1
|
Espitia-Pérez P, Espitia-Pérez L, Peñata-Taborda A, Brango H, Pastor-Sierra K, Galeano-Páez C, Arteaga-Arroyo G, Humanez-Alvarez A, Rodríguez Díaz R, Salas Osorio J, Valderrama LA, Saint’Pierre TD. Genetic Damage and Multi-Elemental Exposure in Populations in Proximity to Artisanal and Small-Scale Gold (ASGM) Mining Areas in North Colombia. TOXICS 2025; 13:202. [PMID: 40137529 PMCID: PMC11946375 DOI: 10.3390/toxics13030202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 03/29/2025]
Abstract
This study evaluates DNA damage and multi-element exposure in populations from La Mojana, a region of North Colombia heavily impacted by artisanal and small-scale gold mining (ASGM). DNA damage markers from the cytokinesis-block micronucleus cytome (CBMN-Cyt) assay, including micronucleated binucleated cells (MNBN), nuclear buds (NBUDs) and nucleoplasmic bridges (NPB), were assessed in 71 exposed individuals and 37 unexposed participants. Exposed individuals had significantly higher MNBN frequencies (PR = 1.26, 95% CI: 1.02-1.57, p = 0.039). Principal Component Analysis (PCA) identified the "Soil-Derived Mining-Associated Elements" (PC1), including V, Fe, Al, Co, Ba, Se and Mn, as being strongly associated with high MNBN frequencies in the exposed population (PR = 10.45, 95% CI: 9.75-12.18, p < 0.001). GAMLSS modeling revealed non-linear effects of PC1, with greater increases in MNBN at higher concentrations, especially in exposed individuals. These results highlight the dual role of essential and toxic elements, with low concentrations being potentially protective but higher concentrations increasing genotoxicity. Women consistently exhibited higher MNBN frequencies than men, suggesting sex-specific susceptibilities. This study highlights the compounded risks of chronic metal exposure in mining-impacted regions and underscores the urgent need for targeted interventions to mitigate genotoxic risks in vulnerable populations.
Collapse
Affiliation(s)
- Pedro Espitia-Pérez
- Grupo de Investigación Biomédica y Biología Molecular, Facultad de Ciencias de la Salud, Universidad del Sinú, Montería 230001, Colombia; (L.E.-P.); (A.P.-T.); (K.P.-S.); (C.G.-P.); (G.A.-A.); (A.H.-A.)
| | - Lyda Espitia-Pérez
- Grupo de Investigación Biomédica y Biología Molecular, Facultad de Ciencias de la Salud, Universidad del Sinú, Montería 230001, Colombia; (L.E.-P.); (A.P.-T.); (K.P.-S.); (C.G.-P.); (G.A.-A.); (A.H.-A.)
| | - Ana Peñata-Taborda
- Grupo de Investigación Biomédica y Biología Molecular, Facultad de Ciencias de la Salud, Universidad del Sinú, Montería 230001, Colombia; (L.E.-P.); (A.P.-T.); (K.P.-S.); (C.G.-P.); (G.A.-A.); (A.H.-A.)
| | - Hugo Brango
- Facultad de Educación y Ciencias, Departamento de Matemáticas, Universidad de Sucre, Sincelejo 700003, Colombia;
| | - Karina Pastor-Sierra
- Grupo de Investigación Biomédica y Biología Molecular, Facultad de Ciencias de la Salud, Universidad del Sinú, Montería 230001, Colombia; (L.E.-P.); (A.P.-T.); (K.P.-S.); (C.G.-P.); (G.A.-A.); (A.H.-A.)
| | - Claudia Galeano-Páez
- Grupo de Investigación Biomédica y Biología Molecular, Facultad de Ciencias de la Salud, Universidad del Sinú, Montería 230001, Colombia; (L.E.-P.); (A.P.-T.); (K.P.-S.); (C.G.-P.); (G.A.-A.); (A.H.-A.)
| | - Gean Arteaga-Arroyo
- Grupo de Investigación Biomédica y Biología Molecular, Facultad de Ciencias de la Salud, Universidad del Sinú, Montería 230001, Colombia; (L.E.-P.); (A.P.-T.); (K.P.-S.); (C.G.-P.); (G.A.-A.); (A.H.-A.)
| | - Alicia Humanez-Alvarez
- Grupo de Investigación Biomédica y Biología Molecular, Facultad de Ciencias de la Salud, Universidad del Sinú, Montería 230001, Colombia; (L.E.-P.); (A.P.-T.); (K.P.-S.); (C.G.-P.); (G.A.-A.); (A.H.-A.)
