1
|
Wu F, Kong Z, Ge P, Sun D, Liu D, Dong Z, Chen G. Ecotoxicological evaluation and regeneration impairment of planarians by dibutyl phthalate. ENVIRONMENTAL RESEARCH 2024; 257:119403. [PMID: 38871274 DOI: 10.1016/j.envres.2024.119403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/31/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024]
Abstract
Commonly utilized as a plasticizer in the food and chemical sectors, Dibutyl phthalate (DBP) poses threats to the environment and human well-being as it seeps or moves into the surroundings. Nevertheless, research on the harmfulness of DBP to aquatic organisms is limited, and its impact on stem cells and tissue regeneration remains unidentified. Planarians, recognized for their robust regenerative capabilities and sensitivity to aquatic pollutants, are emerging animal models in toxicology. This study investigated the comprehensive toxicity effects of environmentally relevant levels of DBP on planarians. It revealed potential toxicity mechanisms through the use of immunofluorescence, chromatin dispersion assay, Western blot, quantitative real-time fluorescence quantitative PCR (qRT-PCR), chromatin behavioral and histological analyses, immunofluorescence, and terminal dUTP nickel-end labeling (TUNEL). Findings illustrated that DBP caused morphological and motor abnormalities, tissue damage, regenerative inhibition, and developmental neurotoxicity. Further research revealed increased apoptosis and suppressed stem cell proliferation and differentiation, disrupting a balance of cell proliferation and death, ultimately leading to morphological defects and functional abnormalities. This was attributed to oxidative stress and DNA damage caused by excessive release of reactive oxygen species (ROS). This exploration furnishes fresh perspectives on evaluating the toxicity peril posed by DBP in aquatic organisms.
Collapse
Affiliation(s)
- Fan Wu
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Zhihong Kong
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Peng Ge
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Dandan Sun
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Dezeng Liu
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Zimei Dong
- College of Life Science, Henan Normal University, Xinxiang, 453007, China.
| | - Guangwen Chen
- College of Life Science, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
2
|
Guo X, Qian Z, Jiang S, Qian X, Ning X, Yin S, Zhang K. Assessing the ecotoxicity of florfenicol exposure at environmental levels: A case study of histology, apoptosis and microbiota in hepatopancreas of Eriocheir sinensis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116092. [PMID: 38350219 DOI: 10.1016/j.ecoenv.2024.116092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
The intensification of production practices in the aquaculture industry has led to the indiscriminate use of antibiotics to combat diseases and reduce costs, which has resulted in environmental pollution, posing serious threats to aquaculture sustainability and food safety. However, the toxic effect of florfenicol (FF) exposure on the hepatopancreas of crustaceans remains unclear. Herein, by employing Chinese mitten crab (Eriocheir sinensis) as subjects to investigate the toxic effects on histopathology, oxidative stress, apoptosis and microbiota of hepatopancreas under environment-relevant (0.5 and 5 μg/L), and extreme concentrations (50 μg/L) of FF. Our results revealed that the damage of hepatopancreas tissue structure caused by FF exposure in a dose-and time-dependent manner. Combined with the increased expression of apoptosis-related genes (Caspase 3, Caspase 8, p53, Bax and Bcl-2) at mRNA and protein levels, activation of catalase (CAT) and superoxide dismutase (SOD), and malondialdehyde (MDA) accumulation, FF exposure also induced oxidative stress, and apoptosis in hepatopancreas. Interestingly, 7 days exposure triggered more pronounced toxic effect in crabs than 14 days under environment-relevant FF concentration. Integrated biomarker response version 2 (IBRv2) index indicated that 14 days FF exposure under extreme concentration has serious toxicity effect on crabs. Furthermore, 14 days exposure to FF changed the diversity and composition of hepatopancreas microbiota leading remarkable increase of pathogenic microorganism Spirochaetes following exposure to 50 μg/L of FF. Taken together, our study explained potential mechanism of FF toxicity on hepatopancreas of crustaceans, and provided a reference for the concentration of FF to be used in culture of Chinese mitten crab.
