1
|
Saif Al Essai KR, Moheyelden RE, Bosu S, Rajamohan N, Rajasimman M. Enhanced mitigation of acidic and basic dyes by ZnO based nano-photocatalysis: current applications and future perspectives. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:139. [PMID: 38483690 DOI: 10.1007/s10653-024-01935-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/22/2024] [Indexed: 03/19/2024]
Abstract
Dye wastewater possess immense toxicity with carcinogenic properties and they persist in environment owing to their stability and resistance to chemical and photochemical changes. The bio degradability of dye-contaminated wastewater is low due to its complex molecular structure. Nano-photocatalysts based on zinc oxide are reported as one of the effective metal oxides for dye remediation due to their photostability, enhanced UV and visible absorption capabilities in an affordable manner. An electron-hole pair forms when electrons in the valence band of ZnO nano-photocatalyst transfer into the conduction band by absorbing UV light. The review article presents a detailed review on ZnO applications for treating acidic and basic dyes along with the dye degradation performance based on operating conditions and photocatalytic kinetic models. Several acidic and basic dyes have been shown to degrade efficiently using ZnO and its nanocomposites. Higher removal percentages for crystal violet was reported at pH 12 by ZnO/Graphene oxide catalyst under 400 nm UV light, whereas acidic dye Rhodamine B at a pH of 5.8 was degraded to 100% by pristine ZnO. The mechanism of action of ZnO nanocatalysts in degrading the dye contamination are reported and the research gaps to make these agents in environmental remediation on real time operations are discussed.
Collapse
Affiliation(s)
| | | | - Subrajit Bosu
- Chemical Engineering Section, Faculty of Engineering, Sohar University, 311, Sohar, Oman
| | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, 311, Sohar, Oman.
| | | |
Collapse
|
2
|
Huang J, Xu B, Ge B, Xu Y, Cao B. Novel SnO2(ZnO:Sn)m superlattice nanoparticles for ultra-low ppb-level H2S detection. CrystEngComm 2022. [DOI: 10.1039/d2ce00506a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel zero-dimensional SnO2(ZnO:Sn)m superlattice nanoparticles were synthesized by a simple method of annealing ZnO nanoparticles precoated with the sol-gel Sn-Zn-O precursor. The annealing temperature and duration are systematically evaluated, and...
Collapse
|
3
|
Sohn HY, Murali A. Plasma Synthesis of Advanced Metal Oxide Nanoparticles and Their Applications as Transparent Conducting Oxide Thin Films. Molecules 2021; 26:molecules26051456. [PMID: 33800111 PMCID: PMC7962204 DOI: 10.3390/molecules26051456] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022] Open
Abstract
This article reviews and summarizes work recently performed in this laboratory on the synthesis of advanced transparent conducting oxide nanopowders by the use of plasma. The nanopowders thus synthesized include indium tin oxide (ITO), zinc oxide (ZnO) and tin-doped zinc oxide (TZO), aluminum-doped zinc oxide (AZO), and indium-doped zinc oxide (IZO). These oxides have excellent transparent conducting properties, among other useful characteristics. ZnO and TZO also has photocatalytic properties. The synthesis of these materials started with the selection of the suitable precursors, which were injected into a non-transferred thermal plasma and vaporized followed by vapor-phase reactions to form nanosized oxide particles. The products were analyzed by the use of various advanced instrumental analysis techniques, and their useful properties were tested by different appropriate methods. The thermal plasma process showed a considerable potential as an efficient technique for synthesizing oxide nanopowders. This process is also suitable for large scale production of nano-sized powders owing to the availability of high temperatures for volatilizing reactants rapidly, followed by vapor phase reactions and rapid quenching to yield nano-sized powder.
