1
|
Czeszewska-Rosiak G, Adamczyk I, Ludwiczak A, Fijałkowski P, Fijałkowski P, Twarużek M, Złoch M, Gabryś D, Miśta W, Tretyn A, Pomastowski PP. Analysis of the efficacy of MALDI-TOF MS technology in identifying microorganisms in cancer patients and oncology hospital environment. Heliyon 2025; 11:e42015. [PMID: 39906802 PMCID: PMC11791110 DOI: 10.1016/j.heliyon.2025.e42015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
Rapid diagnostics of microbes in hospitals are crucial for promptly identifying infections, enabling timely and appropriate treatment. The study was conducted to evaluate the effectiveness of the matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI TOF MS) technology in the microbial profiling of hospital environments and patient samples. The objective was to determine the microbial landscape in swabs collected from hospitalized patients and their immediate environments, using MALDI to compare the capabilities of two systems: BRUKER and ZYBIO. The analysis resulted in 1012 microbial identifications from patient samples (N = 81), encompassing 96 species, and 1496 identifications from hospital surface samples (N = 108), covering 124 species. Predominantly identified microorganisms in patients' samples included Staphylococcus epidermidis, Staphylococcus aureus, Staphylococcus capitis, Steptococcus salivarius, and Micrococcus luteus, whereas environmental samples chiefly yielded S. epidermidis, Staphylococcus hominis, Staphylococcus warneri, and Microcccus luteus. 33 species were found in both types of samples, highlighting a significant microbial interchange within hospital settings. Both MALDI systems showed high consistency in results at both genus and species levels. Nevertheless, mismatches in identification between both MALDI systems were noted, particularly within Brevibacterium, Streptococcus, Bacillus, Staphylococcus, and Neisseria genera. This study presents the precision of MALDI technology in microbial identification and highlights the need for ongoing enhancements, especially in the expansion and updating of databases, to bolster its diagnostic effectiveness further.
Collapse
Affiliation(s)
- Grażyna Czeszewska-Rosiak
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wilenska 4 Str., Torun 87-100, Poland
- Departnemt of Plant Physiology and Biotechnology, Nicolaus Copernicus University in Torun, Lwowska 1 Str., 87-100 Torun, Poland
| | - Iwona Adamczyk
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wilenska 4 Str., Torun 87-100, Poland
- Department of Physiology and Toxicology, Kazimierz Wielki University, Chodkiewicza 30 Str., Bydgoszcz, Poland
| | - Agnieszka Ludwiczak
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wilenska 4 Str., Torun 87-100, Poland
- Department of Immunology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1 Str., 87-100 Toruń, Poland
| | - Piotr Fijałkowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wilenska 4 Str., Torun 87-100, Poland
| | - Paweł Fijałkowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wilenska 4 Str., Torun 87-100, Poland
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7 Str., 87-100 Toruń, Poland
| | - Magdalena Twarużek
- Department of Physiology and Toxicology, Kazimierz Wielki University, Chodkiewicza 30 Str., Bydgoszcz, Poland
| | - Michał Złoch
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wilenska 4 Str., Torun 87-100, Poland
| | - Dorota Gabryś
- Radiotherapy Department, Maria Sklodowska-Curie National Research Institute of Oncology, Wybrzeze Armii Krajowej 15 Str., Poland
| | - Wioletta Miśta
- Radiotherapy Department, Maria Sklodowska-Curie National Research Institute of Oncology, Wybrzeze Armii Krajowej 15 Str., Poland
| | - Andrzej Tretyn
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wilenska 4 Str., Torun 87-100, Poland
- Departnemt of Plant Physiology and Biotechnology, Nicolaus Copernicus University in Torun, Lwowska 1 Str., 87-100 Torun, Poland
| | - Paweł Piotr Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wilenska 4 Str., Torun 87-100, Poland
| |
Collapse
|
2
|
McIntyre DB, Dawson BM, Long BM, Barton PS. A review of multi-disciplinary decomposition research and key drivers of variation in decay. Int J Legal Med 2024; 138:2181-2192. [PMID: 38622312 PMCID: PMC11306653 DOI: 10.1007/s00414-024-03222-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
The decomposition of animal remains is a multifaceted process, involving ecological, biological, and chemical interactions. While the complexity is acknowledged through concepts like the necrobiome, it's unclear if this complexity is reflected in research. Appreciation of the complexity of decomposition is crucial for identifying sources of variation in estimations of time since death in medico-legal science, as well as building broader ecological knowledge of the decomposition process. To gain insights into the extent of multidisciplinary research in the field of decomposition science, we conducted an examination of peer-reviewed literature on four key drivers of variation: volatile organic compounds, microbes, drugs/toxins, and insects. Among 650 articles, we identified their scientific discipline, driver/s of variation investigated, and year of publication. We found that 19% explored relationships between two drivers, while only 4% investigated interactions between three. None considered all four drivers. Over the past three decades, there has been a steady increase in decomposition research publications, signifying its growing importance. Most research (79%) was linked to forensic science, highlighting opportunities for interdisciplinary collaboration in decomposition science. Overall, our review underscores the need to incorporate multidisciplinary approaches and theory into contemporary decomposition research.
