1
|
Aryaloka S, Khairullah AR, Kusala MKJ, Fauziah I, Hidayatik N, Agil M, Yuliani MGA, Novianti AN, Moses IB, Purnama MTE, Wibowo S, Fauzia KA, Raissa R, Furqoni AH, Awwanah M, Riwu KHP. Navigating monkeypox: identifying risks and implementing solutions. Open Vet J 2024; 14:3144-3163. [PMID: 39927376 PMCID: PMC11799651 DOI: 10.5455/ovj.2024.v14.i12.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/02/2024] [Indexed: 02/11/2025] Open
Abstract
Monkeypox is a zoonotic disease caused by the orthopox virus, a double-stranded DNA virus that belongs the Poxviridae virus family. It is known to infect both animals (especially monkeys and rodents) and humans and causes a rash similar to smallpox. Humans can become infected with monkeypox virus (MPXV) when they get in close contact with infected animals (zoonotic transmission) or other infected people (human-human transmission) through their body fluids such as mucus, saliva, or even skin sores. Frequently observed symptoms of this disease include fever, headaches, muscle aches, and a rash that initially looks like a tiny bump before becoming a lump that is filled with fluid. Monkeypox symptoms also include an incubation period of 5-21 days, divided into prodromal and eruption phases. Several contributing factors, such as smallpox vaccine discontinuation, widespread intake of infected animal products as a source of protein, and high population density, amongst others, have been linked to an increase in the frequency of monkeypox outbreaks. The best course of action for diagnosing individuals who may be suffering from active monkeypox is to collect a sample of skin from the lesion and perform PCR molecular testing. Monkeypox does not presently have a specific therapy; however, supportive care can assist in managing symptoms, such as medication to lower body temperature and pain. Three major orthopoxvirus vaccines have been approved to serve as a preventive measure against monkeypox: LC16, JYNNEOS, and ACAM2000. The discovery that the monkeypox outbreak is communicable both among humans and within a population has sparked new public health worries on the possibility of the outbreak of another viral pandemic. Research and studies are still being conducted to gain a deeper understanding of this zoonotic viral disease. This review is therefore focused on deciphering monkeypox, its etiology, pathogenesis, transmission, risk factors, and control.
Collapse
Affiliation(s)
- Suhita Aryaloka
- Master Program of Veterinary Agribusiness, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | | | - Ima Fauziah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Nanik Hidayatik
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Muhammad Agil
- Division of Veterinary Clinic Reproduction and Pathology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - M. Gandul Atik Yuliani
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Arindita Niatazya Novianti
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | | | - Syahputra Wibowo
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Kartika Afrida Fauzia
- Research Center for Preclinical and Clinical Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Ricadonna Raissa
- Department of Pharmacology, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Abdul Hadi Furqoni
- Center for Biomedical Research, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Mo Awwanah
- Research Center for Applied Botany, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Katty Hendriana Priscilia Riwu
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, Mataram, Indonesia
| |
Collapse
|
2
|
Adigun OA, Okesanya OJ, Ahmed MM, Ukoaka BM, Lucero-Prisno DE, Onyeaghala EO, Oluwasusi EA, Ogunwale OE, Faniyi AA. Syndemic Challenges: Addressing the Resurgence of Mpox Amidst Concurrent Outbreaks in the DRC. Transbound Emerg Dis 2024; 2024:1962224. [PMID: 40303062 PMCID: PMC12020385 DOI: 10.1155/tbed/1962224] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/01/2024] [Indexed: 05/02/2025]
Abstract
The Democratic Republic of Congo (DRC) faces a syndemic of infectious diseases, including monkeypox (mpox), cholera, measles, anthrax, and plague, worsening public health challenges and socioeconomic disparities. This review synthesizes and discusses epidemiological data and consequences of simultaneous outbreaks in the DRC between January 2023 and March 2024. The findings highlight a 6.7% fatality rate and 3319 confirmed cases of mpox, with significant outbreaks in Kinshasa and 22 other provinces. Anthrax occasionally surfaced among cattle-raising villages, measles affected fewer than five children susceptible to the disease, and cholera outbreaks persisted in North Kivu, South Kivu, and Tanganyika. Plague incidences, mostly bubonic, have been reported in Ituri province. Vulnerable groups, including children, mothers, the elderly, and those with compromised immune systems, face increased risks due to poor healthcare access, hunger, and underlying medical conditions. Cultural beliefs, healthcare system issues, and socioeconomic instability impede effective response tactics. This strain on the fragile healthcare system highlights the need for increased surveillance, immunization efforts, and community involvement. To mitigate the effects of syndemic outbreaks, strengthening the DRC's health systems through international cooperation, integrated public health initiatives, and improved access to healthcare is crucial.
