1
|
Costanzo V, Roviello GN. The Potential Role of Vaccines in Preventing Antimicrobial Resistance (AMR): An Update and Future Perspectives. Vaccines (Basel) 2023; 11:vaccines11020333. [PMID: 36851210 PMCID: PMC9962013 DOI: 10.3390/vaccines11020333] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
In the modern era, the consumption of antibiotics represents a revolutionary weapon against several infectious diseases, contributing to the saving of millions of lives worldwide. However, the misuse of antibiotics for human and animal purposes has fueled the process of antimicrobial resistance (AMR), considered now a global emergency by the World Health Organization (WHO), which significantly increases the mortality risk and related medical costs linked to the management of bacterial diseases. The current research aiming at developing novel efficient antibiotics is very challenging, and just a few candidates have been identified so far due to the difficulties connected with AMR. Therefore, novel therapeutic or prophylactic strategies to fight AMR are urgently needed. In this scenario, vaccines constitute a promising approach that proves to be crucial in preventing pathogen spreading in primary infections and in minimizing the usage of antibiotics following secondary bacterial infections. Unfortunately, most of the vaccines developed against the main resistant pathogens are still under preclinical and clinical evaluation due to the complexity of pathogens and technical difficulties. In this review, we describe not only the main causes of AMR and the role of vaccines in reducing the burden of infectious diseases, but we also report on specific prophylactic advancements against some of the main pathogens, focusing on new strategies that aim at improving vaccine efficiency.
Collapse
Affiliation(s)
- Vincenzo Costanzo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna Alma Mater Studiorum, 40126 Bologna, Italy
- Correspondence: (V.C.); (G.N.R.)
| | - Giovanni N. Roviello
- Italian National Council for Research (IBB-CNR), Area di Ricerca site and Headquartes, Via Pietro Castellino 111, 80131 Naples, Italy
- Correspondence: (V.C.); (G.N.R.)
| |
Collapse
|
2
|
Evolution of Antibacterial Drug Screening Methods: Current Prospects for Mycobacteria. Microorganisms 2021; 9:microorganisms9122562. [PMID: 34946162 PMCID: PMC8708102 DOI: 10.3390/microorganisms9122562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 12/25/2022] Open
Abstract
The increasing resistance of infectious agents to available drugs urges the continuous and rapid development of new and more efficient treatment options. This process, in turn, requires accurate and high-throughput techniques for antimicrobials’ testing. Conventional methods of drug susceptibility testing (DST) are reliable and standardized by competent entities and have been thoroughly applied to a wide range of microorganisms. However, they require much manual work and time, especially in the case of slow-growing organisms, such as mycobacteria. Aiming at a better prediction of the clinical efficacy of new drugs, in vitro infection models have evolved to closely mimic the environment that microorganisms experience inside the host. Automated methods allow in vitro DST on a big scale, and they can integrate models that recreate the interactions that the bacteria establish with host cells in vivo. Nonetheless, they are expensive and require a high level of expertise, which makes them still not applicable to routine laboratory work. In this review, we discuss conventional DST methods and how they should be used as a first screen to select active compounds. We also highlight their limitations and how they can be overcome by more complex and sophisticated in vitro models that reflect the dynamics present in the host during infection. Special attention is given to mycobacteria, which are simultaneously difficult to treat and especially challenging to study in the context of DST.
Collapse
|
3
|
Rapid antimicrobial susceptibility testing by stimulated Raman scattering metabolic imaging and morphological deformation of bacteria. Anal Chim Acta 2021; 1168:338622. [PMID: 34051990 DOI: 10.1016/j.aca.2021.338622] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 12/19/2022]
Abstract
Methods for rapid antimicrobial susceptibility testing (AST) are urgently needed to address the emergence and spread of antimicrobial resistance. Here, we report a new method based on stimulated Raman scattering (SRS) microscopy, which measures both the metabolic activity and the morphological deformation of bacteria to determine the antimicrobial susceptibility of β-lactam antibiotics rapidly. In this approach, we quantify single bacteria's metabolic activity by the carbon-deuterium (C-D) bond concentrations in bacteria after D2O incubation. In the meantime, bacterial morphological deformation caused by β-lactam antibiotics is also measured. With these two quantifiable markers, we develop an evaluation method to perform AST of cefotaxime on 103 E. coli strains. Our method achieved a 93.2% categorical agreement and a 93.2% essential agreement with the standard reference method.
