3
|
Peace A, Frost PC, Wagner ND, Danger M, Accolla C, Antczak P, Brooks BW, Costello DM, Everett RA, Flores KB, Heggerud CM, Karimi R, Kang Y, Kuang Y, Larson JH, Mathews T, Mayer GD, Murdock JN, Murphy CA, Nisbet RM, Pecquerie L, Pollesch N, Rutter EM, Schulz KL, Scott JT, Stevenson L, Wang H. Stoichiometric Ecotoxicology for a Multisubstance World. Bioscience 2021. [DOI: 10.1093/biosci/biaa160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Abstract
Nutritional and contaminant stressors influence organismal physiology, trophic interactions, community structure, and ecosystem-level processes; however, the interactions between toxicity and elemental imbalance in food resources have been examined in only a few ecotoxicity studies. Integrating well-developed ecological theories that cross all levels of biological organization can enhance our understanding of ecotoxicology. In the present article, we underline the opportunity to couple concepts and approaches used in the theory of ecological stoichiometry (ES) to ask ecotoxicological questions and introduce stoichiometric ecotoxicology, a subfield in ecology that examines how contaminant stress, nutrient supply, and elemental constraints interact throughout all levels of biological organization. This conceptual framework unifying ecotoxicology with ES offers potential for both empirical and theoretical studies to deepen our mechanistic understanding of the adverse outcomes of chemicals across ecological scales and improve the predictive powers of ecotoxicology.
Collapse
Affiliation(s)
- Angela Peace
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, Texas, United States
| | - Paul C Frost
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - Nicole D Wagner
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, United States
| | | | - Chiara Accolla
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Twin Cities, Minneapolis, Minnesota, United States
| | | | - Bryan W Brooks
- Department of Environmental Science, Baylor University, Waco, Texas, United States
| | - David M Costello
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States
| | - Rebecca A Everett
- Department of Mathematics and Statistics, Haverford College, Haverford, Pennsylvania, United States
| | - Kevin B Flores
- Department of Mathematics and the Center for Research in Scientific Computation, North Carolina State University, Raleigh, North Carolina, United States
| | - Christopher M Heggerud
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Roxanne Karimi
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, United States
| | - Yun Kang
- Arizona State University, Mesa, Arizona, United States
| | - Yang Kuang
- Arizona State University, Tempe, Arizona, United States
| | - James H Larson
- US Geological Survey's Upper Midwest Environmental Sciences Center, La Crosse, Wisconsin, United States
| | - Teresa Mathews
- Environmental Sciences Division of Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
| | - Gregory D Mayer
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas, United States
| | - Justin N Murdock
- Department of Biology, Tennessee Tech University, Cookeville, Tennessee, United States
| | - Cheryl A Murphy
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States
| | - Roger M Nisbet
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, California, United States
| | - Laure Pecquerie
- Université de Brest, CNRS, IRD, Ifremer, LEMAR, Plouzane, France
| | - Nathan Pollesch
- University of Wisconsin's Aquatic Sciences Center and with the US Environmental Protection Agency's Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, United States
| | - Erica M Rutter
- Department of Applied Mathematics, University of California, Merced, Merced, California, United States
| | - Kimberly L Schulz
- Department of Environmental and Forest Biology, State University of New York's College of Environmental Science and Forestry, Syracuse, New York, United States
| | - J Thad Scott
- Department of Biology, Baylor University, Waco, Texas, United States
| | - Louise Stevenson
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee; with the Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, California; and with the Department of Biological Sciences at Bowling Green State University, in Bowling Green, Ohio, United States
| | - Hao Wang
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
4
|
Neff E, Coleman AL, Maness RW, Tanelus M, Xu X, Dharmarajan G. Effects of methylmercury on mosquito oviposition behavior: Maladaptive response to non-toxic exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 667:248-254. [PMID: 30831364 DOI: 10.1016/j.scitotenv.2019.02.314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/10/2019] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
Animals can modulate their own exposure to environmental contaminants through behavioral plasticity such as diet and habitat choice. However, it remains unclear if behavior also has cascading effects on contaminant exposure across multiple generations. In insects, oviposition site selection is an important behavior females can use to modify offspring contaminant exposure risk. In this study, we use the yellow fever mosquito, Aedes aegypti, to test how methylmercury (MeHg) affects oviposition site selection. We found that mosquito larval development rate and survival were negatively affected at MeHg concentrations ≥100 ppb. Adult females not exposed to MeHg as larvae avoided oviposition sites with high MeHg concentrations (>50 ppb), but MeHg exposure at the larval stage significantly affected this oviposition site selection. Specifically, females raised from larvae exposed to non-toxic MeHg levels (i.e., five-50 ppb) showed a significant increase in preference for oviposition sites contaminated with toxic MeHg concentrations (≥500 ppb), compared to unexposed controls. This maladaptive behavioral response could be because, when conditioned with non-toxic MeHg concentrations, MeHg-associated olfactory cues act as a "supernormal" stimulus during oviposition site selection. Importantly, however, this maladaptive behavioral response is eliminated in female mosquitoes raised from larvae exposed to toxic MeHg concentrations (i.e. 100 ppb), and these mosquitoes showed a significant increase in preference for MeHg uncontaminated oviposition sites, compared to unexposed controls. Thus, in mosquitoes, the magnitude of MeHg exposure in one generation can impact MeHg exposure in subsequent generations by altering oviposition site selection behavior. Our results have broad implications for our understanding of how contaminant-mediated behavioral modifications can feedback on contaminant exposure risk across multiple generations, and consequently how behavior can affect the evolutionary trajectory of organisms inhabiting a heterogeneously contaminated environment.