Collapse
Affiliation(s)
- Donna B McIntyre
- Future Regions Research Centre, Federation University, Mount Helen, VIC, 3350, Australia.
- Graduate Research School, Federation University, Mount Helen, VIC, 3350, Australia.
| | - Blake M Dawson
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2350, Australia
| | - Benjamin M Long
- Future Regions Research Centre, Federation University, Mount Helen, VIC, 3350, Australia
| | - Philip S Barton
- Future Regions Research Centre, Federation University, Mount Helen, VIC, 3350, Australia
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3216, Australia
| |
Collapse
|
3
|
Li X, Yang F, Li H, Hu Z, Yu W, Zhang Y, Gao J. Array-based specific classification of bacterial species via ligands with dimethylamino/amino groups. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5812-5819. [PMID: 39140766 DOI: 10.1039/d4ay00903g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The early detection of bacterial species plays a crucial role in patient prognosis and the development of effective therapeutic regimens. This study introduces an accessible and promising colorimetric sensor array designed to classify gram-positive (G+) and gram-negative (G-) bacterial species. The classification relies on 6 chemical ligands with dimethylamino/amino groups as sensing elements and silver nanotriangles as colorimetric probes. Using these specific sensor arrays, we successfully differentiated G- and G+ bacterial species and discriminated individual bacterial strains, and the sensors exhibited remarkable reproducibility and high sensitivity. Moreover, the sensor array can identify bacterial mixtures and bacteria at varying concentrations, underscoring its versatility. In summary, this sensor array offers an effective tool for bacterial analysis with promising applications in the field of biomedical diagnostics.
Collapse
Affiliation(s)
- Xizhe Li
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Fan Yang
- Xingzichuan Drilling Company, Yanchang Oil Mine Management Bureau, Yanan 717400, China
| | - Haojie Li
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Zhi Hu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Weiting Yu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuchen Zhang
- Department of Pharmacy, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an 710021, China.
| | - Jie Gao
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
4
|
Chen CH, Liao YH, Muljadi M, Lu TT, Cheng CM. Potential Application of the WST-8-mPMS Assay for Rapid Viable Microorganism Detection. Pathogens 2023; 12:pathogens12020343. [PMID: 36839615 PMCID: PMC9966898 DOI: 10.3390/pathogens12020343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
To ensure clean drinking water, viable pathogens in water must be rapidly and efficiently screened. The traditional culture or spread-plate process-the conventional standard for bacterial detection-is laborious, time-consuming, and unsuitable for rapid detection. Therefore, we developed a colorimetric assay for rapid microorganism detection using a metabolism-based approach. The reaction between a viable microorganism and the combination of 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium sodium salt (WST-8) and 1-methoxy-5-methylphenazinium methyl sulfate (mPMS) results in a color change. In combination with a microplate reader, WST-8-mPMS reactivity was leveraged to develop a colorimetric assay for the rapid detection of various bacteria. The detection limit of the WST-8-mPMS assay for both gram-negative and gram-positive bacteria was evaluated. This WST-8-mPMS assay can be used to perform colorimetrical semi-quantitative detection of various bacterial strains in buffers or culture media within 1 h without incubation before the reaction. The easy-to-use, robust, rapid, and sensitive nature of this novel assay demonstrates its potential for practical and medical use for microorganism detection.