| | - Ruber Rodríguez Díaz
- Hospital Alma Máter, Unidad de Cuidados Intensivos (UCI), Medellín 050001, Colombia;
| | - Javier Salas Osorio
- Hospital Alma Máter, Servicios Ambulatorios, Coordinación Médica, Medellín 050001, Colombia;
| | | | | |
Collapse
|
2
|
Wang F, Li W, Wang H, Hu Y, Cheng H. The leaching behavior of heavy metal from contaminated mining soil: The effect of rainfall conditions and the impact on surrounding agricultural lands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169877. [PMID: 38185143 DOI: 10.1016/j.scitotenv.2024.169877] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/10/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
Contaminated mining soils could lead to heavy metal pollution of surrounding farmlands under rainfall conditions. With the aids of sequential extraction, batch leaching, and dynamic leaching experiments, this study was carried out to investigate the characteristics of heavy metals in contaminated mining soils, understand their leaching behavior under different rainfall conditions, and evaluate the potential effects on surrounding farmlands. The results indicated that the concentrations of heavy metals (Cr, Ni, Cu, Zn, As, Cd, and Pb) in the contaminated mining soils were several or even twenty times higher than their corresponding background values, and Cd, Zn, Cu and Pb had considerable proportions (>50 %) in mobile forms. The leaching amounts of heavy metals from the contaminated mining soils had positive correlation with their contents in acid soluble form, and showed strong dependence on rainfall pH conditions. Acid rainfalls (pH = 4.32) can greatly increase the average annual release of Cd, Zn, Cu and Pb from mine soils in the study area, with increments ranging from 72.4 % (Pb) to 85.9 % (Cd) compared to those under alkaline conditions (pH = 7.42). The leaching of heavy metals was well fitted by two-constant, pseudo second-order and parabolic equations, indicating that their multi-layer sorption/desorption behavior on soil surface was dominated by chemical processes and their release was controlled by the diffusion within the soil pore channels. The two-column leaching experiment showed that the metal-rich leachate can lead to obvious increments of heavy metals in non-residual fractions (in particular Cd in acid soluble form) in surrounding farmlands, which would significantly raise the potential ecological risk associated with heavy metals. These findings indicate the importance of contaminated mining soils as a long-term source of heavy metals and the needs for mitigating the releases of toxic elements, especially in areas with heavy acid precipitation.
Collapse
Affiliation(s)
- Fei Wang
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Wei Li
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Hao Wang
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Yuanan Hu
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Zhao R, Wu X, Zhu G, Zhang X, Liu F, Mu W. Revealing the release and migration mechanism of heavy metals in typical carbonate tailings, East China. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132978. [PMID: 37984137 DOI: 10.1016/j.jhazmat.2023.132978] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/07/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023]
Abstract
Refining the occurrence characteristics of tailings hazardous materials at source is of great importance for pollution management and ecological reclamation. However, the release and transport of heavy metals (HMs) from tailings under rainfall drenching in simulated real-world environments is less well portrayed, particularly highlighting the inherent neutralisation in tailings wastes under superimposed dynamic conditions. In this study, dynamic leaching columns simulating actual conditions were used to observe the release and transport of HMs from tailings under acid rainfall infiltration at spatial and temporal scales. The release rate of trace elements (e.g., As, Cr, Ni, Pb, Cd) is high. Neutralisation in the presence of carbonate rocks in the gangue reduces HMs release intensity from tailings with high heavy metal content, along with the precipitation of iron oxides and chromium-bearing minerals, etc. In addition, the vertical differentiation of HMs is more relevant to physical processes. In the absence of carbonate rocks in gangue, the lowest pH value is reached within 1.2 h after acid rain infiltrates the tailings. At the same time, Cu, Zn and Cd are released significantly from the minerals at the superficial level. The release of As(III) is mainly concentrated in the early and late stages of water-rock contact.
