, Shen Y, Lin Z, Miao Y, Liu Y, Su R, Zhang W, Zhang Y. Small intestine structural and functional responses to environmental heavy metal stress in tree sparrow Passer montanus nestlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:65344-65355. [PMID: 39579182 DOI: 10.1007/s11356-024-35587-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024]
Abstract
Tree sparrow nestlings predominantly consume protein-rich insect larvae, making them vulnerable to environmental heavy metal contamination through the food web, potentially affecting their growth. Understanding the effects of heavy metals on the structure and function of the small intestine, the principal organ responsible for protein digestion and absorption, is therefore crucial. This study investigated tree sparrow nestlings at three developmental stages (3, 6, and 12 days old) in Liujiaxia (LJX), a comparatively unpolluted area, and Baiyin (BY), a heavy metal polluted area, to elucidate the factors and mechanisms by which heavy metals affect nutrient absorption. We compared heavy metal accumulation levels, structural integrity, and protein digestion and absorption functions of the duodenum, jejunum, and ileum. The increase of fluctuating asymmetry and decrease in body condition in tree sparrow nestlings were found to be associated with environmental heavy metal accumulation in the small intestine. Structural impairments of villi and crypts were observed in the duodenum and jejunum of tree sparrow nestlings at 3-, 6-, and 12-day-old in the polluted site BY. Conversely, structures related to the ileum were elevated, and the small intestine of nestlings at all stages exhibited abnormally elevated protein digestibility but diminished absorption of amino acids. However, there was no significant difference in small peptide absorption. These findings indicate that environmental heavy metal pollution impacts the structure of the small intestine in tree sparrow nestlings through the food chain and further affects their digestion and absorption function of proteins.
Collapse
Affiliation(s)
- Fei Jin
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yue Shen
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhaocun Lin
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yuquan Miao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yu Liu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Rui Su
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Wenya Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yingmei Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
6
|
Chew XZ, Carrai M, Shen X, Gibson-Kueh S. Impact of transport conditions and underlying disease on post-stocking survival of juvenile Lates calcarifer. JOURNAL OF FISH DISEASES 2024; 47:e13963. [PMID: 38785265 DOI: 10.1111/jfd.13963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024]
Abstract
Diseases caused by pathogens commonly occurring in the aquatic environment or those that are non-host specific are prevalent and threaten the rapid growth of tropical aquaculture. This study investigates causes of mortality in 12 batches of newly stocked juvenile Lates calcarifer from three different hatcheries. Cytology based on Diff-Quik™-stained tissue and blood smears provides rapid diagnosis of possible causes of mortality, while histopathology and haematology provide a better understanding of how prolonged transport and fish with existing chronic disease are more likely to experience elevated mortality post-stocking. Our findings showed that accumulation of ammonia during prolonged transport causes extensive damage to epithelial barriers in gastrointestinal tracts and depressed immunity due to marked hypoglycaemia, predisposing fish to acute Streptococcosis. Lates calcarifer with chronic bacterial enteritis developed severe hypoglycaemia, had low circulating total plasma protein, and suffered high mortality within 24 hours post-stocking. Hypoglycaemia and low circulating blood proteins disrupt osmoregulation and exacerbate dehydration, which is fatal in fish in sea water. Dying L. calcarifer tested PCR positive for scale drop disease virus (SDDV) at 28 days post-stocking showed a 10-fold elevation of white blood cell counts, severe vasculitis, and obstruction of blood supply to major organs. Destruction of important immune organs such as spleen is a hallmark of SDDV infection that explains high incidences of opportunistic Vibrio harveyi infections in 61% of fish with SDDV. Overall, this study reiterates the importance of stocking disease-free fish and reducing transport stress.
Collapse
Affiliation(s)
- Xian Zhe Chew
- James Cook University Singapore, Singapore City, Singapore
| | - Maura Carrai
- Tropical Futures Institute, James Cook University Singapore, Singapore City, Singapore
| | - Xueyan Shen
- Tropical Futures Institute, James Cook University Singapore, Singapore City, Singapore
| | - Susan Gibson-Kueh
- Tropical Futures Institute, James Cook University Singapore, Singapore City, Singapore
| |
Collapse
|
7
|
Zhang M, Kong F, Chen D, Yan X, Ran Z, Xu J. Effects of Light Spectra on Nutritional Composition in Juvenile Sinonovacula constricta (Lamarck 1818) and Transcriptomic Analysis. AQUACULTURE NUTRITION 2024; 2024:5575475. [PMID: 39555527 PMCID: PMC11458319 DOI: 10.1155/2024/5575475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/09/2024] [Accepted: 07/16/2024] [Indexed: 11/19/2024]
Abstract
The razor clam Sinonovacula constricta, a commercially important and nutritionally valuable bivalve species, has been found to display notable responses to different light spectra. While previous research has highlighted the influence of light spectra on the growth, feeding rate, and various physiological characteristics of S. constricta, its impact on the biochemical composition of this species remains unclear. Herein, we investigated the proximate, fatty acid, and amino acid compositions of S. constricta cultured under various light spectra, including white, violet, blue, cyan, green, yellow, red, and darkness. Furthermore, we explored the potential molecular mechanisms underlying these observations through transcriptomic analysis. The results indicate that the light spectrum has a significant impact on the growth, biochemical composition, and gene expression of juvenile S. constricta. Specifically, culturing S. constricta under the yellow light led to improved growth rate (1.09 ± 0.03%/day), higher levels of carbohydrate (26.27% ± 0.49%), crude lipid (11.99% ± 0.23%), energy contents (14,611.34 ± 1,067.01 kJ/kg), and essential amino acids (15.22 ± 0.01 g/kg), as well as increased proportions of polyunsaturated fatty acids (12.38 ± 0.31 µg/mg). These findings suggest that yellow light may play a crucial role in enhancing the nutritional quality of S. constricta. Moreover, the transcriptomic analysis revealed that the yellow light treatment upregulated pathways related to fatty acid biosynthesis, glycine, serine, and threonine metabolism and fatty acid metabolism. This indicates that yellow light may influence nutrient metabolism regulation in S. constricta, potentially leading to the observed changes in biochemical composition. Overall, our study recommends cultivating juvenile S. constricta under yellow light to optimize their growth and nutritional value. Further research could delve deeper into the molecular mechanisms underlying the effects of different light spectra on S. constricta to enhance our understanding of how light influences aquaculture practices and the nutritional quality of seafood products.
