1
|
Liu Y, Kannan K. Liquid crystal monomers in human, dog and cat feces from the United States. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136144. [PMID: 39405681 DOI: 10.1016/j.jhazmat.2024.136144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 11/07/2024]
Abstract
Little is known about exposure of humans and companion animals to liquid crystal monomers (LCMs), which are extensively used in digital displays. We determined the concentrations of 52 LCMs in feces of humans, pet dogs and cats from New York State, USA, using gas chromatography-high resolution mass spectrometry (GC-HRMS). Twenty-four, eight, and six LCMs, that were mainly fluorinated, were detected in human, dog, and cat feces, respectively. ∑LCMs concentrations in the feces of humans (mean: 8.01 ng/g dry weight [dw]) were significantly higher (p < 0.05) than those of dogs (mean: 1.82 ng/g dw) and cats (mean: 1.24 ng/g dw) and with concentrations measured as high as 39.8 ng/g dw. Rel-4'-((1r,1'r,4 R,4'R)-4'-ethyl-[1,1'-bi(cyclohexan)]-4-yl)-3,4-difluoro-1,1'-biphenyl (RELEEBCH or 2bcHdFB) was found at the highest detection frequency (DF) among LCMs analyzed in human (DF: 89 %), dog (DF: 28 %), and cat (DF: 50 %) feces, although this compound accounted only < 4 % of ∑LCM concentrations. The mean cumulative daily intakes of ∑LCMs, calculated through a reverse dosimetry approach, were 71.7, 87.5, and 10.7 ng/kg body weight (bw)/day for humans, dogs, and cats, respectively. This study provides evidence of exposure of both humans and pets to LCMs, highlighting the importance of assessing sources of exposure and associated health risks.
Collapse
Affiliation(s)
- Yuan Liu
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York 12237, United States.
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York 12237, United States; Department of Environmental Health Sciences, School of Public Health, State University of New York, Albany, New York 12237, United States.
| |
Collapse
|
2
|
He W, Yang H, Li Y, Cui Y, Wei L, Xu T, Li Y, Zhang M. Identifying the toxic mechanisms of emerging electronic contaminations liquid crystal monomers and the construction of a priority control list for graded control. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175398. [PMID: 39128516 DOI: 10.1016/j.scitotenv.2024.175398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Liquid crystal monomers (LCMs) are identified as emerging organic contaminations with largely unexplored health impacts. To elucidate their toxic mechanisms, support the establishment of environmental discharge and management standards, and promote effective LCMs control, this study constructs a database covering 20,545 potential targets of 1431 LCMs, highlighting 9 key toxic target proteins that disrupt the nervous system and metabolic functions. GO and KEGG pathway analysis suggests LCMs severely affect nervous system, linked to neurodegenerative diseases and mental health disorders, with toxicity variations driven by electronegativity and structural complexity of LCM terminal groups. To achieve tiered control of LCMs, construct toxicity risk control lists for 9 key toxic target proteins, suitable for the graded control of LCMs, management recommendations are provided based on toxicity levels. These lists were validated for reliability and offer reliable toxicity predictions for LCMs. SHAP analysis points to electronic properties, molecular shape, and structural characteristics of LCMs as primary health impact factors. As the first study integrating machine learning with computational toxicology to outline LCMs health impacts, it aims to enhance public understanding of LCM toxicity risks and support the development of environmental standards, effective management of LCM production and emissions, and reduction of public exposure risks.
Collapse
Affiliation(s)
- Wei He
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing, China
| | - Hao Yang
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing, China
| | - Yunxiang Li
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing, China
| | - Yuhan Cui
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing, China
| | - Luanxiao Wei
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing, China
| | - Tingzhi Xu
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing, China.
| | - Yu Li
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing, China
| | - Meng Zhang
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China.
