1
|
Zhang Y, Jiang X, Lei Y, Wu Q, Liu Y, Shi X. Potentially suitable distribution areas of Populus euphratica and Tamarix chinensis by MaxEnt and random forest model in the lower reaches of the Heihe River, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1519. [PMID: 37993760 DOI: 10.1007/s10661-023-12122-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023]
Abstract
Populus euphratica and Tamarix chinensis play a vital role in windbreak and sand fixation, maintaining species diversity and ensuring community stability. Managing and protecting the P. euphratica and T. chinensis forests in the Heihe River's lower reaches is an urgent issue to maintain the desert region's ecological balance. In this study, based on the distribution points of P. euphratica and T. chinensis species and environmental data, MaxEnt and random forest (RF) models were used to characterize the potential distribution areas of P. euphratica and T. chinensis in the lower reaches of the Heihe River. The results showed that the accuracy of the RF model was much higher than that of the MaxEnt model. Both the RF and MaxEnt models showed that the distance to the river greatly influenced the distribution of P. euphratica and T. chinensis. Furthermore, the RF model predicted significantly larger highly suitable areas for both P. euphratica and T. chinensis than the MaxEnt model. Our study enhances the understanding of the species' spatial distribution, offering valuable insights for practical management and conservation strategies.
Collapse
Affiliation(s)
- Yichi Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, China
- Department of Physical Geography, College of Urban and Environmental Sciences, Northwest University, Xi'an, China
| | - Xiaohui Jiang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, China.
- Department of Physical Geography, College of Urban and Environmental Sciences, Northwest University, Xi'an, China.
| | - Yuxin Lei
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, China
| | - Quanlong Wu
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, China
| | - Yihan Liu
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, China
| | - Xiaowei Shi
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, China
| |
Collapse
|
2
|
Vadde KK, Phan DC, Moghadam SV, Jafarzadeh A, Matta A, Johnson D, Kapoor V. Fecal pollution source characterization in the surface waters of recharge and contributing zones of a karst aquifer using general and host-associated fecal genetic markers. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:2450-2464. [PMID: 36444711 DOI: 10.1039/d2em00418f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Fecal pollution of surface waters in the karst-dominated Edwards aquifer is a serious concern as contaminated waters can rapidly transmit to groundwaters, which are used for domestic purposes. Although microbial source tracking (MST) detects sources of fecal pollution, integrating data related to environmental processes (precipitation) and land management practices (septic tanks) with MST can provide better understanding of fecal contamination fluxes to implement effective mitigation strategies. Here, we investigated fecal sources and their spatial origins at recharge and contributing zones of the Edwards aquifer and identified their relationship with nutrients in different environmental/land-use conditions. During March 2019 to March 2020, water samples (n = 295) were collected biweekly from 11 sampling sites across four creeks and analyzed for six physico-chemical parameters and ten fecal indicator bacteria (FIB) and MST-based qPCR assays targeting general (E. coli, Enterococcus, and universal Bacteroidales), human (BacHum and HF183), ruminant (Rum2Bac), cattle (BacCow), canine (BacCan), and avian (Chicken/Duck-Bac and GFD) fecal markers. Among physico-chemical parameters, nitrate-N (NO3-N) concentrations at several sites were higher than estimated national background concentrations for streams. General fecal markers were detected in the majority of water samples, and among host-associated MST markers, GFD, BacCow, and Rum2Bac were more frequently detected than BacCan, BacHum, and HF183, indicating avian and ruminant fecal contamination is a major concern. Cluster analysis results indicated that sampling sites clustered based on precipitation and septic tank density showed significant correlation (p < 0.05) between nutrients and FIB/MST markers, indicating these factors are influencing the spatial and temporal variations of fecal sources. Overall, results emphasize that integration of environmental/land-use data with MST is crucial for a better understanding of nutrient loading and fecal contamination.
Collapse
Affiliation(s)
- Kiran Kumar Vadde
- School of Civil & Environmental Engineering, and Construction Management, University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | - Duc C Phan
- School of Civil & Environmental Engineering, and Construction Management, University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | - Sina V Moghadam
- School of Civil & Environmental Engineering, and Construction Management, University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | - Arash Jafarzadeh
- School of Civil & Environmental Engineering, and Construction Management, University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | - Akanksha Matta
- School of Civil & Environmental Engineering, and Construction Management, University of Texas at San Antonio, San Antonio, TX 78249, USA.
