1
|
Huang Y, Wu J, Lu Y, Wang R, Lan Y, Jia N. Use of acoustic stimulus to determine behavioral changes in zebrafish after Cd exposure in a water quality warning system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168943. [PMID: 38036119 DOI: 10.1016/j.scitotenv.2023.168943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023]
Abstract
Behavioral changes in zebrafish are an effective early warning system to determine water quality. However, only a few studies have examined the response of zebrafish to non-chemical stimulus after exposure to a contaminant. Therefore, this study investigated the differences in the behavioral responses of zebrafish to acoustic stimuli before and after exposure to cadmium (Cd). Acoustic escape response sensitivity curves were obtained and analyzed, followed by the determination of sensitive stimulus conditions at 100 Hz and 97 dB with a duration of 30 s and an interval of 30 min. Zebrafish exhibit a significant acoustic escape response, which is significantly reduced after exposure to Cd. The results showed that zebrafish stop demonstrating acoustic escape responses when exposed to higher Cd concentrations or longer acoustic exposures. Based on these results, a novel method for detecting abnormal behavior in zebrafish by acoustic stimulation has been proposed, which is expected to reduce the false alarm rate of this type of water quality technology.
Collapse
Affiliation(s)
- Yi Huang
- School of Civil Engineering and Architecture, Xi'an Technological University, Xi'an 710021, China; Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environment in Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing 314006, China.
| | - Junxu Wu
- School of Civil Engineering and Architecture, Xi'an Technological University, Xi'an 710021, China
| | - Yuetong Lu
- School of Civil Engineering and Architecture, Xi'an Technological University, Xi'an 710021, China
| | - Runchao Wang
- School of Civil Engineering and Architecture, Xi'an Technological University, Xi'an 710021, China
| | - Yaqiong Lan
- Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environment in Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing 314006, China
| | - Ning Jia
- School of Civil Engineering and Architecture, Xi'an Technological University, Xi'an 710021, China
| |
Collapse
|
2
|
Classifying habitat characteristics of wetlands using a self-organizing map. ECOL INFORM 2023. [DOI: 10.1016/j.ecoinf.2023.102048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
3
|
Qiao L, Chen X, Ren B, Poopal RK, Zhao R, Ren Z. The specification of zebrafish (Danio rerio) heart electrocardiogram index characteristic responses to different types of pollutants. CHEMOSPHERE 2021; 267:129199. [PMID: 33316622 DOI: 10.1016/j.chemosphere.2020.129199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/21/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Water quality was highly affected by common pollutants. Metals, pesticides and small molecules are ubiquitous pollutants. Advancement in engineering technology (computer-based monitoring systems) increased the efficiency of quantifying toxicity of different chemicals in an organism. The cardiovascular system reflects internal and external stress of an organism, and electrocardiogram (ECG) data reliably measure external stress. As ECG data can accurately reflect the physiological conditions of organisms, and zebrafish (Danio rerio) are considered to be good models for cardiovascular research, it is hypothesized that ECG parameters of zebrafish could indicate the toxicity of water-borne chemicals. To achieve this, we treated zebrafish with different concentrations of target chemicals (CuSO4, C10H19O6PS2 and NH4Cl) for 48 h and ECG data were measured. P-wave, R-wave, T-wave, PR-interval, QRS-complex and QT-interval data were the focus of this study. The results of self-organizing maps and Pearson correlation analysis indicate that the QRS-complex can be used as an indicator for CuSO4 stress. The QT-interval could be used to assess the C10H19O6PS2 stress. The QT-interval and P-wave can be used to evaluate the NH4Cl stress. Responses of zebrafish ECG parameters were identical with other vertebrate model, and were specific to toxicant types. It is proved that zebrafish heart ECG index could be used as a potential indicator in early detection of environmental stress.