| |
Collapse
|
3
|
Su H, Wang Y, Wu J, Gao P, Su G, Zhang H. A comparative study on contamination profiles of liquid crystal monomers (LCMs) between outdoor and indoor dusts, and the assessment of health risk of human exposure. CHEMOSPHERE 2024; 366:143545. [PMID: 39413934 DOI: 10.1016/j.chemosphere.2024.143545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/18/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Liquid crystal monomers (LCMs) are ubiquitous in various environmental samples, which has led to increasing concerns regarding their potential health risks to humans and wildlife. However, the comparison of the contamination patterns of LCMs between indoor and outdoor environments has rarely been studied. In this study, 35 LCMs were investigated in n = 55 dust samples collected from indoor (n = 20) and outdoor (n = 35) spaces in Yulin, Northwest China. The LCMs were widely detected in indoor and outdoor dusts; the total concentrations of LCMs ranged from 48.6 to 396 ng/g (median: 153 ng/g), and from not detectable to 388 ng/g (median: 56.4 ng/g) in indoor and outdoor dusts, respectively. The concentration levels of ΣLCMs in indoor dusts were significantly higher than those in outdoor dusts (p < 0.05). For each microenvironment, the ranking order of LCM concentrations was dormitory (mean: 202 ng/g) > teaching building (182 ng/g) > campus road (150 ng/g) > urban road (107 ng/g) > laboratory building (91.0 ng/g) > pedestrian street (20.1 ng/g). The mean estimated daily intake values of Σ35LCMs for adults were 2.48 × 10-2 and 1.37 × 10-3 ng/g BW/day in indoor and outdoor dusts, respectively. The hazard quotients of individual LCMs and hazard indices of all analytes were considerably less than one, indicating little health risk for humans via dust ingestion.
Collapse
Affiliation(s)
- Huijun Su
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, Yulin Engineering Research Center of Coal Chemical Wastewater, School of Chemistry and Chemical Engineering, Yulin University, Yulin, 719000, China.
| | - Yiyu Wang
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, Yulin Engineering Research Center of Coal Chemical Wastewater, School of Chemistry and Chemical Engineering, Yulin University, Yulin, 719000, China
| | - Jia Wu
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Pingqiang Gao
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, Yulin Engineering Research Center of Coal Chemical Wastewater, School of Chemistry and Chemical Engineering, Yulin University, Yulin, 719000, China
| | - Guanyong Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Huiqiang Zhang
- Shaanxi Environmental Monitoring Center, Shaanxi Key Laboratory of Environmental Monitoring and Forewarning of Trace Pollutants, Xi'an, 710054, China
| |
Collapse
|
4
|
Yang Y, Jiang X, Yang Y, Wang J, Zhao Y, Lin S, Qu J, Martyniuk CJ, Zhao Y, Li C. Photochemical transformation of liquid crystal monomers in simulated environmental media: Kinetics, mechanism, toxicity variation and QSAR modeling. WATER RESEARCH 2024; 261:122062. [PMID: 39002419 DOI: 10.1016/j.watres.2024.122062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
Liquid crystal monomers (LCMs) are a new class of emerging pollutants with high octanol-water partition coefficients; however, their transformation behavior and associated risk to environments with high organic matter content has rarely been reported. In this study, we investigated the photodegradation kinetics, mechanism, and toxicity variation of 23 LCMs on leaf wax models (e.g., organic solvents methanol and n-hexane). The order of the photolysis rates of these LCMs were biphenylethyne LCMs > phenylbenzoate LCMs > diphenyl/terphenyl LCMs under simulated sunlight, while the phenylcyclohexane LCMs were resistant to photodegradation. The phenylbenzoate and biphenylethyne LCMs mainly undergo direct photolysis, while the diphenyl/terphenyl LCMs mainly undergo self-sensitized photolysis. The main photolysis pathways are the cleavage of ester bonds for phenylbenzoate LCMs, the addition, oxidation and cleavage of alkynyl groups for biphenylethyne LCMs, and the cleavage/oxidation of chains attached to phenyls and the benzene ring opening for diphenyl/terphenyls LCMs. Most photolysis products remained toxic to aquatic organisms to some degree. Additionally, two quantitative structure-activity relationship models for predicting kobs of LCMs in methanol and n-hexane were developed, and employed to predict kobs of 93 LCMs to fill the kobs data gap in systems mimicking leaf surfaces. These results can be helpful for evaluating the fate and risk of LCMs in environments with high content of organic phase.