Collapse
Affiliation(s)
- Xinping Guo
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Ziang Qian
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Su Jiang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Xiaobin Qian
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Xianhui Ning
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, Jiangsu 222005, China
| | - Shaowu Yin
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, Jiangsu 222005, China.
| | - Kai Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, Jiangsu 222005, China.
| |
Collapse
|
3
|
Lyu L, Tao Y, Abaakil K, Gu Y, Zhong G, Hu Y, Zhang Y. Novel insights into DEHP-induced zebrafish spleen damage: Cellular apoptosis, mitochondrial dysfunction, and innate immunity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169324. [PMID: 38145680 DOI: 10.1016/j.scitotenv.2023.169324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/15/2023] [Accepted: 12/10/2023] [Indexed: 12/27/2023]
Abstract
DEHP (Di(2-ethylhexyl) phthalate) is the most abundant phthalate component detected in environmental samples as it is widely used in the manufacturing of children's toys, medical devices and furniture. Due to its wide prevalence and propensity to accumulate in the food chain, significant concerns have risen about the safety profile of DEHP. Here, we used a zebrafish model to investigate the toxicity mechanisms of DEHP. Our results indicated that exposure to DEHP altered the ROS content in zebrafish spleen and inhibited the activities of antioxidant enzymes SOD and CAT, detoxification enzyme GSH-Px and induced histopathological damage. In addition, elucidated the mechanism of DEHP significantly promoted apoptosis and caused damage in spleen cells through the bax/bcl-2 pathway. Further genetic testing demonstrated significant alterations in mitochondrial biogenesis, fission, and fusion-related genes and suggested potential mechanistic pathways, including GM10532/m6A/FIS1 axis, the STAT3/POA1 axis, and the NFR1/TFAM axis. Serological and genomic analysis indicated that DEHP exposure activated the C3 complement cascade immune pathway and interfered with innate immune function. IBRv2 analysis proposes that innate immunity may serve as a signal indicator of early toxic responses to DEHP pollutants. This study provided comprehensive cellular and genetic data for DEHP toxicity studies and emphasized the need for future management and remediation of DEHP contamination. It also provides data to specifically support the health risk assessments of DEHP, as well as contributing to broader health and environmental research.
Collapse
Affiliation(s)
- Liang Lyu
- College of Resources and Environment, Northeast Agricultural University, Changjiang Street 600, Harbin 150030, PR China; Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, SW7 2AZ London, UK.
| | - Yue Tao
- College of Resources and Environment, Northeast Agricultural University, Changjiang Street 600, Harbin 150030, PR China
| | - Kaoutar Abaakil
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, SW7 2AZ London, UK.
| | - Yanyan Gu
- College of Resources and Environment, Northeast Agricultural University, Changjiang Street 600, Harbin 150030, PR China
| | - Guanyu Zhong
- College of Resources and Environment, Northeast Agricultural University, Changjiang Street 600, Harbin 150030, PR China
| | - Yang Hu
- College of Resources and Environment, Northeast Agricultural University, Changjiang Street 600, Harbin 150030, PR China
| | - Ying Zhang
- College of Resources and Environment, Northeast Agricultural University, Changjiang Street 600, Harbin 150030, PR China.