Collapse
Affiliation(s)
- Linlin Qiao
- , Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, PR China
| | - Xinyu Chen
- , Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, PR China
| | - Baixiang Ren
- , Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, PR China
| | - Rama-Krishnan Poopal
- , Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, PR China
| | - Rusong Zhao
- , Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Zongming Ren
- , Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, PR China.
| |
Collapse
|
4
|
Li S, Chon TS, Park YS, Shi X, Ren Z. Application of temporal self-organizing maps to patterning short-time series of fish behavior responding to environmental stress. Ecol Modell 2020. [DOI: 10.1016/j.ecolmodel.2020.109242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Hu Y, Zhao R, Poopal RK, Ren Z. Simultaneous eco-toxicity assessment technique using an online monitoring system: effects of different environmental factors on swimming behavior of zebrafish (Danio rerio). CHEMOSPHERE 2020; 255:126934. [PMID: 32387730 DOI: 10.1016/j.chemosphere.2020.126934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Environmental factors, such as photoperiod and temperature were the main limiting factors for the survival of organisms in the nature environment. Changes in environmental factors are well predicted but determining their effects on organisms are challenging hot topic in the field of eco-toxicology. Thus, technology based eco-toxicity assessment was focused worldwide. In this research, the effects of different temperatures (15 °C, 22 °C, 30 °C, 32 °C, and 35 °C) and photoperiods (dark and light periods) on the continuous behavior responses of Zebrafish (Danio rerio) were investigated using an online monitoring system (OMS). We designed a new fish chamber with sensors to measure the behavior responses of zebrafish under different conditions. Data obtained from the OMS could be assessed for factors such as difference in swimming behavior, circadian rhythm, and avoidance behavior using latest software (MATLAB). The observed behavior anomalies on zebrafish under different temperatures and continuous photoperiods were statically significant (p < 0.05). We conclude that the new designed fish chamber (behavior sensors) is good in sensing behavioral responses of zebrafish under different conditions. The fish behavior strength could be a potential biomarker to assess the effects of environmental factors. The present study would be a basic platform for assessing the effects of different stressors simultaneously on swimming behavior of zebrafish.
Collapse
Affiliation(s)
- Yongyuan Hu
- Institute of Environment and Ecology, Shandong Normal University, 250358, Jinan, PR China
| | - Ruibin Zhao
- Institute of Environment and Ecology, Shandong Normal University, 250358, Jinan, PR China
| | - Rama-Krishnan Poopal
- Institute of Environment and Ecology, Shandong Normal University, 250358, Jinan, PR China
| | - Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, 250358, Jinan, PR China.
| |
Collapse
|
6
|
Li B, Zhang J, Ma J, Qiao L, Ren B, Chen M, Ren Z. The continuous physiological changes of zebrafish (Danio rerio) based on metabolism under controlled thallium stress. CHEMOSPHERE 2020; 240:124974. [PMID: 31726613 DOI: 10.1016/j.chemosphere.2019.124974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
In this research, the continuous physiological changes of zebrafish (Danio rerio) in 0.1 μg/L thallium (Tl) in 15 days were investigated. The results showed that Tl(I) stress had a significant positive linear correlation with zebrafish ammonia nitrogen excretion (ANE) (p < 0.001), and the mean value of ANE in Tl(I) treatment (435 ± 227 mg/kg/h) was approximately 2 times higher than in the control group (239 ± 168 mg/kg/h), which suggested that ANE was suitable for Tl(I) stress assessment. A substantial difference based on oxygen consumption rate (OCR) between the control group (587 ± 112 mg/kg/h) and Tl(I) treatment (260 ± 88 mg/kg/h) with a high significance p < 0.001 could be observed, and the results indicated that Tl(I) played a negative role in OCR of zebrafish. The characteristics of both ANE and OCR changes under slight Tl(I) stress could be reflected by the ammonia quotient (AQ). It was noteworthy that AQ increased rapidly in first 6 h from 0.66 to 4.50, which was 3 times higher than 1.2, indicating rapid increase in both anaerobic energy utilization and protein metabolism in 0.1 μg/L Tl(I) exposure. It is concluded that the physiological changes of zebrafish based on metabolism can be regarded as a sensitive biological indicator of Tl(I) pollution, which could work as a substitute of potassium that disrupts the normal biological metabolism in the process of transport.