Collapse
Affiliation(s)
- Yandong Yang
- Engineering Laboratory for Water Pollution Control and Resources Recovery, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Xiangkun Jiang
- Engineering Laboratory for Water Pollution Control and Resources Recovery, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Yi Yang
- Engineering Laboratory for Water Pollution Control and Resources Recovery, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Jia Wang
- Engineering Laboratory for Water Pollution Control and Resources Recovery, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Yahui Zhao
- Engineering Laboratory for Water Pollution Control and Resources Recovery, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Shanshan Lin
- Engineering Laboratory for Water Pollution Control and Resources Recovery, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Jiao Qu
- Engineering Laboratory for Water Pollution Control and Resources Recovery, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Yuanhui Zhao
- Engineering Laboratory for Water Pollution Control and Resources Recovery, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Chao Li
- Engineering Laboratory for Water Pollution Control and Resources Recovery, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China.
| |
Collapse
|
5
|
Chen Z, Xiong JQ. Recovery mechanism of a microalgal species, Chlorella sp. from toxicity of doxylamine: Physiological and biochemical changes, and transcriptomics. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134752. [PMID: 38815390 DOI: 10.1016/j.jhazmat.2024.134752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Ubiquitous distribution of pharmaceutical contaminants in environment has caused unexpected adverse effects on ecological organisms; however, how microorganisms recover from their toxicities remains largely unknown. In this study, we comprehensively investigated the effect of a representative pollutant, doxylamine (DOX) on a freshwater microalgal species, Chlorella sp. by analyzing the growth patterns, biochemical changes (total chlorophyll, carotenoid, carbohydrate, protein, and antioxidant enzymes), and transcriptomics. We found toxicity of DOX on Chlorella sp. was mainly caused by disrupting synthesis of ribosomes in nucleolus, and r/t RNA binding and processing. Intriguingly, additional bicarbonate enhanced the toxicity of DOX with decreasing the half-maximum effective concentrations from 15.34 mg L-1 to 4.63 mg L-1, which can be caused by inhibiting fatty acid oxidation and amino acid metabolism. Microalgal cells can recover from this stress via upregulating antioxidant enzymatic activities to neutralize oxidative stresses, and photosynthetic pathways and nitrogen metabolism to supply more energies and cellular signaling molecules. This study extended our understanding on how microalgae can recover from chemical toxicity, and also emphasized the effect of environmental factors on the toxicity of these contaminants on aquatic microorganisms.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Haide, Ocean University of China, Laoshan Campus, Qingdao, Shandong 266003, China
| | - Jiu-Qiang Xiong
- College of Marine Life Sciences, Ocean University of China, Yushan Road 5, Qingdao, Shandong 266003, China.
| |
Collapse
|
6
|
Ge Y, Cui J, Zhang L, Zhang S, Baqar M, Cheng Z. Informal E-waste dismantling activities accelerated the releasing of liquid crystal monomers (LCMs) in Pakistan: Occurrence, distribution, and exposure assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172987. [PMID: 38734084 DOI: 10.1016/j.scitotenv.2024.172987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Liquid crystal monomers (LCMs) are emerging contaminants characterized by their persistence, bioaccumulation potential, and toxicity. They have been observed in several environmental matrices associated with electronic waste (e-waste) dismantling activities, particularly in China. However, there is currently no information on the pollution caused by LCMs in other developing countries, such as Pakistan. In this study, we collected soil samples (n = 59) from e-waste dismantling areas with different functions in Pakistan for quantification analysis of 52 target LCMs. Thirty out of 52 LCMs were detected in the soil samples, with the concentrations ranging from 2.14 to 191 ng/g (median: 16.3 ng/g), suggesting widespread contamination by these emerging contaminants. Fluorinated LCMs (median: 10.4 ng/g, range: 1.27-116 ng/g) were frequently detected and their levels were significantly (P < 0.05) higher than those of non-fluorinated LCMs (median: 6.11 ng/g, range: not detected (ND)-76.7 ng/g). The concentrations and profiles of the observed LCMs in the soil samples from the four functional areas varied. The informal dismantling of e-waste poses a potential exposure risk to adults and infants, with median estimated daily intake (EDI, ng/kg bw/day) values of 0.0420 and 0.1013, respectively. Calculation of the hazard quotient (HQ) suggested that some LCMs (e.g., ETFMBC (1.374) and EDFPB (1.257)) may pose potential health risks to occupational workers and their families. Considering the widespread contamination and risks associated with LCMs, we strongly recommend enhancing e-waste management and regulation in Pakistan.