Collapse
Affiliation(s)
- Cheng-Han Chen
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Yu-Hsiang Liao
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Michael Muljadi
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tsai-Te Lu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Correspondence:
| |
Collapse
|
5
|
Maturana CR, de Oliveira AD, Nadal S, Bilalli B, Serrat FZ, Soley ME, Igual ES, Bosch M, Lluch AV, Abelló A, López-Codina D, Suñé TP, Clols ES, Joseph-Munné J. Advances and challenges in automated malaria diagnosis using digital microscopy imaging with artificial intelligence tools: A review. Front Microbiol 2022; 13:1006659. [PMID: 36458185 PMCID: PMC9705958 DOI: 10.3389/fmicb.2022.1006659] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/26/2022] [Indexed: 09/03/2023] Open
Abstract
Malaria is an infectious disease caused by parasites of the genus Plasmodium spp. It is transmitted to humans by the bite of an infected female Anopheles mosquito. It is the most common disease in resource-poor settings, with 241 million malaria cases reported in 2020 according to the World Health Organization. Optical microscopy examination of blood smears is the gold standard technique for malaria diagnosis; however, it is a time-consuming method and a well-trained microscopist is needed to perform the microbiological diagnosis. New techniques based on digital imaging analysis by deep learning and artificial intelligence methods are a challenging alternative tool for the diagnosis of infectious diseases. In particular, systems based on Convolutional Neural Networks for image detection of the malaria parasites emulate the microscopy visualization of an expert. Microscope automation provides a fast and low-cost diagnosis, requiring less supervision. Smartphones are a suitable option for microscopic diagnosis, allowing image capture and software identification of parasites. In addition, image analysis techniques could be a fast and optimal solution for the diagnosis of malaria, tuberculosis, or Neglected Tropical Diseases in endemic areas with low resources. The implementation of automated diagnosis by using smartphone applications and new digital imaging technologies in low-income areas is a challenge to achieve. Moreover, automating the movement of the microscope slide and image autofocusing of the samples by hardware implementation would systemize the procedure. These new diagnostic tools would join the global effort to fight against pandemic malaria and other infectious and poverty-related diseases.
Collapse
Affiliation(s)
- Carles Rubio Maturana
- Microbiology Department, Vall d’Hebron Research Institute, Vall d’Hebron Hospital Campus, Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Allisson Dantas de Oliveira
- Computational Biology and Complex Systems Group, Physics Department, Universitat Politècnica de Catalunya (UPC), Castelldefels, Spain
| | - Sergi Nadal
- Data Base Technologies and Information Group, Engineering Services and Information Systems Department, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | - Besim Bilalli
- Data Base Technologies and Information Group, Engineering Services and Information Systems Department, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | - Francesc Zarzuela Serrat
- Microbiology Department, Vall d’Hebron Research Institute, Vall d’Hebron Hospital Campus, Barcelona, Spain
| | - Mateu Espasa Soley
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Clinical Laboratories, Microbiology Department, Hospital Universitari Parc Taulí, Sabadell, Spain
| | - Elena Sulleiro Igual
- Microbiology Department, Vall d’Hebron Research Institute, Vall d’Hebron Hospital Campus, Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- CIBERINFEC, ISCIII- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Alberto Abelló
- Data Base Technologies and Information Group, Engineering Services and Information Systems Department, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | - Daniel López-Codina
- Computational Biology and Complex Systems Group, Physics Department, Universitat Politècnica de Catalunya (UPC), Castelldefels, Spain
| | - Tomàs Pumarola Suñé
- Microbiology Department, Vall d’Hebron Research Institute, Vall d’Hebron Hospital Campus, Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Elisa Sayrol Clols
- Image Processing Group, Telecommunications and Signal Theory Group, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | - Joan Joseph-Munné
- Microbiology Department, Vall d’Hebron Research Institute, Vall d’Hebron Hospital Campus, Barcelona, Spain
| |
Collapse
|
6
|
Sallard E, Schult F, Baehren C, Buedding E, Mboma O, Ahmad-Nejad P, Ghebremedhin B, Ehrhardt A, Wirth S, Aydin M. Viral Infection and Respiratory Exacerbation in Children: Results from a Local German Pediatric Exacerbation Cohort. Viruses 2022; 14:491. [PMID: 35336898 PMCID: PMC8955305 DOI: 10.3390/v14030491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 02/05/2023] Open
Abstract
Respiratory viruses play an important role in asthma exacerbation, and early exposure can be involved in recurrent bronchitis and the development of asthma. The exact mechanism is not fully clarified, and pathogen-to-host interaction studies are warranted to identify biomarkers of exacerbation in the early phase. Only a limited number of international exacerbation cohorts were studied. Here, we have established a local pediatric exacerbation study in Germany consisting of children with asthma or chronic, recurrent bronchitis and analyzed the viriome within the nasopharyngeal swab specimens derived from the entire cohort (n = 141). Interestingly, 41% of exacerbated children had a positive test result for human rhinovirus (HRV)/human enterovirus (HEV), and 14% were positive for respiratory syncytial virus (RSV). HRV was particularly prevalent in asthmatics (56%), wheezers (50%), and atopic (66%) patients. Lymphocytes were decreased in asthmatics and in HRV-infected subjects, and patients allergic to house dust mites were more susceptible to HRV infection. Our study thus confirms HRV infection as a strong 'biomarker' of exacerbated asthma. Further longitudinal studies will show the clinical progress of those children with a history of an RSV or HRV infection. Vaccination strategies and novel treatment guidelines against HRV are urgently needed to protect those high-risk children from a serious course of disease.