Collapse
Affiliation(s)
- Mengqi Zhang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Fei Kong
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Deshui Chen
- Fujian Dalai Seedling Technology Co. Ltd., Luoyuan 350600, Fujian, China
| | - Xiaojun Yan
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo 315211, Zhejiang, China
| | - Zhaoshou Ran
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, Zhejiang, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo 315211, Zhejiang, China
| | - Jilin Xu
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, Zhejiang, China
- Fujian Dalai Seedling Technology Co. Ltd., Luoyuan 350600, Fujian, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo 315211, Zhejiang, China
| |
Collapse
|
8
|
Cao J, Mei J, Xie J. Combined effects of hypoxia and ammonia-N exposure on the oxygen consumption, glucose metabolism and amino acid metabolism in hybrid grouper (Epinephelus fuscoguttatus♀ × E. lanceolatus♂). Vet Res Commun 2024; 48:1521-1531. [PMID: 38374273 DOI: 10.1007/s11259-024-10326-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/04/2024] [Indexed: 02/21/2024]
Abstract
This study evaluated the influence of hypoxia and ammonia-N co-exposure on oxygen consumption, glucose metabolism and amino acid metabolism in hybrid grouper. The results showed that elevated expression of GLUT1, MCT1, PFK, HK and LDH were induced by co-exposure to hypoxia and ammonia. In addition, co-exposure to hypoxia and ammonia reduced the tolerance of hybrid grouper to ammonia-N. Furthermore, ammonia-N exposure caused an increase in oxygen consumption in hybrid grouper. After ammonia-N exposure for 96 h, 10 amino acids contents and activities of AST and ALT elevated in hybrid grouper muscle. The study revealed that combined exposure to hypoxia and ammonia-N significantly increased glucose metabolism, oxygen consumption and amino acid metabolism in hybrid grouper, and presented significant synergistic effects.
Collapse
Affiliation(s)
- Jie Cao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, China.
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, 201306, China.
- Key Laboratory of Aquatic Products High-Quality Utilization, Storage and Transportation (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, China.
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, 201306, China.
- Key Laboratory of Aquatic Products High-Quality Utilization, Storage and Transportation (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, 201306, China.
| |
Collapse
|
9
|
Wu Y, Xia Y, Hu A, Xiong G, Wu W, Shi L, Chen L, Guo X, Qiao Y, Liu C, Yin T, Wang L, Chen S. Difference in muscle metabolism caused by metabolism disorder of rainbow trout liver exposed to ammonia stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171576. [PMID: 38461997 DOI: 10.1016/j.scitotenv.2024.171576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Ammonia pollution is an important environmental stress factors in water eutrophication. The intrinsic effects of ammonia stress on liver toxicity and muscle quality of rainbow trout were still unclear. In this study, we focused on investigating difference in muscle metabolism caused by metabolism disorder of rainbow trout liver at exposure times of 0, 3, 6, 9 h at 30 mg/L concentrations. Liver transcriptomic analysis revealed that short-term (3 h) ammonia stress inhibited carbohydrate metabolism and glycerophospholipid production but long-term (9 h) ammonia stress inhibited the biosynthesis and degradation of fatty acids, activated pyrimidine metabolism and mismatch repair, lead to DNA strand breakage and cell death, and ultimately caused liver damage. Metabolomic analysis of muscle revealed that ammonia stress promoted the reaction of glutamic acid and ammonia to synthesize glutamine to alleviate ammonia toxicity, and long-term (9 h) ammonia stress inhibited urea cycle, hindering the alleviation of ammonia toxicity. Moreover, it accelerated the consumption of flavor amino acids such as arginine and aspartic acid, and increased the accumulation of bitter substances (xanthine) and odorous substances (histamine). These findings provide valuable insights into the potential risks and hazards of ammonia in eutrophic water bodies subject to rainbow trout.