Collapse
Affiliation(s)
- Yanhui Ge
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jingren Cui
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lianying Zhang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Shaohan Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mujtaba Baqar
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
7
|
Li C, Li S, Zhang X, Jiang X, Yang Y, Qu J, Martyniuk CJ. Photochemical behaviour and toxicity evolution of phenylbenzoate liquid crystal monomers in water. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134320. [PMID: 38640663 DOI: 10.1016/j.jhazmat.2024.134320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
Liquid crystal monomers (LCMs) are a group of emerging pollutants that pose potential environmental risks because of their ubiquitous occurrence and toxicity. Understanding their environmental transformation is essential for assessing the ecological risk. In this study, we investigated the photochemical transformation kinetics, mechanism, and photo-induced toxicity of three phenylbenzoate LCMs in water. Their apparent photolytic rate constants were within (0.023 - 0.058) min-1, and the half-lives were < 30.0 min, showing lower persistence in water. Dissolved organic matter significantly inhibited their photolysis because of light-shielding effect and quenching of excited triplet states of LCMs. Their photolysis mainly occurred through excited triplet states, and the reactive oxygen species (i.e., ⋅OH, 1O2 and ⋅O2-) contributed to their degradation. The main photolysis pathways were ester bond cleavage, ⋅OH substitution/addition, and defluorination. Experiments and computational simulation revealed that some ·OH addition/substitution products have similar toxicity with LCMs. Additionally, the ∙OH reaction rate constants (kOH) of LCMs were determined to be > 1 × 109 M-1 s-1, evidence for their high reactivity toward ⋅OH. We have further developed reliable methods to estimate kOH of other phenylbenzoate-like LCMs with quantum chemical calculations. These results are useful for understanding the transformation and fate of LCMs in aquatic environments.
Collapse
Affiliation(s)
- Chao Li
- Engineering Lab for Water Pollution Control and Resources Recovery, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China.
| | - Shaochen Li
- Engineering Lab for Water Pollution Control and Resources Recovery, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Xiao Zhang
- Engineering Lab for Water Pollution Control and Resources Recovery, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Xiangkun Jiang
- Engineering Lab for Water Pollution Control and Resources Recovery, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Yi Yang
- Engineering Lab for Water Pollution Control and Resources Recovery, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Jiao Qu
- Engineering Lab for Water Pollution Control and Resources Recovery, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
8
|
Feng JJ, Liao JX, Jiang QW, Mo L. Characteristic structures of liquid crystal monomers in EI-MS analysis and the potential application in suspect screening. CHEMOSPHERE 2024; 358:142210. [PMID: 38704041 DOI: 10.1016/j.chemosphere.2024.142210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Liquid crystal monomers (LCMs) are of emerging concern due to their ubiquitous presence in indoor and outdoor environments and their potential negative impacts on human health and ecosystems. Suspect screening approaches have been developed to monitor thousands of LCMs that could enter the environment, but an updated suspect list of LCMs is difficult to maintain given the rapid development of material innovations. To facilitate suspect screening for LCMs, in-silico mass fragmentation model and quantitative structure-activity relationship (QSPR) models were applied to predict electron ionization (EI) mass spectra of LCMs. The in-silico model showed limited predictive power for EI mass spectra, while the QSPR models trained with 437 published mass spectra of LCMs achieved an acceptable absolute error of 12 percentage points in predicting the relative intensity of the molecular ion, but failed to predict the mass-to-charge ratio of the base peak. A total of 41 characteristic structures were identified from an updated suspect list of 1606 LCMs. Multi-phenyl groups form the rigid cores of 85% of LCMs and produce 154 characteristic peaks in EI mass spectra. Monitoring the characteristic structures and fragments of LCMs may help identify new LCMs with the same rigid cores as those in the suspect list.