Collapse
Affiliation(s)
- Olaniyi Abideen Adigun
- Department of Medical Laboratory Science, Nigerian Defence Academy, Kaduna, Kaduna State, Nigeria
- Department of Medical Laboratory Science, University College Hospital, Ibadan, Oyo State, Nigeria
| | - Olalekan John Okesanya
- Department of Public Health and Maritime Transport, University of Thessaly, Volos, Greece
| | | | | | - Don Eliseo Lucero-Prisno
- Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London, UK
- Research and Development Office, Biliran Province State University, Naval, Philippines
- Research and Innovation Office, Southern Leyte State University, Sogod, Philippines
| | | | | | - Olamide Esther Ogunwale
- Department of Medical Laboratory Science, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
| | - Ayodeji Amos Faniyi
- Department of Medical Laboratory Science, Joseph Ayo Babalola University, Ikeji Arakeji, Nigeria
| |
Collapse
|
3
|
Ashley CN, Broni E, Wood CM, Okuneye T, Ojukwu MPT, Dong Q, Gallagher C, Miller WA. Identifying potential monkeypox virus inhibitors: an in silico study targeting the A42R protein. Front Cell Infect Microbiol 2024; 14:1351737. [PMID: 38500508 PMCID: PMC10945028 DOI: 10.3389/fcimb.2024.1351737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Monkeypox (now Mpox), a zoonotic disease caused by the monkeypox virus (MPXV) is an emerging threat to global health. In the time span of only six months, from May to October 2022, the number of MPXV cases breached 80,000 and many of the outbreaks occurred in locations that had never previously reported MPXV. Currently there are no FDA-approved MPXV-specific vaccines or treatments, therefore, finding drugs to combat MPXV is of utmost importance. The A42R profilin-like protein of the MPXV is involved in cell development and motility making it a critical drug target. A42R protein is highly conserved across orthopoxviruses, thus A42R inhibitors may work for other family members. This study sought to identify potential A42R inhibitors for MPXV treatment using computational approaches. The energy minimized 3D structure of the A42R profilin-like protein (PDB ID: 4QWO) underwent virtual screening using a library of 36,366 compounds from Traditional Chinese Medicine (TCM), AfroDb, and PubChem databases as well as known inhibitor tecovirimat via AutoDock Vina. A total of seven compounds comprising PubChem CID: 11371962, ZINC000000899909, ZINC000001632866, ZINC000015151344, ZINC000013378519, ZINC000000086470, and ZINC000095486204, predicted to have favorable binding were shortlisted. Molecular docking suggested that all seven proposed compounds have higher binding affinities to A42R (-7.2 to -8.3 kcal/mol) than tecovirimat (-6.7 kcal/mol). This was corroborated by MM/PBSA calculations, with tecovirimat demonstrating the highest binding free energy of -68.694 kJ/mol (lowest binding affinity) compared to the seven shortlisted compounds that ranged from -73.252 to -97.140 kJ/mol. Furthermore, the 7 compounds in complex with A42R demonstrated higher stability than the A42R-tecovirimat complex when subjected to 100 ns molecular dynamics simulations. The protein-ligand interaction maps generated using LigPlot+ suggested that residues Met1, Glu3, Trp4, Ile7, Arg127, Val128, Thr131, and Asn133 are important for binding. These seven compounds were adequately profiled to be potential antivirals via PASS predictions and structural similarity searches. All seven potential lead compounds were scored Pa > Pi for antiviral activity while ZINC000001632866 and ZINC000015151344 were predicted as poxvirus inhibitors with Pa values of 0.315 and 0.215, and Pi values of 0.052 and 0.136, respectively. Further experimental validations of the identified lead compounds are required to corroborate their predicted activity. These seven identified compounds represent solid footing for development of antivirals against MPXV and other orthopoxviruses.