| |
Collapse
|
4
|
Wang X, Rowan-Carroll A, Meier MJ, Williams A, Yauk CL, Hales BF, Robaire B. Toxicological Mechanisms and Potencies of Organophosphate Esters in KGN Human Ovarian Granulosa Cells as Revealed by High-throughput Transcriptomics. Toxicol Sci 2023; 197:kfad114. [PMID: 37941476 PMCID: PMC10823774 DOI: 10.1093/toxsci/kfad114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
Despite the growing number of studies reporting potential risks associated with exposure to organophosphate esters (OPEs), their molecular mechanisms of action remain poorly defined. We used the high-throughput TempO-Seq™ platform to investigate the effects of frequently detected OPEs on the expression of ∼3000 environmentally responsive genes in KGN human ovarian granulosa cells. Cells were exposed for 48 h to one of five OPEs (0.1 to 50 μM): tris(methylphenyl) phosphate (TMPP), isopropylated triphenyl phosphate (IPPP), tert-butylphenyl diphenyl phosphate (BPDP), triphenyl phosphate (TPHP), or tris(2-butoxyethyl) phosphate (TBOEP). The sequencing data indicate that four OPEs induced transcriptional changes, whereas TBOEP had no effect within the concentration range tested. Multiple pathway databases were used to predict alterations in biological processes based on differentially expressed genes. At lower concentrations, inhibition of the cholesterol biosynthetic pathway was the predominant effect of OPEs; this was likely a consequence of intracellular cholesterol accumulation. At higher concentrations, BPDP and TPHP had distinct effects, primarily affecting pathways involved in cell cycle progression and other stress responses. Benchmark concentration (BMC) modelling revealed that BPDP had the lowest transcriptomic point of departure. However, in vitro to in vivo extrapolation modeling indicated that TMPP was bioactive at lower concentrations than the other OPEs. We conclude that these new approach methodologies provide information on the mechanism(s) underlying the effects of data-poor compounds and assist in the derivation of protective points of departure for use in chemical read-across and decision-making.
Collapse
Affiliation(s)
- Xiaotong Wang
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Andrea Rowan-Carroll
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K2K 0K9, Canada
| | - Matthew J Meier
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K2K 0K9, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K2K 0K9, Canada
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 9A7, Canada
| | - Barbara F Hales
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Bernard Robaire
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
- Department of Obstetrics and Gynecology, McGill University, Montréal, Québec H3G 1Y6, Canada
| |
Collapse
|
5
|
Li Y, Wang J, Yang Z, Li G, Zhang Z, Zhang D, Sun H. Oxidative stress and DNA damage in earthworms induced by methyl tertiary-butyl ether in natural soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:20514-20526. [PMID: 36258110 DOI: 10.1007/s11356-022-23679-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Adverse effects of methyl tertiary-butyl ether (MTBE) have been noticed at different trophic levels by international researchers. However, there was unclear evidence about its effects on oxidative stress and DNA damage in earthworms. In this study, earthworms were cultivated in various doses of MTBE (0.0 mg/kg, 10.0 mg/kg, 30.0 mg/kg, and 60.0 mg/kg) contaminated agricultural soil for 7 days, 14 days, 21 days, and 28 days, respectively. The result showed that the reactive oxygen species (ROS) content of earthworms significantly increased in MTBE treatment groups compared to the control group. In MTBE treatment groups, the activities of superoxide dismutase, catalase, peroxidase, and glutathione S-transferase were significantly activated at the exposure of 7 days, which increased by 36.3-78.9%, 51.8-97.3%, 36.5-61.9%, and 12.0-54.8%, respectively. Then, the activities of these defense enzymes showed various changes following the changes in exposure times and MTBE concentrations. Especially in the 60.0 mg kg-1 group, both antioxidant enzymes and GST were still significantly activated at the exposure of 14 days and then significantly inhibited at the exposure of 28 days. The analysis of olive tail moment showed significant DNA damage in the 10.0 mg kg-1 group at the exposure of 28 days, and this damage in 30.0 mg/kg and 60.0 mg/kg groups was found at the exposure of 7 days. This result was consistent with the malondialdehyde accumulation in earthworms. Additionally, the analysis of IBRv2 showed the effects of MTBE treatments on earthworms in dose- and time-dependent manners. This study helps better to understand the effects of MTBE on soil invertebrate animals and provide theoretical support for soil protection in governing MTBE application.
Collapse
Affiliation(s)
- Yanqiang Li
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271000, China.
| | - Jun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Zhongkang Yang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Guangde Li
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Zhongwen Zhang
- Weifang Environmental Science Research & Design Institute, Weifang City, 26104, Shandong Province, China
| | - Dexin Zhang
- Bureau of Agriculture and Rural Affairs of Changle, Changle City, 262400, Shandong Province, China
| | - Hui Sun
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271000, China
| |
Collapse
|