Collapse
Affiliation(s)
- Bin Li
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250014, PR China
| | - Jingxuan Zhang
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250014, PR China
| | - Jingchun Ma
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250014, PR China
| | - Linlin Qiao
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250014, PR China
| | - Baixiang Ren
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250014, PR China
| | - Meng Chen
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250014, PR China.
| | - Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250014, PR China.
| |
Collapse
|
7
|
Zhao R, Hu Y, Li B, Chen M, Ren Z. Potential effects of internal physio-ecological changes on the online biomonitoring of water quality: The behavior responses with circadian rhythms of zebrafish (Danio rerio) to different chemicals. CHEMOSPHERE 2020; 239:124752. [PMID: 31514010 DOI: 10.1016/j.chemosphere.2019.124752] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
The online biomonitoring of aquatic accidental pollution is very important to realize the assessment of complex toxicity. However, the monitoring results would be affected greatly by the internal physio-ecological changes of test organisms, and circadian rhythms might contribute greatly to this kind of effects. In the present study, the behavior responses of zebrafish (Danio rerio) to different concentrations of Deltamethrin, Atrazine, and Thallium (Tl) in 15 days were investigated using an online behavior monitoring system. The results showed that the average behavior strength (BS) value of dark period (0.71 ± 0.16) was lower than that of light period (0.88 ± 0.09) in the control group. Similar pattern was observed in all other treatments with negative relationship between exposure concentrations and mean BS values. It is concluded that the 24 h circadian rhythms in the behavior responses of zebrafish (Danio rerio) could be observed clearly in the online biomonitoring system, and the online monitoring results would be affected obviously in the characteristics of behavior periodicity abnormal and time delay. Therefore, it is suggested that internal physio-ecological characteristics of organisms must be considered once they have the chance to play roles in bio-induced technologies. More investigations are warranted to clear the effects of internal physio-ecological changes on the exported results.
Collapse
Affiliation(s)
- Ruibin Zhao
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250014, People's Republic of China
| | - Yongyuan Hu
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250014, People's Republic of China
| | - Bin Li
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250014, People's Republic of China
| | - Meng Chen
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250014, People's Republic of China
| | - Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250014, People's Republic of China.
| |
Collapse
|
8
|
Ma J, Qiao L, Ji L, Ren B, Hu Y, Zhao R, Ren Z. The online monitoring and assessment of thallium stress using oxygen consumption rate and carbon dioxide excretion rate of zebrafish (Danio rerio). CHEMOSPHERE 2019; 216:103-109. [PMID: 30366264 DOI: 10.1016/j.chemosphere.2018.10.127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 06/08/2023]
Abstract
An online monitoring and assessment system of metabolism to measure oxygen consumption rate (OC) and carbon dioxide (CO2) excretion rate (CR) of zebrafish (Danio rerio) was used to illustrate changes in stressful states in 15 days' (360 h) 0.1 μg/L Tl exposure. Tl had a significant inhibition on zebrafish OC and CR (p < 0.01). OC was more suitable for Tl stress assessment than CR, considering that the OC response was more stable and discernible from the control comparing with CR. However, CR is a suitable alternative to characterize toxic effects on different metabolic substrates. Both OC and CR were integrated to present the respiratory quotient (RQ) analysis. RQ was efficient in differentiating between CO2 produced by respiration in the control group (RQ less than 0.7) and CO2 used for urination or stored in tissues after Tl exposure (some RQs larger than 1.0). Circadian rhythm was observed in RC and CR in the controls and persisted in 0.1 μg/L Tl treatments. The rhythm was relatively more disordered in CR. OC and CR would be suitable for indicating physiological stress in the online system as sensitive physiological indices.