Collapse
Affiliation(s)
- Yiwen Wu
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yuting Xia
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Ao Hu
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Guangquan Xiong
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Wenjin Wu
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Liu Shi
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Lang Chen
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xiaojia Guo
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yu Qiao
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Chunsheng Liu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Tao Yin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lan Wang
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Sheng Chen
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| |
Collapse
|
10
|
Wang Z, Li J, Zhao P, Yu Z, Yang L, Ding X, Lv H, Yi S, Sheng Q, Zhang L, Zhou F, Wang H. Integrated microbiome and metabolome analyses reveal the effects of low pH on intestinal health and homeostasis of crayfish (Procambarus clarkii). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 270:106903. [PMID: 38503037 DOI: 10.1016/j.aquatox.2024.106903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024]
Abstract
Low pH (LpH) poses a significant challenge to the health, immune response, and growth of aquatic animals worldwide. Crayfish (Procambarus clarkii) is a globally farmed freshwater species with a remarkable adaptability to various environmental stressors. However, the effects of LpH stress on the microbiota and host metabolism in crayfish intestines remain poorly understood. In this study, integrated analyses of antioxidant enzyme activity, histopathological damage, 16S rRNA gene sequencing, and liquid chromatography-mass spectrometry (LC-MS) were performed to investigate the physiology, histopathology, microbiota, and metabolite changes in crayfish intestines exposed to LpH treatment. The results showed that LpH stress induced obvious changes in superoxide dismutase and catalase activities and histopathological alterations in crayfish intestines. Furthermore, 16S rRNA gene sequencing analysis revealed that exposure to LpH caused significant alterations in the diversity and composition of the crayfish intestinal microbiota at the phylum and genus levels. At the genus level, 14 genera including Bacilloplasma, Citrobacter, Shewanella, Vibrio, RsaHf231, Erysipelatoclostridium, Anaerorhabdus, Dysgonomonas, Flavobacterium, Tyzzerella, Brachymonas, Muribaculaceae, Propionivibrio, and Comamonas, exhibited significant differences in their relative abundances. The LC-MS analysis revealed 859 differentially expressed metabolites in crayfish intestines in response to LpH, including 363 and 496 upregulated and downregulated metabolites, respectively. These identified metabolites exhibited significant enrichment in 24 Kyoto Encyclopedia of Genes and Genomes pathways (p < 0.05), including seven and 17 upregulated and downregulated pathways, respectively. These pathways are mainly associated with energy and amino acid metabolism. Correlation analysis revealed a strong correlation between the metabolites and intestinal microbiota of crayfish during LpH treatment. These findings suggest that LpH may induce significant oxidative stress, intestinal tissue damage, disruption of intestinal microbiota homeostasis, and alterations in the metabolism in crayfish. These findings provide valuable insights into how the microbial and metabolic processes of crayfish intestines respond to LpH stress.
Collapse
Affiliation(s)
- Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China.
| | - Jiapeng Li
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Pengfei Zhao
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Zaihang Yu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Lianlian Yang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Xueyan Ding
- Zhejiang Fisheries Technical Extension Center, Hangzhou 310023, China
| | - He Lv
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - ShaoKui Yi
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Qiang Sheng
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Liqin Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Fan Zhou
- Zhejiang Fisheries Technical Extension Center, Hangzhou 310023, China.
| | - Hua Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China; Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China; Huzhou Key Laboratory of Medical and Environmental Application Technologies, College of Life Sciences, Huzhou University, Huzhou 313000, China.
| |
Collapse
|
11
|
Cai Y, Shi H, Zheng Y, Zhou Y, Guo W, Liao J, Wang S. Long-Term Phellodendri Cortex Supplementation in the Tiger Grouper ( Epinephelus fuscoguttatus): Dual Effects on Intestinal Health Revealed by Transcriptome Analysis. Life (Basel) 2023; 13:2336. [PMID: 38137937 PMCID: PMC10745030 DOI: 10.3390/life13122336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The tiger grouper (Epinephelus fuscoguttatus), an important mariculture fish in Southeast Asia, faces increasing health issues in recent years. Phellodendri Cortex (PC) is a traditional Chinese herbal medicine that exhibits a variety of beneficial effects on tiger groupers. The effects of PC, however, varies with the period of dietary intervention. This study aims to investigate the long-term effects of 1% PC supplementation on tiger groupers, focusing on growth, immunity, disease resistance, and intestinal gene expression. The tiger groupers (with an initial mean weight of 27.5 ± 0.5 g) were fed with a diet of Phellodendri Cortex supplementation and a control diet for 8 weeks. Our results indicate that the long-term PC supplementation did not affect growth or Vibrio disease resistance in tiger groupers. However, the transcriptome analysis revealed potential damage to the structural and functional integrity of the groupers' intestines. On the other hand, anti-inflammatory and cathepsin inhibition effects were also observed, offering potential benefits to fish enteritis prevention and therapy. Therefore, long-term PC supplementation in grouper culture should be applied with caution.
Collapse
Affiliation(s)
- Yan Cai
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China; (Y.C.); (H.S.)
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Huizhong Shi
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China; (Y.C.); (H.S.)
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Yu Zheng
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China; (Y.C.); (H.S.)
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Yongcan Zhou
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China; (Y.C.); (H.S.)
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Weiliang Guo
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China; (Y.C.); (H.S.)
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Jingqiu Liao
- Guangxi Academy of Sciences, Nanning 530007, China
| | - Shifeng Wang
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China; (Y.C.); (H.S.)