Collapse
Affiliation(s)
- Erik Neff
- Savannah River Ecology Lab, University of Georgia, Aiken, SC 29801, USA.
| | - Austin L Coleman
- Savannah River Ecology Lab, University of Georgia, Aiken, SC 29801, USA
| | | | - Manette Tanelus
- University of South Carolina Upstate, Spartanburg, SC 29303, USA
| | - Xiaoyu Xu
- Savannah River Ecology Lab, University of Georgia, Aiken, SC 29801, USA
| | - Guha Dharmarajan
- Savannah River Ecology Lab, University of Georgia, Aiken, SC 29801, USA
| |
Collapse
|
5
|
Visha A, Gandhi N, Bhavsar SP, Arhonditsis GB. Assessing mercury contamination patterns of fish communities in the Laurentian Great Lakes: A Bayesian perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:777-789. [PMID: 30224205 DOI: 10.1016/j.envpol.2018.07.070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 07/15/2018] [Accepted: 07/16/2018] [Indexed: 05/27/2023]
Abstract
We examine the spatio-temporal trends of mercury, a well-known global legacy contaminant, in eleven fish species across all of the Canadian Great Lakes. These particular fish species are selected based on their ecological, commercial, and recreational importance to the biodiversity and fishing industry of the Great Lakes. We present a two-pronged Bayesian methodological framework to rigorously assess mercury temporal trends across multiple fish species and locations. In the first part of our analysis, we develop dynamic linear models to delineate the total mercury levels and rates of change, while explicitly accounting for the covariance between fish length and mercury levels in fish tissues. We then use hierarchical modelling to evaluate the spatial variability of mercury contamination between nearshore and offshore locations, as well as to examine the hypothesis that invasive species have induced distinct shifts on fish mercury contamination trends. Our analysis suggests that the general pattern across the Great Lakes was that the elevated mercury concentrations during the 1970s had been subjected to a declining trend throughout the late 1980s/early 1990s, followed by a gradual stabilization after the late 1990s/early 2000s. The declining trend was more pronounced with top fish predators, whereas benthivorous fish species mainly underwent wax-and-wane cycles with a weaker evidence of a long-term declining trend. Historically contaminated regions, designated as Areas of Concern, and bays receiving riverine inputs are still characterized by mercury concentrations that can lead to consumption restrictions. Lake Erie displayed the lowest mercury levels across all the fish species examined. However, several species of commercial importance showed a reversing (increasing) trend in the 2000s, although their current levels do not pose any major concerns for consumption advisories. These recent trend reversals can be linked with systematic shifts in energy trophodynamics along with the food web alterations induced from the introduction of non-native species, and the potentially significant fluxes from the atmosphere.
Collapse
Affiliation(s)
- Ariola Visha
- Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - Nilima Gandhi
- Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - Satyendra P Bhavsar
- Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, M1C 1A4, Canada; Ontario Ministry of Environment, Conservation and Parks, Toronto, Ontario, M9P 3V6, Canada
| | - George B Arhonditsis
- Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, M1C 1A4, Canada.
| |
Collapse
|