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Drew Johnson
- School of Civil & Environmental Engineering, and Construction Management, University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | - Vikram Kapoor
- School of Civil & Environmental Engineering, and Construction Management, University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
3
|
Yang D, Yang A, Yang J, Xu R, Qiu H. Unprecedented Migratory Bird Die-Off: A Citizen-Based Analysis on the Spatiotemporal Patterns of Mass Mortality Events in the Western United States. GEOHEALTH 2021; 5:e2021GH000395. [PMID: 33855250 PMCID: PMC8029984 DOI: 10.1029/2021gh000395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Extensive, severe wildfires, and wildfire-induced smoke occurred across the western and central United States since August 2020. Wildfires resulting in the loss of habitats and emission of particulate matter and volatile organic compounds pose serious threatens to wildlife and human populations, especially for avian species, the respiratory system of which are sensitive to air pollutions. At the same time, the extreme weather (e.g., snowstorms) in late summer may also impact bird migration by cutting off their food supply and promoting their migration before they were physiologically ready. In this study, we investigated the environmental drivers of massive bird die-offs by combining socioecological earth observations data sets with citizen science observations. We employed the geographically weighted regression models to quantitatively evaluate the effects of different environmental and climatic drivers, including wildfire, air quality, extreme weather, drought, and land cover types, on the spatial pattern of migratory bird mortality across the western and central US during August-September 2020. We found that these drivers affected the death of migratory birds in different ways, among which air quality and distance to wildfire were two major drivers. Additionally, there were more bird mortality events found in urban areas and close to wildfire in early August. However, fewer bird deaths were detected closer to wildfires in California in late August and September. Our findings highlight the important impact of extreme weather and natural disasters on bird biology, survival, and migration, which can provide significant insights into bird biodiversity, conservation, and ecosystem sustainability.
Collapse
Affiliation(s)
- Di Yang
- Wyoming Geographic Information CenterUniversity of WyomingLaramieWYUSA
| | - Anni Yang
- Department of Fish, Wildlife, and Conservation BiologyColorado State UniversityFort CollinsCOUSA
- United States Department of Agriculture, Animal and Plant Health Inspection ServiceNational Wildlife Research CenterFort CollinsCOUSA
| | - Jue Yang
- Department of GeographyUniversity of GeorgiaAthensGAUSA
| | - Rongting Xu
- Forest Ecosystems and SocietyOregon State UniversityCorvallisORUSA
| | - Han Qiu
- Department of Forest and Wildlife EcologyUniversity of Wisconsin‐MadisonMadisonWIUSA
| |
Collapse
|
4
|
Aurbach A, Schmid B, Liechti F, Chokani N, Abhari R. Simulation of broad front bird migration across Western Europe. Ecol Modell 2020. [DOI: 10.1016/j.ecolmodel.2019.108879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Altitudinal Shift of Tetrao urogallus in an Alpine Natura 2000 Site: Implications for Habitat Restoration. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9061164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Capercaillie (Tetrao urogallus L.), a territorial galliform species, is known to prefer mature conifer stands with canopy gaps and a vigorous understory of ericaceous species. Capercaillie is a useful umbrella species that has recently shown declining population trends and distribution changes in its southern geographic range. We aim to identify and assess the possible changes in summer capercaillie habitat selection between 2001 and 2011 in the Scanuppia Natura 2000 site (south-eastern Alps). The area is dominated by spruce (Picea abies (L.) Karsten) forests, followed by mixed forests, scrub, and open habitats. In both years, summer presence–absence of capercaillie was verified through the detection of droppings over 10 m radius circular plots located along contour lines (1500–1800 m). A set of environmental and habitat features was also surveyed. While overall population numbers remain unchanged over the surveyed period, results have shown an altitudinal shift in capercaillie distribution. Habitat variables had a stronger effect on the presence of capercaillie in 2001 than in 2011. Land cover and climate change are likely among the drivers of the shift in altitudinal distribution. This confirms the relevance of habitat restoration actions and to monitor changes in factors explaining capercaillie habitat selection.
Collapse
|