Collapse
Affiliation(s)
- Erwan Sallard
- Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Institute of Virology and Microbiology, Witten/Herdecke University, 58453 Witten, Germany; (E.S.); (A.E.)
| | - Frank Schult
- Center for Child and Adolescent Medicine, Center for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany; (F.S.); (O.M.); (S.W.)
| | - Carolin Baehren
- Laboratory of Experimental Pediatric Pneumology and Allergology, Center for Biomedical Education and Research, Faculty of Health, School of Life Sciences (ZBAF), Witten/Herdecke University, 58455 Witten, Germany; (C.B.); (E.B.)
| | - Eleni Buedding
- Laboratory of Experimental Pediatric Pneumology and Allergology, Center for Biomedical Education and Research, Faculty of Health, School of Life Sciences (ZBAF), Witten/Herdecke University, 58455 Witten, Germany; (C.B.); (E.B.)
| | - Olivier Mboma
- Center for Child and Adolescent Medicine, Center for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany; (F.S.); (O.M.); (S.W.)
| | - Parviz Ahmad-Nejad
- Institute for Medical Laboratory Diagnostics, Center for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany;
| | - Beniam Ghebremedhin
- Institute for Medical Laboratory Diagnostics, Center for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany;
| | - Anja Ehrhardt
- Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Institute of Virology and Microbiology, Witten/Herdecke University, 58453 Witten, Germany; (E.S.); (A.E.)
| | - Stefan Wirth
- Center for Child and Adolescent Medicine, Center for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany; (F.S.); (O.M.); (S.W.)
| | - Malik Aydin
- Center for Child and Adolescent Medicine, Center for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany; (F.S.); (O.M.); (S.W.)
- Laboratory of Experimental Pediatric Pneumology and Allergology, Center for Biomedical Education and Research, Faculty of Health, School of Life Sciences (ZBAF), Witten/Herdecke University, 58455 Witten, Germany; (C.B.); (E.B.)
| |
Collapse
|
7
|
Chen CH, Tsao YT, Yeh PT, Liao YH, Lee YT, Liao WT, Wang YC, Shen CF, Cheng CM. Detection of Microorganisms in Body Fluids via MTT-PMS Assay. Diagnostics (Basel) 2021; 12:46. [PMID: 35054213 PMCID: PMC8774610 DOI: 10.3390/diagnostics12010046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 12/29/2022] Open
Abstract
Early detection of microorganisms is essential for the management of infectious diseases. However, this is challenging, as traditional culture methods are labor-intensive and time-consuming. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide-phenazine methosulfate (MTT-PMS) assay has been used to evaluate the metabolic activity in live cells and can thus be used for detecting living microorganisms. With the addition of NaOH and Tris-EDTA, the same approach can be accelerated (within 15 min) and used for the quick detection of common bacterial pathogens. The assay results can be evaluated colorimetrically or semi-quantitatively. Here, the quick detection by MTT-PMS assay was further investigated. The assay had a detection limit of approximately 104 CFU/mL. In clinical evaluations, we used the MTT-PMS assay to detect clinical samples and bacteriuria (>105 CFU/mL). The negative predictive value of the MTT-PMS assay for determining bacteriuria was 79.59% but was 100% when the interference of abnormal blood was excluded. Thus, the MTT-PMS assay might be a potential "rule-out" tool for bacterial detection in clinical samples, at a cost of approximately USD 1 per test. Owing to its low cost, rapid results, and easy-to-use characteristics, the MTT-PMS assay may be a potential tool for microorganism detection.
Collapse
Affiliation(s)
- Cheng-Han Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; (C.-H.C.); (Y.-T.T.); (Y.-H.L.); (W.-T.L.)
