1
|
Zhao Z, Niu Z, Liang Z. Ochratoxin A Degradation and Stress Response Mechanism of Brevundimonas naejangsanensis ML17 Determined by Transcriptomic Analysis. Foods 2024; 13:3732. [PMID: 39682804 DOI: 10.3390/foods13233732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Ochratoxin A (OTA) is a naturally occurring mycotoxin mainly produced by certain species of Aspergillus and Penicillium and is a serious threat to human health and food safety. Previous studies showed that Brevundimonas naejangsanensis ML17 can completely degrade 1 μg/mL of OTA. The aim of this study was to investigate the degradation effect of ML17 at different concentrations of OTA, and specifically, to investigate the mechanism of OTA degradation by ML17. The growth of ML17 was not affected by exposure to 6 μg/mL OTA within 24 h. ML17 could almost completely degrade 12 μg/mL of OTA within 36 h, converting it into the non-toxic OTα and L-phenylalanine. Transcriptomic analysis showed that 275 genes were upregulated, whereas three genes were downregulated in ML17 under the stress of 1 μg/mL OTA. Functional enrichment analysis showed that exposure to OTA enhanced translation, amide and peptide biosynthesis and metabolism, promoted oxidative phosphorylation, and increased ATP production. Further analysis revealed that, when exposed to OTA, ML17 exerted a stress-protective effect by synthesizing large amounts of heat shock proteins, which contributed to the correct folding of proteins. Notably, genes related to antioxidant activity, such as peroxiredoxin, superoxide dismutase, and glutaredoxin 3, were significantly upregulated, indicating that ML17 can resist the toxic effects of OTA through adjusting its metabolic processes, and the enzyme-coding gene0095, having OTA degradation activity, was found to be upregulated. This suggests that ML17 can achieve OTA degradation by regulating its metabolism, upregulating its antioxidant system, and upregulating enzyme-encoding genes with OTA degradation activity. Our work provides a theoretical reference for clarifying the mechanism of OTA degradation by ML17.
Collapse
Affiliation(s)
- Zitong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zehui Niu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhihong Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
2
|
Wang Y, Guan Q, Jiao W, Li J, Zhao R, Zhang X, Fan W, Wang C. Isolation, identification and transcriptome analysis of triadimefon-degrading strain Enterobacter hormaechei TY18. Biodegradation 2024; 35:551-564. [PMID: 38530488 DOI: 10.1007/s10532-024-10076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 02/16/2024] [Indexed: 03/28/2024]
Abstract
Triadimefon, a type of triazole systemic fungicide, has been extensively used to control various fungal diseases. However, triadimefon could lead to severe environmental pollution, and even threatens human health. To eliminate triadimefon residues, a triadimefon-degrading bacterial strain TY18 was isolated from a long-term polluted site and was identified as Enterobacter hormaechei. Strain TY18 could grow well in a carbon salt medium with triadimefon as the sole nitrogen source, and could efficiently degrade triadimefon. Under triadimefon stress, a total of 430 differentially expressed genes (DEGs), including 197 up-regulated and 233 down-regulated DEGs, were identified in strain TY18 using transcriptome sequencing (RNA-Seq). Functional classification and enrichment analysis revealed that these DEGs were mainly related to amino acid transport and metabolism, carbohydrate transport and metabolism, small molecule and pyrimidine metabolism. Interestingly, the DEGs encoding monooxygenase and hydrolase activity acting on carbon-nitrogen were highly up-regulated, might be mainly responsible for the metabolism in triadimefon. Our findings in this work suggest that strain E. hormaechei TY18 could efficiently degrade triadimefon for the first time. They provide a great potential to manage triadimefon biodegradation in the environment successfully.
Collapse
Affiliation(s)
- Yan Wang
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Qi Guan
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Wenhui Jiao
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- Experiment Teaching Center, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Jiangbo Li
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Rui Zhao
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Xiqian Zhang
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Weixin Fan
- Experiment Teaching Center, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Chunwei Wang
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
3
|
Shi H, Chang G, Zhang Y, Zhao Y, Wang H, Zhang J, Zhu J. Biodegradation Characteristics and Mechanism of Aflatoxin B 1 by Bacillus amyloliquefaciens from Enzymatic and Multiomics Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15841-15853. [PMID: 38957116 DOI: 10.1021/acs.jafc.4c04055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Aflatoxin B1 (AFB1), a mycotoxin and natural carcinogen, commonly contaminates cereals and animal feeds, posing serious health risks to human and animal. In this study, Bacillus amyloliquefaciens ZG08 isolated from kimchi could effectively remove 80.93% of AFB1 within 72 h at 37 °C and pH 7.0. Metabolome and transcriptome analysis showed that metabolic processes including glycerophospholipid metabolism and amino acid metabolism were most affected in B. amyloliquefaciens ZG08 exposed to AFB1. The adaptation mechanism likely involved activation of the thioredoxin system to restore intracellular redox equilibrium. The key genes, tpx and gldA, overexpressed in Escherichia coli BL21, achieved degradation rates of 60.15% and 47.16% for 100 μg/kg AFB1 under optimal conditions of 37 °C and pH 8.0 and 45 °C and pH 7.0, respectively. The degradation products, identified as AFD1, were less cytotoxic than AFB1 in HepG2 cells. These findings suggest potential strategies for utilizing probiotics and engineered enzymes in AFB1 detoxification.
Collapse
Affiliation(s)
- Honghui Shi
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Guoli Chang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yuhuan Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yan Zhao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Haifeng Wang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Jinzhi Zhang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Junli Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
4
|
Peng L, Yun H, Ji J, Zhang W, Xu T, Li S, Wang Z, Xie L, Li X. Biotransformation activities of fungal strain apiotrichum sp. IB-1 to ibuprofen and naproxen. Arch Microbiol 2024; 206:232. [PMID: 38658486 DOI: 10.1007/s00203-024-03963-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Ibuprofen (IBU) and naproxen (NPX), as widely prescribed non-steroidal anti-inflammatory drugs (NSAIDs), are largely produced and consumed globally, leading to frequent and ubiquitous detection in various aqueous environments. Previously, the microbial transformation of them has been given a little attention, especially with the isolated fungus. A yeast-like Apiotrichum sp. IB-1 has been isolated and identified, which could simultaneously transform IBU (5 mg/L) and NPX (2.5 mg/L) with maximum efficiencies of 95.77% and 88.31%, respectively. For mono-substrate, the transformation efficiency of IB-1 was comparable to that of co-removal conditions, higher than most of isolates so far. IBU was oxidized mainly through hydroxylation (m/z of 221, 253) and NPX was detoxified mainly via demethylation (m/z of 215) as shown by UPLC-MS/MS results. Based on transcriptome analysis, the addition of IBU stimulated the basic metabolism like TCA cycle. The transporters and respiration related genes were also up-regulated accompanied with higher expression of several dehydrogenase, carboxylesterase, dioxygenase and oxidoreductase encoding genes, which may be involved in the transformation of IBU. The main functional genes responsible for IBU and NPX transformation for IB-1 should be similar in view of previous studies, which needs further confirmation. This fungus would be useful for potential bioremediation of NSAIDs pollution and accelerate the discovery of functional oxidative genes and enzymes different from those of bacteria.
Collapse
Affiliation(s)
- Liang Peng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China
- Core Facility for Life Science Research, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China
| | - Hui Yun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China.
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China.
| | - Jing Ji
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China
| | - Wenjie Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China
| | - Ting Xu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China
| | - Si Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China
| | - Zhenfei Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China
| | - Li Xie
- Core Facility for Life Science Research, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China.
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu, 730000, China.
| |
Collapse
|