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| |
Collapse
|
12
|
Yan Z, Wan J, Liu J, Yao B, Lu Y, Guo Z, Li Y. α-lipoic acid ameliorates hepatotoxicity induced by chronic ammonia toxicity in crucian carp (Carassius auratus gibelio) by alleviating oxidative stress, inflammation and inhibiting ERS pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115533. [PMID: 37806127 DOI: 10.1016/j.ecoenv.2023.115533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
High environment ammonia (HEA) poses a deadly threat to aquatic animals and indirectly impacts human healthy life, while nutritional regulation can alleviate chronic ammonia toxicity. α-lipoic acid exhibits antioxidative effects in both aqueous and lipid environments, mitigating cellular and tissue damage caused by oxidative stress by aiding in the neutralization of free radicals (reactive oxygen species). Hence, investigating its potential as an effective antioxidant and its protective mechanisms against chronic ammonia stress in crucian carp is highly valuable. Experimental fish (initial weight 20.47 ± 1.68 g) were fed diets supplemented with or without 0.1% α-lipoic acid followed by a chronic ammonia exposure (10 mg/L) for 42 days. The results revealed that chronic ammonia stress affected growth (weight gain rate, specific growth rate, and feed conversion rate), leading to oxidative stress (decreased the activities of antioxidant enzymes catalase, superoxide dismutase, glutathione peroxidase; decreased total antioxidant capacity), increased lipid peroxidation (accumulation of malondialdehyde), immune suppression (decreased contents of nonspecific immune enzymes AKP and ACP, 50% hemolytic complement, and decrease of immunoglobulin M), impaired ammonia metabolism (reduced contents of Glu, GS, GSH, and Gln), imbalance of expression of induced antioxidant-related genes (downregulation of Cu/Zu SOD, CAT, Nrf2, and HO-1; upregulation of GST and Keap1), induction of pro-apoptotic molecules (transcription of BAX, Caspase3, and Caspase9), downregulation of anti-apoptotic gene Bcl-2 expression, and induction of endoplasmic reticulum stress (upregulation of IRE1, PERK, and ATF6 expression). The results suggested that the supplementation of α-lipoic acid could effectively induce humoral immunity, alleviate oxidative stress injury and endoplasmic reticulum stress, and ultimately alleviate liver injury induced by ammonia poisoning (50-60% reduction). This provides theoretical basis for revealing the toxicity of long-term ammonia stress and provides new insights into the anti-ammonia toxicity mechanism of α-lipoic acid.
Collapse
Affiliation(s)
- Zihao Yan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jiwu Wan
- Jilin Provincial Aquatic Technology Extension Center, Changchun 130118, China
| | - Jia Liu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Baolan Yao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yuqian Lu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Zhengyao Guo
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yuehong Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
13
|
Yuan D, Wang S, Li X, Zhang M, Li M. Effects of ammonia and roxithromycin exposure on skin mucus microbiota composition and immune response of juvenile yellow catfish Pelteobagrus fulvidraco. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109048. [PMID: 37666312 DOI: 10.1016/j.fsi.2023.109048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/27/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
As an inevitable factor in aquaculture, ammonia plays a critical role in macrolide antibiotic resistance, leading to accumulating of antibiotic-resistant bacteria in fish skin mucus. In this study, four experimental groups were implemented to test the effects of ammonia alone or in combination with roxithromycin for 28 days on skin mucus microbial composition and the immune response of yellow catfish: CON (control), AN (50.00 mg L-1 total ammonia nitrogen, TA-N), ROX (100 μg L-1 roxithromycin), and HR (50.00 mg L-1 TA-N, 100 μg L-1 ROX). This study demonstrated that ammonia or roxithromycin exposure resulted in increased plasma ammonia content and decreased total antioxidant capacity. Compared with AN group, the combined exposure of ammonia and roxithromycin inhibited the skin mucus immune response. Microbial composition analysis showed that combined exposure of ammonia and roxithromycin had no significant effect on skin mucus α-diversity as compared with CON group. The abundance of Cetobacterium, Rhizobiales_Incertae_Sedis_uncultured and Acinetobacter was increased significantly with the combined effect of ammonia and roxithromycin, these bacteria may be potentially antibiotic-resistant. As compared with CON group, the combined exposure of ammonia and roxithromycin did not affect skin goblet cell counts. This study suggests that combined exposure to ammonia and ROX increases the risk of the emergence of antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Donghao Yuan
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Shidong Wang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Xue Li
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Muzi Zhang
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Ming Li
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
14
|
Liu S, Luo L, Zuo F, Huang X, Zhong L, Liu S, Geng Y, Ou Y, Chen D, Cai W, Deng Y. Ammonia nitrogen stress damages the intestinal mucosal barrier of yellow catfish ( Pelteobagrus fulvidraco) and induces intestinal inflammation. Front Physiol 2023; 14:1279051. [PMID: 37791345 PMCID: PMC10542119 DOI: 10.3389/fphys.2023.1279051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023] Open
Abstract
Nitrogen from ammonia is one of the most common pollutants toxics to aquatic species in aquatic environment. The intestinal mucosa is one of the key mucosal defenses of aquatic species, and the accumulation of ammonia nitrogen in water environment will cause irreversible damage to intestinal function. In this study, histology, immunohistochemistry, ultrastructural pathology, enzyme activity analysis and qRT-PCR were performed to reveal the toxic effect of ammonia nitrogen stress on the intestine of Pelteobagrus fulvidraco. According to histological findings, ammonia nitrogen stress caused structural damage to the intestine and reduced the number of mucous cells. Enzyme activity analysis revealed that the activity of bactericidal substances (Lysozyme, alkaline phosphatase, and ACP) had decreased. The ultrastructure revealed sparse and shortened microvilli as well as badly degraded tight junctions. Immunohistochemistry for ZO-1 demonstrated an impaired intestinal mucosal barrier. Furthermore, qRT-PCR revealed that tight junction related genes (ZO-1, Occludin, Claudin-1) were downregulated, while the pore-forming protein Claudin-2 was upregulated. Furthermore, as ammonia nitrogen concentration grew, so did the positive signal of Zap-70 (T/NK cell) and the expression of inflammation-related genes (TNF, IL-1β, IL-8, IL-10). In light of the above findings, we conclude that ammonia nitrogen stress damages intestinal mucosal barrier of Pelteobagrus fulvidraco and induces intestinal inflammation.