Collapse
Affiliation(s)
- Jingchun Ma
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250014, People's Republic of China
| | - Linlin Qiao
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250014, People's Republic of China
| | - Lizhen Ji
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250014, People's Republic of China
| | - Baixiang Ren
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250014, People's Republic of China
| | - Yongyuan Hu
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250014, People's Republic of China
| | - Ruibin Zhao
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250014, People's Republic of China
| | - Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250014, People's Republic of China.
| |
Collapse
|
9
|
Song J, Qiao L, Ji L, Ren B, Hu Y, Zhao R, Ren Z. Toxic responses of zebrafish (Danio rerio) to thallium and deltamethrin characterized in the electrocardiogram. CHEMOSPHERE 2018; 212:1085-1094. [PMID: 30286538 DOI: 10.1016/j.chemosphere.2018.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/01/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
The electrocardiogram (ECG) has been widely used to objectively address the physical condition as an index of stress. Though a numerous accounts of investigations on aquatic organisms' ECGs have been made, differentiation of ECG parameters in responding to specific toxic chemicals has not been extensively studied. In this research, it is hypothesized that zebrafish (Danio rerio) ECG parameters would differently respond to different types of pollutants, a heavy metal, thallium (Tl, 0.10 and 13.00 μg/L) and an organic chemical, deltamethrin (DM, 0.52 and 2.00 μg/L). Based on the SOM training and statistical analyses, QRS complex could be specified as an indicator of Tl stress, while QT interval might be used to evaluate DM stress. Pearson correlation analysis indicated that QRS complex and QT interval were significantly associated with Tl stress (r = 0.854, p = 0.0002) and DM stress (r = 0.792, p = 0.001), respectively. QRS complex and QT interval had the highest R2, the minimum of SSE and the lowest AIC value in Tl and DM treatments, respectively. Bases on the current experimental results and previous reports, QRS complex and QT interval could be considered as a specific indicator of Tl and DM disturbances in the environment, respectively.
Collapse
Affiliation(s)
- Jie Song
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250014, People's Republic of China
| | - Linlin Qiao
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250014, People's Republic of China
| | - Lizhen Ji
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250014, People's Republic of China
| | - Baixiang Ren
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250014, People's Republic of China
| | - Yongyuan Hu
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250014, People's Republic of China
| | - Ruibin Zhao
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250014, People's Republic of China
| | - Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250014, People's Republic of China.
| |
Collapse
|
10
|
Yang M, Ren B, Qiao L, Ren B, Hu Y, Zhao R, Ren Z, Du J. Behavior responses of zebrafish (Danio rerio) to aquatic environmental stresses in the characteristic of circadian rhythms. CHEMOSPHERE 2018; 210:129-138. [PMID: 29986218 DOI: 10.1016/j.chemosphere.2018.07.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
As behavior shows a distinct circadian rhythm, it is hypothesized that circadian rhythms based on zebrafish (Danio rerio) behavior responses could be affected by contaminants in this study, and then the behavior strength of zebrafish exposed to 0.005 mg/L Cadmium chloride (CdCl2), 0.01 mg/L Dibasic Sodium Phosphate (Na2HPO4), 0.002 mg/L deltamethrin, and 0.003 mg/L atrazine for 6 days is used to illustrate the possibility of behavior circadian rhythms as an indicator in the environmental stress assessment. Statistical analysis with p < 0.01 shows that a clear difference between average values of BS during dark period (AVD) and those during light period (AVL) could be observed, and 24 h circadian rhythms do exist in zebrafish behavior responses. Both BS values and circadian rhythms of zebrafish can be affected in the aspect of periodicity with clear time delay, which were 1 h delay in CdCl2, 4 h delay in Na2HPO4, 4 h delay in deltamethrin, and 1 h delay in atrazine. Behavior circadian rhythms were disturbed according to the repetitive cycles after autocorrelation analysis, and the toxic effects of different chemicals could be reflected by the profiles of the Self-Organizing Map (SOM), which indicated the circadian rhythm disorder in different degrees. These results deduced from the statistical analysis, autocorrelation and SOM strongly supported that circadian rhythms based on zebrafish BS could be used as an indicator in the environmental stress assessment.