Collapse
|
4
|
Manikandan M, Rajagopalan P, Patra N, Jayachandran S, Muralidharan M, Mani Prabu SS, Palani IA, Singh V. Development of Sn-doped ZnO based ecofriendly piezoelectric nanogenerator for energy harvesting application. NANOTECHNOLOGY 2020; 31:185401. [PMID: 31935698 DOI: 10.1088/1361-6528/ab6b9e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, we have a demonstrated zinc oxide (ZnO) polymer-based ecofriendly piezoelectric nanogenerator (PENG) on a paper substrate for an energy harvesting application. The ZnO thin film is developed on the paper substrate, where different doping concentrations of Sn have been investigated systematically to validate the effect of doping towards enhancing the device performance. The piezoelectric potential of the fabricated device is evaluated by applying three different loads (4 N, 8 N, 22 N), where the source of the corresponding mechanical loads is based on the object of a musical drum stick. The results suggest that the pristine ZnO PENG device can generate a maximum output voltage and current of 2.15 V and 17 nA respectively. Moreover, the ZnO PENG device doped with 2.5% Sn achieved an even higher voltage (4.15 V) and current (36 nA) compared to pristine ZnO devices. In addition, the hydrothermal growth technique used to develop Sn-doped ZnO has the benefits of high scalability and low cost. Hence, the Sn-doped PENG device is a suitable candidate for energy harvesting applications operating in both uniform and non-uniform loading conditions.
Collapse
Affiliation(s)
- M Manikandan
- Mechatronics and Instrumentation Lab, Discipline of Mechanical Engineering, Indian Institute of Technology Indore, India
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Divya M, Vaseeharan B, Abinaya M, Vijayakumar S, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G. Biopolymer gelatin-coated zinc oxide nanoparticles showed high antibacterial, antibiofilm and anti-angiogenic activity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 178:211-218. [PMID: 29156349 DOI: 10.1016/j.jphotobiol.2017.11.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/02/2017] [Accepted: 11/05/2017] [Indexed: 02/01/2023]
Abstract
The use of natural polymers in drug design plays an important role in biomedical applications. Combinations of nanoparticles (NPs) and biopolymers have been shown to be useful for many purposes. This study focused on gelatin-coated zinc oxide NPs synthesized by co-precipitation. The particles were characterized by UV-Vis spectrum, showing a main peak at 375nm. The stability and crystalline nature of the particles was evaluated by Zeta potential and X-ray diffraction analysis. Fourier transform infrared spectroscopy (FTIR) revealed the possible functional groups of Ge-ZnO NPs, with strong bands at 3851, 3447, and 2923cm-1. Moreover, transmission electron microscopy (TEM) highlighted the presence of spherically shaped Ge-ZnO NPs that were 20nm in size. Energy dispersive analysis X-ray (EDX) analysis showed that the zinc elemental content of Ge-ZnO NPs was 59.10%. The results of antibacterial activity assays revealed higher inhibition of Ge-ZnO NPs against Gram-negative Pseudomonas aeruginosa at 100μg/ml over that against Gram-positive Enterococcus faecalis. Greater inhibition of biofilm formation was observed for Gram-negative bacteria compared to Gram-positive bacteria. In addition, Ge-ZnO NPs effectively inhibited the biofilm growth of the fungus Candida albicans at 50μg/ml. Ge-ZnO NPs reduced the viability of hepatocarcinoma cancer cell lines at 100μg/ml. Moreover, in chick embryos, notable anti-angiogenesis effects were observed for Ge-ZnO NPs and zinc acetate at 50μg/ml compared to that observed testing gelatin. Overall, based on the results, Ge-ZnO NPs may be used as a novel agent for the control of biofilm-forming microbial pathogens.
Collapse
Affiliation(s)
- Mani Divya
- Crustacean Molecular Biology and Genomics Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Block, 6(th) floor, Burma Colony, Karaikudi 630 004, Tamil Nadu, India
| | - Baskaralingam Vaseeharan
- Crustacean Molecular Biology and Genomics Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Block, 6(th) floor, Burma Colony, Karaikudi 630 004, Tamil Nadu, India.
| | - Muthukumar Abinaya
- Crustacean Molecular Biology and Genomics Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Block, 6(th) floor, Burma Colony, Karaikudi 630 004, Tamil Nadu, India
| | - Sekar Vijayakumar
- Crustacean Molecular Biology and Genomics Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Block, 6(th) floor, Burma Colony, Karaikudi 630 004, Tamil Nadu, India
| | - Marimuthu Govindarajan
- Unit of Vector Control, Photochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India; Department of Zoology, Government College for Women, Kumbakonam 612001, Tamil Nadu, India
| | - Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jamal M Khaled
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy; The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| |
Collapse
|