Collapse
Affiliation(s)
- Senyue Liu
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lin Luo
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Fengyuan Zuo
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Liang Zhong
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
- State Key Lab of Marine Pollution, Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Sha Liu
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yangping Ou
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Defang Chen
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wenlong Cai
- State Key Lab of Marine Pollution, Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yongqiang Deng
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Li K, Pang S, Li Z, Ding X, Gan Y, Gan Q, Fang S. House ammonia exposure causes alterations in microbiota, transcriptome, and metabolome of rabbits. Front Microbiol 2023; 14:1125195. [PMID: 37250049 PMCID: PMC10213413 DOI: 10.3389/fmicb.2023.1125195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/11/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Pollutant gas emissions in the current production system of the livestock industry have negative influences on environment as well as the health of farm staffs and animals. Although ammonia (NH3) is considered as the primary and harmful gas pollutant in the rabbit farm, less investigation has performed to determine the toxic effects of house ammonia exposure on rabbit in the commercial confined barn. Methods In this study, we performed multi-omics analysis on rabbits exposed to high and low concentration of house ammonia under similar environmental conditions to unravel the alterations in nasal and colonic microbiota, pulmonary and colonic gene expression, and muscular metabolic profile. Results and discussion The results showed that house ammonia exposure notably affected microbial structure, composition, and functional capacity in both nasal and colon, which may impact on local immune responses and inflammatory processes. Transcriptome analysis indicated that genes related to cell death (MCL1, TMBIM6, HSPB1, and CD74) and immune response (CDC42, LAMTOR5, VAMP8, and CTSB) were differentially expressed in the lung, and colonic genes associated with redox state (CAT, SELENBP1, GLUD1, and ALDH1A1) were significantly up-regulated. Several key differentially abundant metabolites such as L-glutamic acid, L-glutamine, L-ornithine, oxoglutaric acid, and isocitric acid were identified in muscle metabolome, which could denote house ammonia exposure perturbed amino acids, nucleotides, and energy metabolism. In addition, the widespread and strong inter-system interplay were uncovered in the integrative correlation network, and central features were confirmed by in vitro experiments. Our findings disclose the comprehensive evidence for the deleterious effects of house ammonia exposure on rabbit and provide valuable information for understanding the underlying impairment mechanisms.
Collapse
|
16
|
Wang J, Li Y, Wang J, Wang Y, Liu H, Bao J. Selenium Alleviates Ammonia-Induced Splenic Cell Apoptosis and Inflammation by Regulating the Interleukin Family/Death Receptor Axis and Nrf2 Signaling Pathway. Biol Trace Elem Res 2023; 201:1748-1760. [PMID: 35581429 DOI: 10.1007/s12011-022-03279-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/02/2022] [Indexed: 12/11/2022]
Abstract
Ammonia (NH3) is a harmful gas in livestock houses. So far, many researchers have demonstrated that NH3 is detrimental to animal and human organs. Selenium (Se) is one of the essential trace elements in the body and has a good antioxidant effect. However, there was little conclusive evidence that Se alleviated NH3 poisoning. To investigate the toxic mechanism of NH3 on pig spleen and the antagonistic effect of L-selenomethionine, a porcine NH3-poisoning model and an L-selenomethionine intervention model were established in this study. Our results showed that NH3 exposure increased the apoptosis rate, while L-selenomethionine supplementation alleviated the process of excessive apoptosis. Immunofluorescence staining, real-time quantitative polymerase chain reaction (qRT-PCR), and western blot results confirmed that exposure to NH3 changed the expression levels of interleukin family factors, apoptosis, death receptor, and oxidative stress factors. Our study further confirmed that excessive NH3 induced inflammatory response and mediated necroptosis leading to cell apoptosis by activating the Nrf2 signaling pathway. Excessive NH3 could mediate spleen injury through oxidative stress-induced mitochondrial dynamics disorder. L-Selenomethionine could alleviate inflammation and abnormal apoptosis by inhibiting the IL-17/TNF-α/FADD axis. Our study would pave the way for comparative medicine and environmental toxicology.
Collapse
Affiliation(s)
- Jing Wang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yutao Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jianxing Wang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yulai Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Honggui Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jun Bao
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, People's Republic of China.
| |
Collapse
|
17
|
Rosmarinic acid alone or in combination with Lactobacillus rhamnosus ameliorated ammonia stress in the rainbow trout, Oncorhynchus mykiss: growth, immunity, antioxidant defense and liver functions. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2023-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Abstract
Rosmarinic acid (RS) and Lactobacillus rhamnosus (LR) were added singularly or in combination to rainbow trout (Oncorhynchus mykiss) diets to test their efficacy in the protection against ammonia stress. Fish (31.4±0.6 g) were randomly allocated to six groups in three replicates, as follows: T1: basic food as control, T2: LR with a concentration of 1.5 × 108 CFU/g, T3: LR with a concentration of 3 × 108 CFU/g, T4: 1 g RS/kg, T5: 3 g RS/kg, and T6: 1.5 × 108 CFU/g LR + 1 g RS/kg and T7: 3 × 108 CFU/g LR + 3 g RS/kg. After 60 days feeding, fish exposed to 0ammonia stress. After the feeding period, the supplemented fish had the highest final body weight (FW), weight gain (WG), and specific growth rate (SGR), and the lowest feed conversion ratio (FCR) as compared with the control group (P<0.05). Amylase, protease and lipase activities were noticed markedly higher in fish supplemented with 1.5 × 108 CFU/g LR + 1 g RS/kg and 1.5 × 108 CFU/g LR diets compared to the control (P<0.05). Generally, fish in supplemented diets, particularly T2 and T6 groups, had the highest lysozyme, alternative complement activity (ACH50), total Ig, nitroblue tetrazolium test (NBT), myeloperoxidase (MPO), complement component 3 (C3), complement component 4 (C4), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx). On the other hand, T2 and T6 groups had the lowest malondialdehyde (MDA), glucose, and cortisol concentrations as well as alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH) enzyme levels when were compared with the control (P<0.05). After ammonia stress, fish in the supplemented groups, particularly T2 and T6, generally showed significantly higher values of lysozyme, ACH50, total Ig, NBT, MPO, C3, C4, SOD, CAT, GPx and lower levels of MDA, glucose, cortisol, ALT, ALP, LDH when compared with the control (P<0.05). In conclusion, a combined administration of RS and L. rhamnosus effectively improved growth performance and health status as well as enhanced the resistance of rainbow trout against ammonia toxicity.