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Yu-Ting Tsao
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; (C.-H.C.); (Y.-T.T.); (Y.-H.L.); (W.-T.L.)
| | - Po-Ting Yeh
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 10002, Taiwan;
| | - Yu-Hsiang Liao
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; (C.-H.C.); (Y.-T.T.); (Y.-H.L.); (W.-T.L.)
| | - Yi-Tzu Lee
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Wan-Ting Liao
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; (C.-H.C.); (Y.-T.T.); (Y.-H.L.); (W.-T.L.)
| | - Yung-Chih Wang
- National Defense Medical Center, Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, Taipei 11490, Taiwan;
| | - Ching-Fen Shen
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; (C.-H.C.); (Y.-T.T.); (Y.-H.L.); (W.-T.L.)
| |
Collapse
|
8
|
Machado I, Goikoetxea G, Alday E, Jiménez T, Arias-Moreno X, Hernandez FJ, Hernandez LI. Ultra-Sensitive and Specific Detection of S. aureus Bacterial Cultures Using an Oligonucleotide Probe Integrated in a Lateral Flow-Based Device. Diagnostics (Basel) 2021; 11:diagnostics11112022. [PMID: 34829369 PMCID: PMC8619029 DOI: 10.3390/diagnostics11112022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/25/2022] Open
Abstract
The identification of pathogens causing infectious diseases is still based on laborious and time-consuming techniques. Therefore, there is an urgent need for the development of novel methods and devices that can considerably reduce detection times, allowing the health professionals to administer the right treatment at the right time. Lateral flow-based systems provide fast, cheap and easy to use alternatives for diagnosis. Herein, we report on a lateral flow approach for specifically detecting S. aureus bacteria within 6 h.
Collapse
Affiliation(s)
- Isabel Machado
- SOMAprobes S.L., Mikeletegi Pasealekua, 83, 20009 Donostia, Spain; (I.M.); (G.G.); (E.A.); (T.J.); (X.A.-M.)
| | - Garazi Goikoetxea
- SOMAprobes S.L., Mikeletegi Pasealekua, 83, 20009 Donostia, Spain; (I.M.); (G.G.); (E.A.); (T.J.); (X.A.-M.)
- Department of Cellular Biology and Histology, Faculty of Medicine and Odontology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Enara Alday
- SOMAprobes S.L., Mikeletegi Pasealekua, 83, 20009 Donostia, Spain; (I.M.); (G.G.); (E.A.); (T.J.); (X.A.-M.)
| | - Tania Jiménez
- SOMAprobes S.L., Mikeletegi Pasealekua, 83, 20009 Donostia, Spain; (I.M.); (G.G.); (E.A.); (T.J.); (X.A.-M.)
| | - Xabier Arias-Moreno
- SOMAprobes S.L., Mikeletegi Pasealekua, 83, 20009 Donostia, Spain; (I.M.); (G.G.); (E.A.); (T.J.); (X.A.-M.)
| | - Frank J. Hernandez
- Department of Physics, Chemistry and Biology, Linköping University, 58185 Linköping, Sweden;
- Wallenberg Centre for Molecular Medicine, Linköping University, 58185 Linköping, Sweden
| | - Luiza I. Hernandez
- SOMAprobes S.L., Mikeletegi Pasealekua, 83, 20009 Donostia, Spain; (I.M.); (G.G.); (E.A.); (T.J.); (X.A.-M.)