Collapse
|
4
|
Pavankumar AR, Zelenin S, Lundin A, Schulte T, Rajarathinam K, Rebellato P, Ardabili S, Salas J, Achour A, Russom A. Bioanalytical advantages of a novel recombinant apyrase enzyme in ATP-based bioluminescence methods. Anal Chim Acta 2018; 1025:118-123. [PMID: 29801599 DOI: 10.1016/j.aca.2018.04.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/08/2018] [Accepted: 04/20/2018] [Indexed: 11/16/2022]
Abstract
Ultrasensitive measurements of intracellular ATP (intATP) based on the firefly luciferase reactions are frequently used to enumerate bacterial or mammalian cells. During clinical applications, extracellular ATP (extATP) should be depleted in biological samples since it interferes with intATP and affects the quantification of bacteria. The extATP can be eliminated by ATP-degrading enzymes but complete hydrolysis of extATP remains a challenge for today's commercial enzymes. The catalytic efficiency of ATP-degrading enzymes depends on enzyme characteristics, sample composition and the ability to deplete diphosphates, triphosphates and their complexes generated during the reaction. This phenomenon restricts the usage of bioluminescence-based ATP methods in clinical diagnostics. In light of this, we have developed a recombinant Shigella flexneri apyrase (RSFA) enzyme and analysed its ATP depletion potential with five commercial biochemical sources including potato apyrase, acid phosphatase, alkaline phosphatase, hexokinase and glycerol kinase. The RSFA revealed superior activity by completely eliminating the extracellular ATP and ATP-complexes, even in biological samples like urine and serum. Therefore, our results can potentially unwrap the chemical and bio-analytical applications of ATP-based bioluminescence tests to develop highly sensitive point-of-care diagnostics.
Collapse
Affiliation(s)
| | - Sergey Zelenin
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - Tim Schulte
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, Solna, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| | | | | | - Sahar Ardabili
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jeanpierre Salas
- ApiRays AB, Karolinska Institute Science Park, Stockholm, Sweden
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, Solna, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Aman Russom
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
5
|
Kaskova ZM, Tsarkova AS, Yampolsky IV. 1001 lights: luciferins, luciferases, their mechanisms of action and applications in chemical analysis, biology and medicine. Chem Soc Rev 2018; 45:6048-6077. [PMID: 27711774 DOI: 10.1039/c6cs00296j] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bioluminescence (BL) is a spectacular phenomenon involving light emission by live organisms. It is caused by the oxidation of a small organic molecule, luciferin, with molecular oxygen, which is catalysed by the enzyme luciferase. In nature, there are approximately 30 different BL systems, of which only 9 have been studied to various degrees in terms of their reaction mechanisms. A vast range of in vitro and in vivo analytical techniques have been developed based on BL, including tests for different analytes, immunoassays, gene expression assays, drug screening, bioimaging of live organisms, cancer studies, the investigation of infectious diseases and environmental monitoring. This review aims to cover the major existing applications for bioluminescence in the context of the diversity of luciferases and their substrates, luciferins. Particularly, the properties and applications of d-luciferin, coelenterazine, bacterial, Cypridina and dinoflagellate luciferins and their analogues along with their corresponding luciferases are described. Finally, four other rarely studied bioluminescent systems (those of limpet Latia, earthworms Diplocardia and Fridericia and higher fungi), which are promising for future use, are also discussed.
Collapse
Affiliation(s)
- Zinaida M Kaskova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia. and Pirogov Russian National Research Medical University, Ostrovitianova 1, Moscow 117997, Russia
| | - Aleksandra S Tsarkova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia. and Pirogov Russian National Research Medical University, Ostrovitianova 1, Moscow 117997, Russia
| | - Ilia V Yampolsky
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia. and Pirogov Russian National Research Medical University, Ostrovitianova 1, Moscow 117997, Russia
| |
Collapse
|
6
|
Métodos rápidos para la detección de la resistencia bacteriana a antibióticos. Enferm Infecc Microbiol Clin 2017; 35:182-188. [DOI: 10.1016/j.eimc.2016.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/14/2016] [Accepted: 12/16/2016] [Indexed: 12/18/2022]
|
7
|
Navarro F, Coll P. Speeding up antimicrobial susceptibility testing. Enferm Infecc Microbiol Clin 2016; 34:331-3. [PMID: 27004427 DOI: 10.1016/j.eimc.2016.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 02/15/2016] [Indexed: 11/15/2022]
Affiliation(s)
- Ferran Navarro
- Servei de Microbiologia, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
| | - Pere Coll
- Departament de Genètica i de Microbiología, Universitat Autònoma de Barcelona, Institut d'Investigacions Biomèdiques Sant Pau, Barcelona, Spain; Spanish Network for the Research in Infectious Diseases (REIPI RD12/0015), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|