Collapse
|
18
|
Wu Y, Zhao M, Xia Y, Sun W, Xiong G, Shi L, Qiao Y, Wu W, Ding A, Chen L, Wang L, Chen S. Deterioration of muscle quality caused by ammonia exposure in rainbow trout (Oncorhynchus mykiss). FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
19
|
Meng QY, Mo DM, Li H, Wang WL, Lu HL. Divergent responses in the gut microbiome and liver metabolome to ammonia stress in three freshwater turtles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160372. [PMID: 36410481 DOI: 10.1016/j.scitotenv.2022.160372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/31/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Ammonia is a common pollutant in aquaculture system, and toxic to all aquatic animals. However, different aquatic animals exhibit diverse physiological responses to high-level ammonia exposure, potentially indicating their divergent resistance to ammonia stress. In this study, juveniles of three freshwater turtles (Mauremys reevesii, Pseudemys nelsoni and Trachemys scripta elegans) were exposed to different concentrations of ammonia (0, 0.3 and 3.0 mg/L) for 30 days, and their swimming, growth performance, gut microbiota, and hepatic metabolites were measured to evaluate the interspecific difference in physiological responses to ammonia stress. Despite no differences in swimming ability, growth rate, and gut microbial diversity, observable changes in microbial community composition and hepatic metabolite profiles were shown in ammonia-exposed turtles. A relatively higher abundance of potentially pathogenic bacteria was found in M. reevesii than in the other two species. Moreover, microbial compositions and metabolic responses differed significantly among the three species. M. reevesii was, out of the three tested species, the one in which exposure to ammonia had the greatest effect on changes in bacterial genera and hepatic metabolites. Conversely, only a few metabolites were significantly changed in T. scripta elegans. Integrating these findings, we speculated that native M. reevesii should be more vulnerable to ammonia stress compared to the invasive turtle species. Our results plausibly reflected divergent potential resistance to ammonia among these turtles, in view of differential physiological responses to ammonia exposure at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Qin-Yuan Meng
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Dong-Mei Mo
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Han Li
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Wan-Ling Wang
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Hong-Liang Lu
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.
| |
Collapse
|
20
|
Yan T, Ai C, Ou H, Song S, Yang S, Yang J. The Intestinal Microbiota Involves in the Deterioration of Live Sea Cucumber During Storage. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2023. [DOI: 10.1080/10498850.2023.2174393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- Tingting Yan
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, PR China
| | - Chunqing Ai
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, PR China
| | - Haoyang Ou
- Pre- architecture Design, Iowa State University, Ames, IA, USA
| | - Shuang Song
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, PR China
| | - Sheng Yang
- Roy J. Carver Dept. of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, USA
| | - Jingfeng Yang
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, PR China
| |
Collapse
|
21
|
Responses of Micropterus salmoides under Ammonia Stress and the Effects of a Potential Ammonia Antidote. Animals (Basel) 2023; 13:ani13030397. [PMID: 36766286 PMCID: PMC9913073 DOI: 10.3390/ani13030397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Ammonia is a common environmental limiting factor in aquaculture. To investigate the effects of ammonia stress and explore the protective effect of N-carbamylglutamate (NCG) on Micropterus salmoides (M. salmoides), tissue sections and parameters related to oxidative stress and the inflammatory response in M. salmoides were carried out during the ammonia stress test and feeding test. The results demonstrated that the LC50 for 24 h, 48 h, 72 h, and 96 h under ammonia stress in M. salmoides were 25.78 mg/L, 24.40 mg/L, 21.90 mg/L, and 19.61 mg/L, respectively. Under ammonia stress, the structures of the tissues were damaged, and the GSH content decreased, while the MDA content increased with the increase in stress time and ammonia concentration. The NO content fluctuated significantly after the ammonia nitrogen stress. In the 15-day feeding test, with the increased NCG addition amount and feeding time, the GSH content increased while the MDA and NO contents decreased gradually in the NCG addition groups (NL group: 150 mg/kg; NM group: 450 mg/kg; NH group: 750 mg/kg) when compared with their control group (CK group: 0 mg/kg). In the ammonia toxicology test after feeding, the damage to each tissue was alleviated in the NL, NM, and NH groups, and the contents of GSH, MDA, and NO in most tissues of the NH group were significantly different from those in the CK group. The results suggested that ammonia stress caused tissue damage in M. salmoides, provoking oxidative stress and inflammatory response. The addition of NCG to the feed enhances the anti-ammonia ability of M. salmoides. Moreover, the gill and liver might be the target organs of ammonia toxicity, and the brain and kidney might be the primary sites where NCG exerts its effects. Our findings could help us to find feasible ways to solve the existing problem of environmental stress in M. salmoides culture.