Collapse
Affiliation(s)
- Carolyn N. Ashley
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL, United States
| | - Emmanuel Broni
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL, United States
| | - Chanyah M. Wood
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL, United States
- Department of Chemistry and Physics, Lincoln University, Lincoln, PA, United States
| | - Tunmise Okuneye
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL, United States
- Department of Biology, Lincoln University, Lincoln, PA, United States
| | - Mary-Pearl T. Ojukwu
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL, United States
- Department of Chemistry and Physics, Lincoln University, Lincoln, PA, United States
- College of Pharmacy, University of Florida, Orlando, FL, United States
| | - Qunfeng Dong
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL, United States
- Center for Biomedical Informatics, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Carla Gallagher
- Department of Chemistry and Physics, Lincoln University, Lincoln, PA, United States
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL, United States
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
4
|
Martínez-Fernández DE, Fernández-Quezada D, Casillas-Muñoz FAG, Carrillo-Ballesteros FJ, Ortega-Prieto AM, Jimenez-Guardeño JM, Regla-Nava JA. Human Monkeypox: A Comprehensive Overview of Epidemiology, Pathogenesis, Diagnosis, Treatment, and Prevention Strategies. Pathogens 2023; 12:947. [PMID: 37513794 PMCID: PMC10384102 DOI: 10.3390/pathogens12070947] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/16/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Monkeypox virus (MPXV) is an emerging zoonotic virus that belongs to the Orthopoxvirus genus and presents clinical symptoms similar to those of smallpox, such as fever and vesicular-pustular skin lesions. However, the differential diagnosis between smallpox and monkeypox is that smallpox does not cause lymphadenopathy but monkeypox generates swelling in the lymph nodes. Since the eradication of smallpox, MPXV has been identified as the most common Orthopoxvirus to cause human disease. Despite MPXV being endemic to certain regions of Africa, the current MPXV outbreak, which began in early 2022, has spread to numerous countries worldwide, raising global concern. As of the end of May 2023, over 87,545 cases and 141 deaths have been reported, with most cases identified in non-endemic countries, primarily due to human-to-human transmission. To better understand this emerging threat, this review presents an overview of key aspects of MPXV infection, including its animal reservoirs, modes of transmission, animal models, epidemiology, clinical and immunological features, diagnosis, treatments, vaccines, and prevention strategies. The material presented here provides a comprehensive understanding of MPXV as a disease, while emphasizing the significance and unique characteristics of the 2022 outbreak. This offers valuable information that can inform future research and aid in the development of effective interventions.
Collapse
Affiliation(s)
| | - David Fernández-Quezada
- Department of Neurosciences, University Center for Health Science (CUCS), University of Guadalajara, Guadalajara 44340, Mexico
| | | | | | - Ana Maria Ortega-Prieto
- Department of Microbiology, University of Málaga, 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain
| | - Jose M Jimenez-Guardeño
- Department of Microbiology, University of Málaga, 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain
| | - Jose Angel Regla-Nava
- Department of Microbiology and Pathology, University Center for Health Science (CUCS), University of Guadalajara, Guadalajara 44340, Mexico
| |
Collapse
|
5
|
Hudu SA, Alshrari AS, Al Qtaitat A, Imran M. VP37 Protein Inhibitors for Mpox Treatment: Highlights on Recent Advances, Patent Literature, and Future Directions. Biomedicines 2023; 11:biomedicines11041106. [PMID: 37189724 DOI: 10.3390/biomedicines11041106] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 05/17/2023] Open
Abstract
Monkeypox disease (Mpox) has threatened humankind worldwide since mid-2022. The Mpox virus (MpoxV) is an example of Orthopoxviruses (OPVs), which share similar genomic structures. A few treatments and vaccines are available for Mpox. OPV-specific VP37 protein (VP37P) is a target for developing drugs against Mpox and other OPV-induced infections such as smallpox. This review spotlights the existing and prospective VP37P inhibitors (VP37PIs) for Mpox. The non-patent literature was collected from PubMed, and the patent literature was gathered from free patent databases. Very little work has been carried out on developing VP37PIs. One VP37PI (tecovirimat) has already been approved in Europe to treat Mpox, while another drug, NIOCH-14, is under clinical trial. Developing tecovirimat/NIOCH-14-based combination therapies with clinically used drugs demonstrating activity against Mpox or other OPV infections (mitoxantrone, ofloxacin, enrofloxacin, novobiocin, cidofovir, brincidofovir, idoxuridine, trifluridine, vidarabine, fialuridine, adefovir, imatinib, and rifampicin), immunity boosters (vitamin C, zinc, thymoquinone, quercetin, ginseng, etc.), and vaccines may appear a promising strategy to fight against Mpox and other OPV infections. Drug repurposing is also a good approach for identifying clinically useful VP37PIs. The dearth in the discovery process of VP37PIs makes it an interesting area for further research. The development of the tecovirimat/NIOCH-14-based hybrid molecules with certain chemotherapeutic agents looks fruitful and can be explored to obtain new VP37PI. It would be interesting and challenging to develop an ideal VP37PI concerning its specificity, safety, and efficacy.
Collapse
Affiliation(s)
- Shuaibu A Hudu
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Ahmed S Alshrari
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia
| | - Aiman Al Qtaitat
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
- Department of Anatomy and Histology, Faculty of Medicine, Mutah University, Karak 61710, Jordan
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| |
Collapse
|