- Correspondence:
| |
Collapse
|
9
|
Theakstone AG, Rinaldi C, Butler HJ, Cameron JM, Confield LR, Rutherford SH, Sala A, Sangamnerkar S, Baker MJ. Fourier‐transform infrared spectroscopy of biofluids: A practical approach. TRANSLATIONAL BIOPHOTONICS 2021. [DOI: 10.1002/tbio.202000025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Ashton G. Theakstone
- WestCHEM, Department of Pure and Applied Chemistry Technology and Innovation Centre Glasgow UK
| | - Christopher Rinaldi
- WestCHEM, Department of Pure and Applied Chemistry Technology and Innovation Centre Glasgow UK
| | | | | | - Lily Rose Confield
- WestCHEM, Department of Pure and Applied Chemistry Technology and Innovation Centre Glasgow UK
- CDT Medical Devices, Department of Biomedical Engineering Wolfson Centre Glasgow UK
| | - Samantha H. Rutherford
- WestCHEM, Department of Pure and Applied Chemistry Technology and Innovation Centre Glasgow UK
| | - Alexandra Sala
- WestCHEM, Department of Pure and Applied Chemistry Technology and Innovation Centre Glasgow UK
- ClinSpec Diagnostics Ltd, Royal College Building Glasgow UK
| | - Sayali Sangamnerkar
- WestCHEM, Department of Pure and Applied Chemistry Technology and Innovation Centre Glasgow UK
| | - Matthew J. Baker
- WestCHEM, Department of Pure and Applied Chemistry Technology and Innovation Centre Glasgow UK
- ClinSpec Diagnostics Ltd, Royal College Building Glasgow UK
| |
Collapse
|
10
|
Galeb S, Zaki MES, Shrief R, Hassan R, Rizk M. Diagnostic Value of Multiplex Polymerase Chain Reaction in Detection of Acinetobacter baumannii, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia from Sepsis in Pediatrics. Recent Pat Biotechnol 2021; 15:195-203. [PMID: 34825643 DOI: 10.2174/1872208315666210719104623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/10/2021] [Accepted: 05/27/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Proper identification of the causative organism in pediatric sepsis is crucial for early diagnosis and prevention of septic shock and organ failure. OBJECTIVES The aim of the present study was to evaluate the multiplex polymerase chain reaction (PCR) for detection of Acinetobacter baumannii, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia from positive blood cultures for these pathogens isolated from children with hospital- acquired sepsis compared to the conventional biochemical reactions for identification of these organisms. METHODS This study was a cross-sectional study performed on 100 isolates from pediatric blood cultures, including Acinetobacter baumannii, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia. The study also included 100 isolates of Escherichia coli as a negative control. All isolates were identified by API 20NE and the multiplex PCR with primers specific to the 3 tested bacteria. RESULTS Multiplex PCR was positive in 96% of isolates and 4 isolates had negative results. Falsepositive results were reported with three E. coli strains. Multiplex PCR identified all the isolates of Acinetobacter baumannii, 29 isolates of Pseudomonas aeruginosa and 27 isolates of Stenotrophomonas maltophilia. The diagnostic value of the multiplex PCR compared to the biochemical identification revealed sensitivity 96.04%, specificity 96.9%, positive predictive value 97.00%, negative predictive value 96.00% and accuracy 96.50%. CONCLUSION The present study highlights the diagnostic value of multiplex PCR to identify Acinetobacter baumannii, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia from positive blood cultures. Multiplex PCR was sensitive, specific and accurate. The accuracy differs according to the organisms with 100% accuracy for Acinetobacter baumannii.
Collapse
Affiliation(s)
- Sara Galeb
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Maysaa El Sayed Zaki
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Raghdaa Shrief
- Medical Microbiology and Immunology Department, Faculty of Medicine, Damietta University, New Damietta, Egypt
| | - Rasha Hassan
- Pediatric Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed Rizk
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
11
|
Weaver AJ, Brandenburg KS, Sanjar F, Wells AR, Peacock TJ, Leung KP. Clinical Utility of PNA-FISH for Burn Wound Diagnostics: A Noninvasive, Culture-Independent Technique for Rapid Identification of Pathogenic Organisms in Burn Wounds. J Burn Care Res 2020; 40:464-470. [PMID: 30893424 PMCID: PMC6587406 DOI: 10.1093/jbcr/irz047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Burn injury results in an immediate compromised skin state, which puts the affected patient at an immediate risk for infection, including sepsis. For burn patients that develop infections, it is critical to rapidly identify the etiology so that an appropriate treatment can be administered. Current clinical standards rely heavily on culture-based methods for local and systemic infection testing, which can often take days to complete. While more advanced methods (ie, MALDI or NAAT) have improved turnaround times, they may still suffer from either the need for pure culture or sensitivity and specificity issues. Peptide nucleic acid fluorescent in situ hybridization (PNA-FISH) offers a way to reduce this time from days to hours and provide species-specific identification. While PNA-FISH has had great utility in research, its use in clinical microbiology diagnostics has been minimal (including burn wound diagnostics). This work describes a nonculture-based identification technique using commercial available U.S. FDA-approved PNA-FISH probes for the identification of common clinical pathogens, Pseudomonas aeruginosa and Staphylococcus aureus, present in burn wound infections. Additionally, calcofluor white was included for identification of Candida albicans. All three pathogens were identified from a tri-species infected deep-partial thickness rat burn wound model. These species were clearly identifiable in swab and tissue samples that were collected, with minimal autofluorescence from any species. Although autofluorescence of the tissue was present, it did not interfere or was otherwise minimized through sample preparation and analysis. The methodology developed was done so with patient care and diagnostic laboratories in mind that it might be easily transferred to the clinical setting.