Collapse
Affiliation(s)
- Rong Zhao
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Xiong Wu
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Ge Zhu
- Department of Hydrogeology and Environmental Geology, China Geological Survey, Beijing 100011, PR China
| | - Xiao Zhang
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Fei Liu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China; MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Wenping Mu
- School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, PR China
| |
Collapse
|
4
|
Zheng X, Qiu S, Zhou B, Li Q, Chen M. Leaching of heavy metals from tungsten mining tailings: A case study based on static and kinetic leaching tests. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123055. [PMID: 38065334 DOI: 10.1016/j.envpol.2023.123055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/03/2023] [Accepted: 11/26/2023] [Indexed: 01/26/2024]
Abstract
Heavy metal (HM) leaching from tungsten mine tailings is a serious environmental risk. In this study, we assess the HM pollution level of tungsten tailings, determine the HM leaching patterns and mechanisms, and estimate the HM fluxes from a tailings reservoir. The results showed that the comprehensive pollution index (CRSi) values that decreased in order of the HM pollution levels in the tailings were cadmium (Cd) > tungsten (W) > lead (Pb) > copper (Cu) = zinc (Zn) > arsenic (As) > manganese (Mn). This result indicated that Cd, W, and Pb were priority pollutants in tailings. The Res fraction of all HMs was greater than 50%. Pb and Cd had similar species fractions with high Exc fractions, and tungsten had a considerable proportion of the Wat fraction. The general acid neutralizing capacity (GANC) test divides the leaching process of HMs into two stages, and each of stage is affected by different mechanisms. A neutral environment promoted tungsten leaching in the column leching test, while an acidic environment promoted Cd and Pb leaching. In addition, the pH effect was more obvious in the early stage. The kinetic fitting results showed that the second-order dynamic model well simulated the leaching of W, Pb, and Cd in most cases. Based on column kinetic leaching test results and tailings parameters, the annual W, Pb, and Cd fluxes were estimated to be 6.35 × 108, 1.3288 × 109, and 1.012 × 108 mg/year, respectively. The above results can guide the environmental management of tungsten tailing reservoirs, such as selecting suitable repair materials and estimating repair service times.
Collapse
Affiliation(s)
- Xiaojun Zheng
- Cooperative Innovation Center jointly established by the Ministry and the Ministry of Rare Earth Resources Development and Utilization, Ganzhou, 341000, Jiangxi, China; Key Laboratory of Environmental Pollution and Control in Mining and Metallurgy of Jiangxi Province, Ganzhou, 341000, Jiangxi, China; School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, China.
| | - Shiyue Qiu
- Cooperative Innovation Center jointly established by the Ministry and the Ministry of Rare Earth Resources Development and Utilization, Ganzhou, 341000, Jiangxi, China; Key Laboratory of Environmental Pollution and Control in Mining and Metallurgy of Jiangxi Province, Ganzhou, 341000, Jiangxi, China; School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, China.
| | - Buchan Zhou
- Cooperative Innovation Center jointly established by the Ministry and the Ministry of Rare Earth Resources Development and Utilization, Ganzhou, 341000, Jiangxi, China; Key Laboratory of Environmental Pollution and Control in Mining and Metallurgy of Jiangxi Province, Ganzhou, 341000, Jiangxi, China; School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, China.
| | - Qi Li
- Cooperative Innovation Center jointly established by the Ministry and the Ministry of Rare Earth Resources Development and Utilization, Ganzhou, 341000, Jiangxi, China; Key Laboratory of Environmental Pollution and Control in Mining and Metallurgy of Jiangxi Province, Ganzhou, 341000, Jiangxi, China; School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, China.
| | - Ming Chen
- Cooperative Innovation Center jointly established by the Ministry and the Ministry of Rare Earth Resources Development and Utilization, Ganzhou, 341000, Jiangxi, China; Key Laboratory of Environmental Pollution and Control in Mining and Metallurgy of Jiangxi Province, Ganzhou, 341000, Jiangxi, China; School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
5
|
Li W, Deng Y, Wang H, Hu Y, Cheng H. Potential risk, leaching behavior and mechanism of heavy metals from mine tailings under acid rain. CHEMOSPHERE 2024; 350:140995. [PMID: 38128738 DOI: 10.1016/j.chemosphere.2023.140995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
The leaching of heavy metals from abandoned mine tailings can pose a severe threat to surrounding areas, especially in the regions influenced by acid rain with high frequency. In this study, the potential risks of heavy metals in the tailings collected from a small-scale abandoned multi-metal mine was assessed, and their leaching behavior and mechanism were investigated by batch, semi-dynamic and in situ leaching experiments under simulated and natural rainfall conditions. The results suggested that Zn, Cu, Pb, and Cd in the tailings could cause high/very high risks. Both batch and semi-dynamic leaching tests consistently confirmed that the leaching of heavy metals (particularly Cd) could lead to serious pollution of the surrounding environment. The leaching rates of heavy metals were pH-dependent and related to their chemical speciations in the mine tailings. The leaching behavior of Cu and Cd was dominated by surface wash-off, Zn was controlled by diffusion initially and then surface wash-off, and the leaching mechanisms of Pb and As varied with the pH conditions. It was estimated that acid rain could greatly elevate the release fluxes of Zn (20.8%), Cu (36.7%), Pb (49.9%) and Cd (35.3%) in the study area. These findings could improve the understanding of the leaching behavior of heavy metals from mine tailings and assist in developing appropriate management strategies.