Collapse
Affiliation(s)
- Jing-Jing Feng
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006, China.
| | - Jian-Xiong Liao
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006, China
| | - Qian-Wen Jiang
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006, China
| | - Ling Mo
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006, China
| |
Collapse
|
9
|
Hong Y, Xiao S, Naraginti S, Liao W, Feng C, Xu D, Guo C, Jin X, Xie F. Freshwater water quality criteria for phthalate esters and recommendations for the revision of the water quality standards. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116517. [PMID: 38805830 DOI: 10.1016/j.ecoenv.2024.116517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 05/30/2024]
Abstract
With increasing urbanization and rapid industrialization, more and more environmental problems have arisen. Phthalates (PAEs) are the foremost and most widespread plasticizers and are readily emitted from these manufactured products into the environment. PAEs act as endocrine-disrupting chemicals (EDCs) and can have serious impacts on aquatic organisms as well as human health. In this study, the water quality criteria (WQC) of five PAEs (dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), butyl benzyl phthalate (BBP) and di(2-ethylhexyl) phthalate (DEHP)) for freshwater aquatic organisms were developed using a species sensitivity distribution (SSD) and a toxicity percentage ranking (TPR) approach. The results showed that long-term water quality criteria (LWQC) of PAEs using the SSD method could be 13.7, 11.1, 2.8, 7.8, and 0.53 μg/L, respectively. Criteria continuous concentrations (CCC) of PAEs were derived using the TPR method and determined to be 28.4, 13.1, 1.3, 2.5, and 1.6 μg/L, respectively. The five PAEs are commonly measured in China surface waters at concentrations between ng/L and μg/L. DBP, DEHP, and di-n-octyl phthalate (DnOP) were the most frequently detected PAEs, with occurrence rates ranging from 67% to 100%. The ecological risk assessment results of PAEs showed a decreasing order of risk at the national level, DEHP, DBP, DMP, DEP, DnOP. The results of this study will be of great benefit to China and other countries in revising water quality standards for the conservation of aquatic species.
Collapse
Affiliation(s)
- Yajun Hong
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Sa Xiao
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Saraschandra Naraginti
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Wei Liao
- State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Wetland Research Center, Jiangxi Academy of Forestry, Nanchang 330032, China.
| | - Chenglian Feng
- State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Dayong Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China.
| | - Changsheng Guo
- State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Fazhi Xie
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
| |
Collapse
|
10
|
He W, Cui Y, Li Y, Yang H, Liu Z, Zhang M, Li Y. Accumulation characteristics of liquid crystal monomers in plants: A multidimensional analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133848. [PMID: 38401218 DOI: 10.1016/j.jhazmat.2024.133848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
Liquid crystal monomers (LCMs), identified as emerging contaminations, have been detected in soils and plants, but their accumulation characteristics in plants haven't been studied. Therefore, this study systematically investigated the accumulation characteristics of LCMs in plants from four dimensions (i.e., plant fruit species, soil types, plant growth stages, and LCMs categories) for the first time. The LCMs concentrations (9.96 × 10-4 to 114.608 ng/g) in 22 plant fruits were predicted by the partition-limited model. Grains with the highest lipid content showed the highest LCMs accumulation propensity. Plants grown in paddy soil showed a strong LCMs accumulation capacity. Results showed that the LCMs accumulation capacity in plants from soils decreased when the soil organic matter content increased. A preferential accumulation of LCMs in plant root systems during growth was found by the molecular dynamics simulations. Compared to polychlorinated biphenyls (as the reference contaminants of LCMs), LCMs exhibit higher accumulation in plant roots and lower translocation to shoots. For the fourth dimension, lipophilicity was found to be the main reason of LCMs accumulation by intergraded stepwise linear regression with sensitivity analysis. This is the inaugural research concentrating on LCMs accumulation in plants, providing insights and theoretical guidance for future LCMs management strategies multidimensionally.
Collapse
Affiliation(s)
- Wei He
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Yuhan Cui
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Yunxiang Li
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Hao Yang
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Zeyang Liu
- School of Hydraulic and Environmental Engineering, Changchun Institute of Technology, Changchun 130012, China
| | - Meng Zhang
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China.
| | - Yu Li
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| |
Collapse
|