Collapse
Affiliation(s)
- Alan J Weaver
- Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, United States Army Institute of Surgical Research, JBSA, Fort Sam Houston, Texas
| | - Kenneth S Brandenburg
- Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, United States Army Institute of Surgical Research, JBSA, Fort Sam Houston, Texas
| | - Fatemeh Sanjar
- Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, United States Army Institute of Surgical Research, JBSA, Fort Sam Houston, Texas
| | - Adrienne R Wells
- Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, United States Army Institute of Surgical Research, JBSA, Fort Sam Houston, Texas
| | | | - Kai P Leung
- Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, United States Army Institute of Surgical Research, JBSA, Fort Sam Houston, Texas
| |
Collapse
|
12
|
Ruiz-Azcona L, Santibañez M, Gimeno A, Roig FJ, Vanaclocha H, Ventero MP, Boix V, Sánchez-Payá J, Portilla-Sogorb J, Merino E, Rodríguez JC. Etiology of bloodstream infections at a population level during 2013-2017 in the Autonomous Community of Valencia, Spain. REVISTA ESPANOLA DE QUIMIOTERAPIA 2020; 33:200-206. [PMID: 32345004 PMCID: PMC7262391 DOI: 10.37201/req/024.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Introduction Bloodstream Infections has become in one of the priorities for the antimicrobial stewardship teams due to their high mortality and morbidity rates. Usually, the first antibiotic treatment for this pathology must be empirical, without microbiology data about the microorganism involved. For this reason, the population studies about the etiology of bacteremia are a key factor to improve the selection of the empirical treatment, because they describe the main microorganisms associated to this pathology in each area, and this data could facilitate the selection of correct antibiotic therapy. Material and methods This study describes the etiology of bloodstream infections in the Southeast of Spain. The etiology of bacteremia was analysed by a retrospective review of all age-ranged patients from every public hospital in the Autonomous Community of Valencia (approximately 5,000,000 inhabitants) for five years. Results A total of 92,097 isolates were obtained, 44.5% of them were coagulase-negative staphylococci. Enterobacteriales was the most prevalent group and an increase in frequency was observed along the time. Streptococcus spp. were the second microorganisms more frequently isolated. Next, the most prevalent were Staphylococcus aureus and Enterococcus spp., both with a stable incidence along the study. Finally, Pseudomonas aeruginosa was the fifth microorganism more frequently isolated. Conclusions These data constitute a useful tool that can help in the choice of empirical treatment for bloodstream infections, since the knowledge of local epidemiology is key to prescribe a fast and appropriate antibiotic therapy, aspect capital to improve survival.
Collapse
Affiliation(s)
| | | | | | | | | | - M P Ventero
- Maria Paz Ventero, Servicio Microbiología. Hospital General Universitario de Alicante. Instituto de Investigación, Biomédica y Sanitaria de Alicante (ISABIAL). C/ Pintor Baeza 10. 03010, Alicante, Spain.
| | | | | | | | | | | |
Collapse
|
13
|
Ortiz de Lejarazu Leonardo R, Rojo Rello S, Sanz Muñoz I. Diagnostic challenges in influenza. Enferm Infecc Microbiol Clin 2019; 37 Suppl 1:47-55. [PMID: 31138423 DOI: 10.1016/s0213-005x(19)30182-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In 2018 there are still microbiology laboratories that do not subtype or detect influenza viruses, one of the main agents of community-acquired pneumonia. A major challenge is to introduce multiplex-type technologies into most clinical virological diagnostic laboratories, increasing the feasibility of timely etiological diagnosis of influenza and other respiratory viruses whenever required and thus limiting antibiotic treatments. Other diagnostic tools such as markers of severity and the detection of resistance are pending challenges to complete and expand. Viral culture, an essential tool in the epidemiological surveillance of viruses, has been relegated by more sensitive and affordable molecular techniques. Sequencing of the influenza virus together with the antigenic characterisation and detection techniques of antibodies against hemagglutinin and neuraminidase will, in future, be used in tandem with other techniques to detect antibodies against other structural proteins, helping to elucidate the complicated epidemiology of these viruses and the production of new vaccines and their evaluation. Supplement information: This article is part of a supplement entitled «SEIMC External Quality Control Programme. Year 2016», which is sponsored by Roche, Vircell Microbiologists, Abbott Molecular and Francisco Soria Melguizo, S.A. © 2019 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosasy Microbiología Clínica. All rights reserved.