Collapse
Affiliation(s)
- Meiyi Yang
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, Shandong, China
| | - Baigang Ren
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, Shandong, China; School of Physics and Electronic Science, Shandong Normal University, Ji'nan 250014, Shandong, China
| | - Linlin Qiao
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, Shandong, China
| | - Baixiang Ren
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, Shandong, China
| | - Yongyuan Hu
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, Shandong, China
| | - Ruibin Zhao
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, Shandong, China
| | - Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, Shandong, China.
| | - Jun Du
- School of Physics and Electronic Science, Shandong Normal University, Ji'nan 250014, Shandong, China
| |
Collapse
|
11
|
Li M, Zhang X, Yang H, Li X, Cui Z. Soil sustainable utilization technology: mechanism of flavonols in resistance process of heavy metal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:26669-26681. [PMID: 30003485 DOI: 10.1007/s11356-018-2485-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
The soil ecosystem is critical for agricultural production, affecting many aspects of human health. Soil has more unknown biodiversity and edaphic parameters than any other ecosystem especially when polluted. Metagenomics and metatranscriptomics were applied to research on toxicological characteristics of Pb and resistance mechanism of flavonols. Rhizosphere microorganisms-plants system, a unified system closely related to soil environment was taken as research object. Results emphasize gene expression changes in different test groups. Gene ontology enrichment and eggNOG showed that Pb has a toxic effect on gene and protein function which concentrated on ATPase and ATP-dependent activity. Differentially expressed genes in the flavonols group indicated that flavonols regulate amino acid transport and other transportation process related to Pb stress. Kegg analysis represents that Pb interferences energy production process via not only the upstream like glycolysis and tricarboxylic acid (TCA) circle but also oxidative phosphorylation process, which can also produce reactive oxygen species and impact the eliminating process. Flavonols have shown the ability in alleviating toxic effect of Pb and improving the resistance of plants. Flavonols can recover the electronic transmission and other process in TCA and oxidative phosphorylation via ascorbic acid-glutathione metabolism. Flavonols activated antioxidative process and non-specific immunity via vitamins B2-B6 metabolism.
Collapse
Affiliation(s)
- Min Li
- School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China
| | - Xu Zhang
- School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China.
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland.
| | - Huanhuan Yang
- School of Life Science, Shandong University, Jinan, 250100, China
| | - Xinxin Li
- School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China
| | - Zhaojie Cui
- School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China.
| |
Collapse
|
12
|
Implementation of Fractal Dimension and Self-Organizing Map to Detect Toxic Effects of Toluene on Movement Tracks of Daphnia magna. J Toxicol 2018; 2018:2637209. [PMID: 29681934 PMCID: PMC5846358 DOI: 10.1155/2018/2637209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/17/2018] [Accepted: 01/24/2018] [Indexed: 11/18/2022] Open
Abstract
Movement behaviors of an indicator species, Daphnia magna, in response to contaminants have been implemented to monitor environmental disturbances. Complexity in movement tracks of Daphnia magna was characterized by use of fractal dimension and self-organizing map. The individual movement tracks of D. magna were continuously recorded for 24 hours before and after treatments with toluene at the concentration of 10 mg/L, respectively. The general complexity in movement tracks (10 minutes) was characterized by fractal dimension. Results showed that average fractal dimension of movement tracks was decreased from 1.62 to 1.22 after treatments. The instantaneous movement parameters of movement segments in 5 s were input into the self-organizing map to investigate the swimming pattern changes under stresses of toluene. Abnormal behaviors of D. magna are more frequently observed after treatments than before treatments. Computational methods in ecological informatics could be utilized to obtain the useful information in behavioral data of D. magna and would be further applied as an in situ monitoring tool in water environment.