Collapse
|
22
|
Jiang SH, Wu LX, Cai YT, Ma RT, Zhang HB, Zhang DZ, Tang BP, Liu QN, Dai LS. Differentially expressed genes in head kidney of Pelteobagrus fulvidraco following Vibrio cholerae challenge. Front Immunol 2023; 13:1039956. [PMID: 36703962 PMCID: PMC9871507 DOI: 10.3389/fimmu.2022.1039956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/02/2022] [Indexed: 01/12/2023] Open
Abstract
The yellow catfish (Pelteobagrus fulvidraco) is a freshwater fish with high economic value in eastern China. Nevertheless, pathogens causing bacterial diseases in P. fulvidraco have brought about huge economic loss and high mortality in artificial aquaculture. For disease control, it is critical to further understand the immune system of yellow catfish and immune-related genes with which they respond to pathogenic infections. In this study, high-throughput sequencing methods were used to analyze the transcriptomic spectrum of the head kidney from P. fulvidraco challenged by Vibrio cholera. A total of 45,544 unique transcript fragments (unigenes) were acquired after assembly and annotation, with an average length of 1,373 bp. Additionally, 674 differentially expressed genes (DEGs) were identified after stimulation with V. cholerae, 353 and 321 genes were identified as remarkably up- or downregulated, respectively. To further study the immune-related DEGs, we performed KEGG enrichment and GO enrichment. The results showed gene regulation of response to stimulus, immune response, immune system progress, response to external stimuli and cellular response to stimuli. Analysis of KEGG enrichment is important to identify chief immune related pathways. Real-time quantitative reverse transcription-PCR (qRT-PCR) results indicated 10 immune response genes that were found to be upregulated compared to a control group after 6 h of V. cholerae challenging. In summary, the results of our study are helpful to determine the defense mechanisms and immune system responses of yellow catfish in reaction to bacterial challenges.
Collapse
Affiliation(s)
- Sen-Hao Jiang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lin-Xin Wu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Yu-Ting Cai
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Rui-Ting Ma
- School of Urban and Planning, Yancheng Teachers University, Yancheng, China
| | - Hua-Bin Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China,*Correspondence: Bo-Ping Tang, ; Qiu-Ning Liu, ; Li-Shang Dai,
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China,*Correspondence: Bo-Ping Tang, ; Qiu-Ning Liu, ; Li-Shang Dai,
| | - Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China,*Correspondence: Bo-Ping Tang, ; Qiu-Ning Liu, ; Li-Shang Dai,
| |
Collapse
|
23
|
Hu MY, Yu QZ, Lin JQ, Fang SG. Sexual Dimorphism of the Gut Microbiota in the Chinese Alligator and Its Convergence in the Wild Environment. Int J Mol Sci 2022; 23:12140. [PMID: 36292992 PMCID: PMC9603114 DOI: 10.3390/ijms232012140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 11/27/2022] Open
Abstract
The gut microbiota forms a complex microecosystem in vertebrates and is affected by various factors. As a key intrinsic factor, sex has a persistent impact on the formation and development of gut microbiota. Few studies have analyzed sexual dimorphism of gut microbiota, particularly in wild animals. We used 16S rRNA gene sequencing to analyze the gut microbiota of juvenile and adult Chinese alligators, and untargeted metabolomics to study serum metabolomes of adult alligators. We observed significant sexual differences in the community diversity in juvenile, but not adult, alligators. In terms of taxonomic composition, the phylum Fusobacteriota and genus Cetobacterium were highly abundant in adult alligators, similar to those present in carnivorous fishes, whereas the gut microbiota composition in juvenile alligators resembled that in terrestrial reptiles, indicating that adults are affected by their wild aquatic environment and lack sex dimorphism in gut microbiota. The correlation analysis revealed that the gut microbiota of adults was also affected by cyanobacteria in the external environment, and this effect was sex-biased and mediated by sex hormones. Overall, this study reveals sexual differences in the gut microbiota of crocodilians and their convergence in the external environment, while also providing insights into host-microbiota interactions in wildlife.
Collapse
Affiliation(s)
- Meng-Yuan Hu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qin-Zhang Yu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jian-Qing Lin
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou 515063, China
| | - Sheng-Guo Fang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
24
|
Zhao Y, Liu X, Lu M, Zhou R, Sun Z, Xiao S. Evaluation of Trophic Structure and Energy Flow in a Pelteobagrus fulvidraco Integrated Multi-Trophic Aquaculture System. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12027. [PMID: 36231329 PMCID: PMC9564914 DOI: 10.3390/ijerph191912027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
An integrated multi-trophic aquaculture system (IMTA) combined muti-trophic organism cultivation with ecological engineering facilities effectively improves energy utilization efficiency and reduces pollution emission, which promotes the development of the aquaculture industry. In this study, an Ecopath model was used to analyze the Pelteobagrus fulvidraco-integrated multi-trophic aquaculture system (FMRP). The results showed that the effective trophic level range of FMRP was low (1~2.566), and the energy throughput was mainly concentrated in trophic level I (65.39%). The utilization rate of commercial fish feed was high. Due to the lack of predators for detritus and primary producers (Oryza sativa L. and hydrophyte), the energy throughput of detritus and the primary production were not fully utilized. The ascendency/total development capacity (A/TDC) and overhead/total development capacity (O/TDC) were 0.29 and 0.59, respectively, which indicated that the aquaculture system had high elasticity and strong anti-perturbation ability, but the stability could be substantially improved. The results of the carrying capacity assessment showed that the maximal single increments of Pelteobagrus fulvidraco fry and juvenile were 0.12 g/m2 and 0.42 g/m2, respectively, and the maximal common increments of Pelteobagrus fulvidraco fry and juvenile were 0.10 g/m2 and 0.10 g/m2, respectively, which indicated that there was insufficient space for increment. The study showed that the FMRP still needed to be improved in the aspects of polyculture species, energy consumption and stability. It would be necessary for the FMRP to perform further optimization and enhancement on the energy utilization efficiency, system stability and comprehensive benefits.