Collapse
Affiliation(s)
- Wei Li
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yu Deng
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Hao Wang
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yuanan Hu
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
6
|
Yeganeh A, Johannssen A, Chukhrova N, Erfanian M, Azarpazhooh MR, Morovatdar N. A monitoring framework for health care processes using Generalized Additive Models and Auto-Encoders. Artif Intell Med 2023; 146:102689. [PMID: 38042610 DOI: 10.1016/j.artmed.2023.102689] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 12/04/2023]
Abstract
In recent years, there has been a considerable focus on developing effective methods for monitoring health care processes. Utilizing Statistical Process Monitoring (SPM) approaches, particularly risk-adjusted control charts, has emerged as a highly promising approach for achieving robust frameworks for this aim. Considering risk-adjusted control charts, longitudinal health care process data is typically monitored by establishing a regression relationship between various risk factors (explanatory variables) and patient outcomes (response variables). While the majority of prior research has primarily employed logistic models in risk-adjusted control charts, there are more intricate health care processes that necessitate the incorporation of both parametric and nonparametric risk factors. In such scenarios, the Generalized Additive Model (GAM) proves to be a suitable choice, albeit it often introduces higher computational complexity and associated challenges. Surprisingly, there are limited instances where researchers have proposed advancements in this direction. The primary objective of this paper is to introduce an SPM framework for monitoring health care processes using a GAM over time, coupled with a novel risk-adjusted control chart driven by machine learning techniques. This control chart is implemented on a data set encompassing two stroke types: ischemic and hemorrhagic. The key focus of this study is to monitor the stability of the relationship between stroke types and predefined explanatory variables over time within this data set. Extensive simulation results, based on real data from patients with acute stroke, demonstrate the remarkable flexibility of the proposed method in terms of its detection capabilities compared to conventional approaches.
Collapse
Affiliation(s)
- Ali Yeganeh
- University of Hamburg, 20146 Hamburg, Germany.
| | | | | | - Mahdiyeh Erfanian
- Department of Statistics, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mahmoud Reza Azarpazhooh
- Department of Neurology, Ghaem Hospital, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran; Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
| | - Negar Morovatdar
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Yang L, Zhao J, Huang Q, Wang J, Xu C, Xu Y, Liu L. Release behavior of fertilizers and heavy metals from iron-loaded sludge biochar in the aqueous environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122163. [PMID: 37429492 DOI: 10.1016/j.envpol.2023.122163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
In this study, the release behavior of fertilizers (NH4+-N, PO43- and K) and heavy metals (Mn, Zn, Ni, Cu, Pb and Cr) from iron-loaded sludge biochar (ISBC) was investigated to evaluated the feasibility and risks of ISBC as a slow release fertilizer. Their release capacity was significantly enhanced with decreasing initial pH, increasing solid-liquid ratio (RS-L) and rising temperature (p < 0.05). When the initial pH, RS-L and temperature were separately 5 (fertilizers)/1 (heavy metals), 1:5 and 298 K, the final concentrations of NH4+-N, PO43-, K, Mn, Zn and Ni were 6.60, 14.13, 149.4, 53.69, 72.56, and 1.01 mg L-1, while the maximum concentrations of Cu, Pb and Cr were 0.94, 0.77, and 0.22 mg L-1, respectively. Due to the tiny difference between the R2 values, revised pseudo-first-order and pseudo-second-order kinetics models described their release behavior well, suggesting that physical and chemical interactions played an important role. Activation energies greater than 40 kJ mol-1 indicated that the rate-controlling steps of the release of NH4+-N, PO43- and Ni were chemical reactions, while chemical reactions and diffusion together determined the release rates of K, Mn, Zn, Cu, Pb and Cr because their activation energies were in the range of 20-40 kJ mol-1. The increasingly negative ΔG and positive ΔH and ΔS suggested that their release was a spontaneous (except Cr) and endothermic process with an increase of randomness between the solid-liquid interface. The release efficiency of NH4+-N, PO43- and K were in the ranges of 28.21%-53.97%, 2.09%-18.06% and 39.46%-66.14%, respectively. Meanwhile, the pollution index and evaluation index of heavy metals were in the ranges of 33.31-227.4 and 4.64-29.24, respectively. In summary, ISBC could be used as a slow-release fertilizer with low risk when the RS-L was less than 1:40.