Collapse
|
13
|
Qi L, Ma J, Song J, Li S, Cui X, Peng X, Wang W, Ren Z, Han M, Zhang Y. The physiological characteristics of zebra fish (Danio rerio) based on metabolism and behavior: A new method for the online assessment of cadmium stress. CHEMOSPHERE 2017; 184:1150-1156. [PMID: 28672696 DOI: 10.1016/j.chemosphere.2017.06.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/07/2017] [Accepted: 06/12/2017] [Indexed: 06/07/2023]
Abstract
In order to illustrate heavy metal ecotoxicology associated with interactions between chemicals and biological systems, we investigated physiological changes (metabolism and behavior response) of zebra fish (Danio rerio) under 48 h Cadmium chloride (CdCl2) exposure using online monitoring technique. The concentrations of CdCl2 were designed as 4.26, 42.6 and 85.2 mg/L, which were 0.1, 1.0, and 2.0 based on toxic unit (TU), respectively. The metabolism was assessed using the oxygen consumption (OC), and the behavior response was analyzed in behavior strength (BS). Significant inhibition of both OC and BS could be observed: OC was 617.39 ± 30.48 mg/kg/h in the control, and it decreased rapidly to 229.07 ± 28.66 mg/kg/h in 2.0 TU treatment. BS changed from 0.76 ± 0.07 (control) to 0.39 ± 0.04 (2.0 TU) with the increase of exposure concentrations. Further results suggested that both factors were related to diurnal variation during 48 h exposure, which could be regarded as circadian rhythms: the average values of OC and BS during photo-phase were significantly higher than both during scoto-phase in CdCl2 treatments (p < 0.05). After integrated analysis, the original values of both OC and BS with wide fluctuation showed a negative linear relationship with CdCl2 concentration. The levels of both OC and BS were positively correlated with CdCl2 (r = 0.93 and p < 0.01). It is suggested that both OC and BS provide an objective ground for CdCl2 stress assessment, and that also could be applied to test the changes of organisms quantitatively in toxic physiology.
Collapse
Affiliation(s)
- Luhuizi Qi
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, People's Republic of China
| | - Jingchun Ma
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, People's Republic of China
| | - Jie Song
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, People's Republic of China
| | - Shangge Li
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, People's Republic of China
| | - Xiaoru Cui
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, People's Republic of China
| | - Xiaojing Peng
- The Control Center of Solid Waste and Hazardous Chemicals of Shandong Province, Ji'nan 250000, People's Republic of China
| | - Weiliang Wang
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, People's Republic of China
| | - Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, People's Republic of China.
| | - Mei Han
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, People's Republic of China
| | - Ying Zhang
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, People's Republic of China.
| |
Collapse
|
14
|
Ren Z, Li S, Zhang T, Qi L, Xing N, Yu H, Jian J, Chon TS, Tang B. Behavior persistence in defining threshold switch in stepwise response of aquatic organisms exposed to toxic chemicals. CHEMOSPHERE 2016; 165:409-417. [PMID: 27668718 DOI: 10.1016/j.chemosphere.2016.09.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/13/2016] [Accepted: 09/15/2016] [Indexed: 06/06/2023]
Abstract
As a characteristic in bacterial colony, persistence model described the dynamics of two subpopulations (normal (n) and persister (p)). In order to illustrate the switch of "Threshold" in the stepwise behavior responses of organisms, it is hypothesized that total behavior (Bt) of organisms consists of two types in behavior tendency, intoxication (Bp) and normal/recovery behavior (Bn). Both Bp and Bn could be concurrently affected by environmental stress E, and behavior response modes (M) are decided by the relationship between E and toxicity threshold of test organisms (Ti). The results suggested stress constant λ was decided by the constant rates gnE,gpE, an and ap. Due to different stress constant λ, the behavior responses of indicators showed great difference in different M, which included 'safe mode' (Ms), 'acclimation mode' (Mac), 'adjustment mode' (Maj) and 'toxic effect' (Mte). Usually, Bt during Ms could maintain around 0.8, and Mte would happen once it is lower than 0.2. According to the relationship between Bt values and E changes in 7 Majs, behavior persistence relying on adjustment could reflect the behavior homeostasis of organisms under environmental stress and be regarded as a threshold switch for the stepwise behavior responses. The mathematical analysis of behavior persistence allows making a quantitative prediction on environment assessment that would promote the emergence of persistence, as well as evaluating its ecological implications.