Collapse
Affiliation(s)
- Yuxi Zhao
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, 63 Chifeng Road, Shanghai 200092, China
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, 63 Chifeng Road, Shanghai 200092, China
- College of Fisheries and Life Science, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Xingguo Liu
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, 63 Chifeng Road, Shanghai 200092, China
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, 63 Chifeng Road, Shanghai 200092, China
| | - Ming Lu
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, 63 Chifeng Road, Shanghai 200092, China
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, 63 Chifeng Road, Shanghai 200092, China
- College of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Runfeng Zhou
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, 63 Chifeng Road, Shanghai 200092, China
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, 63 Chifeng Road, Shanghai 200092, China
- College of Fisheries and Life Science, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Zhaoyun Sun
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, 63 Chifeng Road, Shanghai 200092, China
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, 63 Chifeng Road, Shanghai 200092, China
- Wuxi Fisheries College, Nanjing Agriculture University, 69 Renbin Road, Wuxi 214128, China
| | - Shuwen Xiao
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, 63 Chifeng Road, Shanghai 200092, China
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, 63 Chifeng Road, Shanghai 200092, China
- College of Fisheries and Life Science, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| |
Collapse
|
25
|
Li H, Meng Q, Wang W, Mo D, Dang W, Lu H. Gut Microbial Composition and Liver Metabolite Changes Induced by Ammonia Stress in Juveniles of an Invasive Freshwater Turtle. BIOLOGY 2022; 11:1315. [PMID: 36138794 PMCID: PMC9495491 DOI: 10.3390/biology11091315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
As the most common pollutant in aquaculture systems, the toxic effects of ammonia have been extensively explored in cultured fish, molluscs, and crustaceans, but have rarely been considered in turtle species. In this study, juveniles of the invasive turtle, Trachemys scripta elegans, were exposed to different ammonia levels (0, 0.3, 3.0, and 20.0 mg/L) for 30 days to evaluate the physiological, gut microbiomic, and liver metabolomic responses to ammonia in this turtle species. Except for a relatively low growth rate of turtles exposed to the highest concentration, ammonia exposure had no significant impact on the locomotor ability and gut microbial diversity of turtles. However, the composition of the microbial community could be altered, with some pathogenic bacteria being increased in ammonia-exposed turtles, which might indicate the change in their health status. Furthermore, hepatic metabolite profiles via liquid chromatography-mass spectrometry revealed extensive metabolic perturbations, despite being primarily involved in amino acid biosynthesis and metabolism. Overall, our results show that ammonia exposure causes gut dysbacteriosis and disturbs various metabolic pathways in aquatic turtle species. Considering discrepant defense mechanisms, the toxic impacts of ammonia at environmentally relevant concentrations on physiological performance might be less pronounced in turtles compared with fish and other invertebrates.
Collapse
|
26
|
Li Y, Xiang Y, Jiang Q, Yang Y, Huang Y, Fan W, Zhao Y. Comparison of immune defense and antioxidant capacity between broodstock and hybrid offspring of juvenile shrimp (Macrobrachium nipponense): Response to acute ammonia stress. Anim Genet 2022; 53:380-392. [PMID: 35304756 DOI: 10.1111/age.13182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 11/26/2021] [Accepted: 02/20/2022] [Indexed: 12/29/2022]
Abstract
Ammonia is a major environmental pollutant in the aquatic system that poses a great threat to the health of shrimp. Macrobrachium nipponense, as one of the large-yield farmed shrimp, is facing germplasm degradation. Genetic improvement through hybridization is one of the effective methods to solve this problem. However, there are few studies on the effects of ammonia nitrogen on the germplasm resources of M. nipponense. In this study, the broodstock populations (Dianshan, DS) and hybrid offspring (DS ♀ × CD [Changjiang, CJ ♂ × Dongting, DT ♀], SCD) were exposed to 0, 5, or 20 mg/L of ammonia for 96 h. The survival rate of the SCD group was greater than the DS group, although there were no significant differences in weight gain rate and length gain rate (p > 0.05). The number of positive cells and apoptosis rates in the DS group were significantly greater than in the SCD group after ammonia exposure (p < 0.05). As the ammonia concentration increased, the antioxidant enzyme activities in the SCD group were significantly higher than DS group, while the hepatotoxicity enzyme activities in the SCD group were significantly lower than DS group (p < 0.05). The trends in the expression of antioxidant- and immune-related genes were generally consistent with the activities of antioxidant enzymes. Our study found that the hybrid population had stronger stress resistance than their parent populations at the same ammonia concentration. This study confirms our speculation that hybrid population has a greater advantage in antioxidant immunity, which also provides reference for the follow-up study of chronic ammonia toxicity.
Collapse
Affiliation(s)
- Yiming Li
- School of Life Science, East China Normal University, Shanghai, China
| | - Yuqian Xiang
- School of Life Science, East China Normal University, Shanghai, China
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| | - Ying Yang
- School of Life Science, East China Normal University, Shanghai, China
| | - Yingying Huang
- School of Life Science, East China Normal University, Shanghai, China
| | - Wujiang Fan
- Shanghai Fisheries Research Institute (Shanghai Fisheries Technology Promotion Station), Shanghai, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai, China.,State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| |
Collapse
|