Collapse
Affiliation(s)
- Lijiao Yang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Jirong Zhao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; School of Civil and Hydraulic Engineering, Xichang University, Xichang, 615000, China.
| | - Qingxia Huang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Jinchao Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Chengtao Xu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Yufeng Xu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Liheng Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
8
|
Zhang F, Li C, Shi Y, Meng L, Zan F, Wu X, Wang L, Sheng A, Crittenden JC, Chen J. Evaluation on leachability of heavy metals from tailings: risk factor identification and cumulative influence. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64565-64575. [PMID: 37072593 DOI: 10.1007/s11356-023-26933-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
The leachability of heavy metals (HMs) in tailings is significantly affected by multivariate factors associated with environmental conditions. However, the leaching patterns of HMs in molybdenum (Mo) tailings due to environmental change and cumulative influences of multi-leaching factors remain unclear. The leaching behaviors of HMs in Mo tailings were studied through static leaching tests. The key leaching factors were discussed via simulating acid rain leaching scenario in terms of global and local environmental conditions. The potential risk factors were identified, and their cumulative influences on the leachability of HMs were evaluated with boosted regression trees (BRT) and generalized additive model (GAM) analyses. Environmental factors showed interactive effects on the leachability of HMs in tailings. The leachability of HMs in tailings decreased significantly with the interaction of increasing liquid/solid (L/S) ratio and pH. Rebound of leachability was observed with high L/S ratio (> 60) and long-time leaching (> 30 h). L/S ratio and pH were the most sensitive factors to the leachability of HMs with the corresponding contribution of 40.8% and 27.1%, respectively, followed by leaching time and temperature (~ 16%). The total contribution of global climate-associated factors, i.e., L/S ratio, leaching time, and temperature to the leachability of HMs was up to 70%, while leachate pH shared the other 30%. With the increase of persistent heavy rain in summer globally, As and Cd were found to having higher leaching risks than the other HMs in tailings, although an obvious decrease in their leachability was obtained due to the improvement of acid rain pollution in China. The study provides a valuable method for the identification of potential risk factors and their associations with the leaching behaviors of HMs in tailings under the background of obvious improvement on acid rain pollution in China and global climate change.
Collapse
Affiliation(s)
- Fengjiao Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Chunping Li
- Zhejiang Hong Shi Environmental Protection Co, Ltd, Shanghua Road, Lanxi, 321100, China
| | - Yao Shi
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Lingkun Meng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Feixiang Zan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Xiaohui Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Linling Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Anxu Sheng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - John C Crittenden
- School of Civil and Environmental Engineering, Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jing Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China.
| |
Collapse
|
9
|
Dong Y, Lu H, Lin H. Release characteristics of heavy metals in high-sulfur coal gangue: Influencing factors and kinetic behavior. ENVIRONMENTAL RESEARCH 2023; 217:114871. [PMID: 36423666 DOI: 10.1016/j.envres.2022.114871] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/15/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
High-sulfur coal gangue (HS-CG) is extremely unstable in the environment, releasing acid mine drainage with high concentrations of harmful heavy metals (HMs). The effects of HS-CG particle size, leaching solution pH, Fe3+ and acidophilic microorganisms on the release of HMs from the HS-CG and their kinetic behavior were studied using static leaching tests. The results showed that the smaller the particle size of HS-CG and the more acidic the leaching solution, the greater the release of HMs. As the chemical catalyst, the external addition of 300 mg/L Fe3+ can make the leaching amount of Fe, Mn, Cu, Zn, Ni, Cr reached 10,224.93, 93.88, 52.25, 11.56, 7.55, 2.97 mg/kg respectively, and the release of HMs was 1.36-2.60 times of the tests without the addition of iron. However, the concentration of Fe3+ above 800 mg/L promoted the production of jarosite on the surface of HS-CG, which led to decrease in the release of HMs. The HMs forms in HS-CG were different, while the effect of microorganisms on the leaching of Zn (54.99%) and Mn (52.35%) in the higher acid soluble fraction was more obvious, their leaching amount reached 87.21 and 107.58 mg/kg respectively. The kinetic analysis indicated that the rate-controlling step was mainly redox reaction at first, and then gradually controlled by the diffusion of ash layer. So, the kinetic equation controlled jointly by two rate-controlling stages has been proposed to describe the dissolution of HS-CG. This work help develop pertinent strategies for mine area remediation via controlling the HMs generation path.
Collapse
Affiliation(s)
- Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Huan Lu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| |
Collapse
|