1
|
Ranchou-Peyruse M, Guignard M, Haddad PG, Robin S, Boesch F, Lanot M, Carrier H, Dequidt D, Chiquet P, Caumette G, Cézac P, Ranchou-Peyruse A. A deep continental aquifer downhole sampler for microbiological studies. Front Microbiol 2023; 13:1012400. [PMID: 36687568 PMCID: PMC9846368 DOI: 10.3389/fmicb.2022.1012400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023] Open
Abstract
To be effective, microbiological studies of deep aquifers must be free from surface microbial contaminants and from infrastructures allowing access to formation water (wellheads, well completions). Many microbiological studies are based on water samples obtained after rinsing a well without guaranteeing the absence of contaminants from the biofilm development in the pipes. The protocol described in this paper presents the adaptation, preparation, sterilization and deployment of a commercial downhole sampler (PDSshort, Leutert, Germany) for the microbiological studying of deep aquifers. The ATEX sampler (i.e., explosive atmospheres) can be deployed for geological gas storage (methane, hydrogen). To validate our procedure and confirm the need to use such a device, cell counting and bacterial taxonomic diversity based on high-throughput sequencing for different water samples taken at the wellhead or at depth using the downhole sampler were compared and discussed. The results show that even after extensive rinsing (7 bore volumes), the water collected at the wellhead was not free of microbial contaminants, as shown by beta-diversity analysis. The downhole sampler procedure was the only way to ensure the purity of the formation water samples from the microbiological point of view. In addition, the downhole sampler allowed the formation water and the autochthonous microbial community to be maintained at in situ pressure for laboratory analysis. The prevention of the contamination of the sample and the preservation of its representativeness are key to guaranteeing the best interpretations and understanding of the functioning of the deep biosphere.
Collapse
Affiliation(s)
- Magali Ranchou-Peyruse
- E2S-UPPA, CNRS, IPREM, Universite de Pau & Pays Adour, Pau, France
- E2S-UPPA, LaTEP, Universite de Pau & Pays Adour, Pau, France
- Joint Laboratory SEnGA, E2S-UPPA-Teréga, Pau, France
| | - Marion Guignard
- E2S-UPPA, CNRS, IPREM, Universite de Pau & Pays Adour, Pau, France
| | - Perla G Haddad
- E2S-UPPA, LaTEP, Universite de Pau & Pays Adour, Pau, France
| | | | | | | | - Hervé Carrier
- Joint Laboratory SEnGA, E2S-UPPA-Teréga, Pau, France
- E2S-UPPA, CNRS, TOTAL, LFCR, Universite de Pau & Pays Adour, Pau, France
| | - David Dequidt
- STORENGY - Geosciences Department, Bois-Colombes, France
| | - Pierre Chiquet
- Joint Laboratory SEnGA, E2S-UPPA-Teréga, Pau, France
- Teréga, Pau, France
| | - Guilhem Caumette
- Joint Laboratory SEnGA, E2S-UPPA-Teréga, Pau, France
- Teréga, Pau, France
| | - Pierre Cézac
- E2S-UPPA, LaTEP, Universite de Pau & Pays Adour, Pau, France
- Joint Laboratory SEnGA, E2S-UPPA-Teréga, Pau, France
| | - Anthony Ranchou-Peyruse
- E2S-UPPA, CNRS, IPREM, Universite de Pau & Pays Adour, Pau, France
- Joint Laboratory SEnGA, E2S-UPPA-Teréga, Pau, France
| |
Collapse
|