1
|
Fekrvand S, Saleki K, Abolhassani H, Almasi-Hashiani A, Hakimelahi A, Zargarzadeh N, Yekaninejad MS, Rezaei N. COVID-19 infection in inborn errors of immunity and their phenocopies: a systematic review and meta-analysis. Infect Dis (Lond) 2025:1-35. [PMID: 40178994 DOI: 10.1080/23744235.2025.2483339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/09/2025] [Accepted: 02/23/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Inborn errors of immunity (IEI) are congenital disorders of the immune system. Due to impaired immune system, they are at a higher risk to develop a more severe COVID-19 course compared to general population. OBJECTIVES Herein, we aimed to systematically review various aspects of IEI patients infected with SARS-CoV-2. Moreover, we performed a meta-analysis to determine the frequency of COVID-19 in patients with different IEI. METHODS Embase, Web of Science, PubMed, and Scopus were searched introducing terms related to IEI and COVID-19. RESULTS 3646 IEI cases with a history of COVID-19 infection were enrolled. The majority of patients had critical infections (1013 cases, 27.8%). The highest frequency of critical and severe cases was observed in phenocopies of IEI (95.2%), defects in intrinsic and innate immunity (69.4%) and immune dysregulation (23.9%). 446 cases (12.2%) succumbed to the disease and the highest mortality was observed in IEI phenocopies (34.6%). COVID-19 frequency in immunodeficient patients was 11.9% (95% CI: 8.3 to 15.5%) with innate immunodeficiency having the highest COVID-19 frequency [34.1% (12.1 to 56.0%)]. COVID-19 case fatality rate among IEI patients was estimated as 5.4% (95% CI: 3.5-8.3%, n = 8 studies, I2 = 17.5%). CONCLUSION IEI with underlying defects in specific branches of the immune system responding to RNA virus infection experience a higher frequency and mortality of COVID-19 infection. Increasing awareness about these entities and underlying genetic defects, adherence to prophylactic strategies and allocating more clinical attention to these patients could lead to a decrease in COVID-19 frequency and mortality in these patients.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Kiarash Saleki
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Clinical Immunology, Department of Biosciences and Nutrition, KarolinskaInstitutet, Karolinska University Hospital, Stockholm, Sweden
| | - Amir Almasi-Hashiani
- Department of Epidemiology, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Ali Hakimelahi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nikan Zargarzadeh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
2
|
Rieke GJ, Monin MB, Breitschwerdt S, Boesecke C, Schlabe S. Confirmed SARS-CoV-2 Reinfection After 1 Year in a Patient with X-linked Agammaglobulinaemia. Infect Dis (Lond) 2022. [DOI: 10.17925/id.2022.1.1.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Though a comprehensive analysis of the immunity following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been performed, little is known about the duration of this protection and the risk of reinfection. This lack of knowledge is of particular interest for patients with impaired immune function. In this report, we describe the course of infection of a 30-year-old male patient with X-linked agammaglobulinaemia, who was reinfected with SARS-CoV-2 after a primary infection 12 months earlier. The initial course of infection took place in April 2020 with the typical symptoms of an upper respiratory tract infection accompanied by compatible changes in laboratory values and computed tomography. With no anti-viral treatment options at that time of the pandemic, only symptomatic therapy could be offered. Twelve months later (April 2021), the patient presented with a short course of fever and headache. Laboratory testing showed elevated C-reactive protein levels, while leukocytes, lymphocytes and lactate dehydrogenase levels were within range. The patient was admitted, and antibiotic treatment was started partially because procalcitonin levels were slightly elevated as well. The SARS-CoV-2 polymerase chain reaction was positive, and therapy with the monoclonal SARS-CoV-2 antibodies casirivimab/imdevimab (1,200 mg/1,200 mg, respectively) were initiated. The course of infection was mild, but low-flow oxygen had to be administered. It was not possible to distinguish between the contribution of the administered antibodies and the role of cytotoxic T-cells in the course of infection. Variant screenings confirmed the Wuhan strain of the virus for the first episode and the alpha variant for the second episode, thus confirming reinfection and ruling out long-term shedding. Neutralizing antibodies seem to play a crucial role in viral clearance and infection prevention, assuming patients with agammaglobulinaemia are at higher risk for a severe course of coronavirus disease 2019. Still, the specific role of neutralizing antibodies and cytotoxic T-cells is not fully understood. Reinfection among this patient population has only been described occasionally. Our case described a reinfection, which was confirmed by variant-testing. In addition, it gave insight into the rapid progression of testing and into specific anti-viral therapy over 1 year of the pandemic.
Collapse
|