1
|
Lahiri SK, Azimi Dijvejin Z, Gholamreza F, Shabanian S, Khatir B, Wotherspoon L, Golovin K. Liquidlike, Low-Friction Polymer Brushes for Microfibre Release Prevention from Textiles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400580. [PMID: 38529758 DOI: 10.1002/smll.202400580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/12/2024] [Indexed: 03/27/2024]
Abstract
During synthetic textile washing, rubbing between fibres or against the washing machine, exacerbated by the elevated temperature, initiates the release of millions of microplastic fibres into the environment. A general tribological strategy is reported that practically eliminates the release of microplastic fibres from laundered apparel. The two-layer fabric finishes combine low-friction, liquidlike polymer brushes with "molecular primers", that is, molecules that durably bond the low-friction layers to the surface of the polyester or nylon fabrics. It is shown that when the coefficient of friction is below a threshold of 0.25, microplastic fibre release is substantially reduced, by up to 96%. The fabric finishes can be water-wicking or water-repellent, and their comfort properties are retained after coating, indicating a tunable and practical strategy toward a sustainable textile industry and plastic-free oceans and marine foodstuffs.
Collapse
Affiliation(s)
- Sudip Kumar Lahiri
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Zahra Azimi Dijvejin
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Farzan Gholamreza
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Sadaf Shabanian
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Behrooz Khatir
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Lauren Wotherspoon
- Department of Materials Science & Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Kevin Golovin
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
- Department of Materials Science & Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| |
Collapse
|
2
|
Qu M, An Y, Jiang X, Wu Q, Miao L, Zhang X, Wang Y. Exposure to epoxy-modified nanoplastics in the range of μg/L causes dysregulated intestinal permeability, reproductive capacity, and mitochondrial homeostasis by affecting antioxidant system in Caenorhabditis elegans. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106710. [PMID: 37804785 DOI: 10.1016/j.aquatox.2023.106710] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023]
Abstract
Although surface chemically modified nanopolystyrene (PS) has been reported to have potential toxicity toward organisms, the impact of epoxy modification on the toxicity of PS remains largely unknown. In this study, we first investigated the prolonged exposure effects of epoxy-modified PS (PS-C2H3O) in the range of μg/L on Caenorhabditis elegans (C. elegans) including general toxicity, target organ toxicity, and organelle toxicity. Our data revealed that C. elegans exposed to PS-C2H3O led to the alterations in increased lethality (≥ 1000 μg/L), shortened body length (≥ 100 μg/L), and decreased locomotion capacity (≥ 1 μg/L). In addition, toxicity analysis on target organs and organelles indicated that exposure to PS-C2H3O enhanced intestinal permeability (≥ 100 μg/L) by inhibiting the transcriptional levels of acs-22 (encoding fatty acid transport protein) (≥ 100 μg/L) and hmp-2 (encoding α-catenin) (≥ 1000 μg/L), reduced reproductive capacity (≥ 10 μg/L), and dysregulated mitochondrial homeostasis (≥ 1 μg/L). Moreover, the activation of antioxidant enzyme system could help nematodes against the toxicity caused by PS-C2H3O exposure (≥ 10 μg/L). Furthermore, we also compared the toxicity of PS-C2H3O with other chemically modified derivatives of PS, and the toxicity order was PS-NH2 > PS-SOOOH > PS-C2H3O > PS-COOH > PS > PS-PEG. Our study highlights the potential environmental impact of PS and its derivatives on organisms and suggests that the toxicity of nanoplastics may be charge-dependent.
Collapse
Affiliation(s)
- Man Qu
- School of Public Health, Yangzhou University, Yangzhou 225000, China
| | - Yuhan An
- School of Public Health, Yangzhou University, Yangzhou 225000, China
| | - Xinyi Jiang
- School of Public Health, Yangzhou University, Yangzhou 225000, China
| | - Qinlin Wu
- School of Public Health, Yangzhou University, Yangzhou 225000, China
| | - Long Miao
- School of Public Health, Yangzhou University, Yangzhou 225000, China
| | - Xing Zhang
- The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing 210009, China
| | - Yang Wang
- Yangzhou Hospital of Traditional Chinese Medicine Affiliated to the School of Clinical Chinese Medicine, Yangzhou University, Yangzhou 225000, China.
| |
Collapse
|