Collapse
Affiliation(s)
- Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, PR China.
| | - Shangge Li
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, PR China
| | - Tingting Zhang
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, PR China
| | - Luhuizi Qi
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, PR China
| | - Na Xing
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, PR China
| | - Huimin Yu
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, PR China
| | - Jinfeng Jian
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, PR China
| | - Tae-Soo Chon
- Department of Biological Sciences, Pusan National University, Busan 609735, Republic of Korea; Ecology and Future Research Association, Busan 609802, Republic of Korea
| | - Bo Tang
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, PR China.
| |
Collapse
|
15
|
Integrative Characterization of Toxic Response of Zebra Fish (Danio rerio) to Deltamethrin Based on AChE Activity and Behavior Strength. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7309184. [PMID: 27999812 PMCID: PMC5141558 DOI: 10.1155/2016/7309184] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/13/2016] [Accepted: 10/26/2016] [Indexed: 01/31/2023]
Abstract
In order to characterize the toxic response of zebra fish (Danio rerio) to Deltamethrin (DM), behavior strength (BS) and muscle AChE activity of zebra fish were investigated. The results showed that the average values of both BS and AChE activity showed a similarly decreased tendency as DM concentration increased, which confirmed the dose-effect relationship, and high and low levels of AChE and BS partly matched low and high levels of exposure concentrations in self-organizing map. These indicated that AChE and BS had slight different aspects of toxicity although overall trend was similar. Behavior activity suggested a possibility of reviving circadian rhythm in test organisms after exposure to the chemical in lower concentration (0.1 TU). This type of rhythm disappeared in higher concentrations (1.0 TU and 2.0 TU). Time series trend analysis of BS and AChE showed an evident time delayed effect of AChE, and a 2 h AChE inhibition delay with higher correlation coefficients (r) in different treatments was observed. It was confirmed that muscle AChE inhibition of zebra fish is a factor for swimming behavior change, though there was a 2 h delay, and other factors should be investigated to illustrate the detailed behavior response mechanism.
Collapse
|
16
|
|
17
|
Optimization of a Coastal Environmental Monitoring Network Based on the Kriging Method: A Case Study of Quanzhou Bay, China. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7137310. [PMID: 27777951 PMCID: PMC5061993 DOI: 10.1155/2016/7137310] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/13/2016] [Accepted: 08/15/2016] [Indexed: 11/18/2022]
Abstract
Environmental monitoring is fundamental in assessing environmental quality and to fulfill protection and management measures with permit conditions. However, coastal environmental monitoring work faces many problems and challenges, including the fact that monitoring information cannot be linked up with evaluation, monitoring data cannot well reflect the current coastal environmental condition, and monitoring activities are limited by cost constraints. For these reasons, protection and management measures cannot be developed and implemented well by policy makers who intend to solve this issue. In this paper, Quanzhou Bay in southeastern China was selected as a case study; and the Kriging method and a geographic information system were employed to evaluate and optimize the existing monitoring network in a semienclosed bay. This study used coastal environmental monitoring data from 15 sites (including COD, DIN, and PO4-P) to adequately analyze the water quality from 2009 to 2012 by applying the Trophic State Index. The monitoring network in Quanzhou Bay was evaluated and optimized, with the number of sites increased from 15 to 24, and the monitoring precision improved by 32.9%. The results demonstrated that the proposed advanced monitoring network optimization was appropriate for environmental monitoring in Quanzhou Bay. It might provide technical support for coastal management and pollutant reduction in similar areas.
Collapse
|
18
|
|