Collapse
Affiliation(s)
- Raúl Ortiz de Lejarazu Leonardo
- Centro Nacional de Gripe de Valladolid, Universidad de Valladolid, Valladolid, España; Servicio de Microbiología e Inmunología, Hospital Clínico Universitario de Valladolid, Valladolid, España.
| | - Silvia Rojo Rello
- Centro Nacional de Gripe de Valladolid, Universidad de Valladolid, Valladolid, España; Servicio de Microbiología e Inmunología, Hospital Clínico Universitario de Valladolid, Valladolid, España
| | - Iván Sanz Muñoz
- Centro Nacional de Gripe de Valladolid, Universidad de Valladolid, Valladolid, España
| |
Collapse
|
14
|
Reali S, Najib EY, Treuerné Balázs KE, Chern Hui Tan A, Váradi L, Hibbs DE, Groundwater PW. Novel diagnostics for point-of-care bacterial detection and identification. RSC Adv 2019; 9:21486-21497. [PMID: 35521339 PMCID: PMC9066158 DOI: 10.1039/c9ra03118a] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/30/2019] [Indexed: 12/20/2022] Open
Abstract
In addition to limiting the effectiveness of antimicrobial agents, antimicrobial resistance (AMR) is a significant global health concern as it is responsible for significant mortality/morbidity and increased economic burdens on healthcare systems. Diagnostic tests have been suggested as a means of prolonging the effectiveness of current antimicrobials; culture and other conventional diagnostics are hindered in their practicality as they are time- and labour intensive to perform. Point-of-care (POC) testing is performed near where the patient is being treated and can provide timely results that allow evidence based clinical interventions to be made. This review aims to outline the chemical principles behind some novel and emerging diagnostic techniques which have the required speed, simplicity, effectiveness and low-cost for incorporation into POC devices which can be used to inform and optimize antimicrobial use. The WHO global action plan on antimicrobial resistance outlines the need for new diagnostic tools. Point-of-care testing for bacterial infections would enable clinically meaningful interventions using methods that are rapid, low-cost, easy-to-operate, and portable.![]()
Collapse
Affiliation(s)
- Savannah Reali
- The University of Sydney School of Pharmacy
- Camperdown Campus
- Sydney
- Australia
| | - Elias Y. Najib
- The University of Sydney School of Pharmacy
- Camperdown Campus
- Sydney
- Australia
| | | | | | | | - David E. Hibbs
- The University of Sydney School of Pharmacy
- Camperdown Campus
- Sydney
- Australia
| | | |
Collapse
|
15
|
Domenech M, García E. Fluorescence Imaging of Streptococcus pneumoniae with the Helix pomatia agglutinin (HPA) As a Potential, Rapid Diagnostic Tool. Front Microbiol 2017; 8:1333. [PMID: 28769901 PMCID: PMC5513899 DOI: 10.3389/fmicb.2017.01333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/30/2017] [Indexed: 12/02/2022] Open
Abstract
Streptococcus pneumoniae is a common human pathogen and a major causal agent of life-threatening infections that can either be respiratory or non-respiratory. It is well known that the Helix pomatia (edible snail) agglutinin (HPA) lectin shows specificity for terminal αGalNAc residues present, among other locations, in the Forssman pentasaccharide (αGalNAc1→3βGalNAc1→3αGal1→4βGal1→4βGlc). Based on experiments involving choline-independent mutants and different growth conditions, we propose here that HPA recognizes the αGalNAc terminal residues of the cell wall teichoic and lipoteichoic acids of S. pneumoniae. In addition, experimental evidence showing that pneumococci can be specifically labeled with HPA when growing as planktonic cultures as well as in mixed biofilms of S. pneumoniae and Haemophilus influenzae has been obtained. It should be underlined that pneumococci were HPA-labeled despite of the presence of a capsule. Although some non-pneumococcal species also bind the agglutinin, HPA-binding combined with fluorescence microscopy constitutes a suitable tool for identifying S. pneumoniae and, if used in conjunction with Gram staining and/or other suitable technique like antigen detection, it may potentially facilitate a fast and accurate diagnosis of pneumococcal infections.
Collapse
Affiliation(s)
- Mirian Domenech
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades RespiratoriasMadrid, Spain
| | - Ernesto García
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades RespiratoriasMadrid, Spain
| |
Collapse
|