1
|
El-Khayat HMM, Mossalem HS, El-Hommossany K, Sayed SSM, Mohammed WA, Zayed KM, Saied M, Habib MR. Assessment of schistosomiasis transmission in the River Nile at Greater Cairo using malacological surveys and cercariometry. J Parasit Dis 2022; 46:1090-1102. [PMID: 36457778 PMCID: PMC9606168 DOI: 10.1007/s12639-022-01529-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 08/26/2022] [Indexed: 11/28/2022] Open
Abstract
Continuous field studies on the abundance and distribution of freshwater snails and cercarial populations are important for schistosomiasis control programs. In the present work, snail surveys and cercariometry were conducted for four successive seasons at 12 sites on the Nile River banks in the area of Greater Cairo to identify potential transmission foci for schistosomiasis. In addition, water physicochemical parameters were recorded. The results showed that the electrical conductivity, total dissolved solids, dissolved oxygen, and pH were within the permissible levels, except that the water temperature increased, especially in the spring season. Malacological surveys identified 10 native snail species at the studied sites of the Nile River, namely Bulinus truncatus, Biomphalaria alexandrina, Lymnaea natalensis, Lanistes carinatus, Cleopatra bulimoides, Melanoides tuberculata, Helisoma duryi, Bellamya unicolor, Physa acuta, Thedoxus niloticus, and one invasive snail species, Thiara scabra. The calculated diversity index indicated that the structure of snails' habitats was poor, while Evenness index indicated that the individuals were not distributed equally. Natural infection results identified no schistosome cercariae in B. truncatus and B. alexandrina. However, the cercariometry recovered Schistosoma cercariae in all the surveyed sites during all seasons with variable distribution. The preceding data suggest that there are still some active transmission foci for schistosomiasis infection in the Nile River. Moreover, the present finding highlights the importance of cercariomety as a complementary approach to snail samplings for identifying the transmission foci for schistosomiasis.
Collapse
Affiliation(s)
- Hanaa M. M. El-Khayat
- Environmental Research and Medical Malacology Division, Theodor Bilharz Research Institute, Giza, 12411 Egypt
| | - Hanan S. Mossalem
- Environmental Research and Medical Malacology Division, Theodor Bilharz Research Institute, Giza, 12411 Egypt
| | - Karem El-Hommossany
- Environmental Research and Medical Malacology Division, Theodor Bilharz Research Institute, Giza, 12411 Egypt
| | - Sara S. M. Sayed
- Environmental Research and Medical Malacology Division, Theodor Bilharz Research Institute, Giza, 12411 Egypt
| | - Wafaa A. Mohammed
- Environmental Research and Medical Malacology Division, Theodor Bilharz Research Institute, Giza, 12411 Egypt
| | - Khaled M. Zayed
- Environmental Research and Medical Malacology Division, Theodor Bilharz Research Institute, Giza, 12411 Egypt
| | - Mohamed Saied
- Environmental Research and Medical Malacology Division, Theodor Bilharz Research Institute, Giza, 12411 Egypt
| | - Mohamed R. Habib
- Environmental Research and Medical Malacology Division, Theodor Bilharz Research Institute, Giza, 12411 Egypt
| |
Collapse
|
2
|
Nukeri S, Malatji MP, Sengupta ME, Vennervald BJ, Stensgaard AS, Chaisi M, Mukaratirwa S. Potential Hybridization of Fasciola hepatica and F. gigantica in Africa-A Scoping Review. Pathogens 2022; 11:1303. [PMID: 36365054 PMCID: PMC9695073 DOI: 10.3390/pathogens11111303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
The occurrence of Fasciola gigantica and F. hepatica in Africa is well documented; however, unlike in Asia, there is a paucity of information on the existence of hybrids or parthenogenetic species on the continent. Nonetheless, these hybrid species may have beneficial characteristics, such as increased host range and pathogenicity. This study provides evidence of the potential existence of Fasciola hybrids in Africa. A literature search of articles published between 1980 and 2022 was conducted in PubMed, Google Scholar, and Science Direct using a combination of search terms and Boolean operators. Fasciola species were documented in 26 African countries with F. hepatica being restricted to 12 countries, whilst F. gigantica occurred in 24 countries, identified based on morphological features of adult Fasciola specimens or eggs and molecular techniques. The co-occurrence of both species was reported in 11 countries. However, the occurrence of potential Fasciola hybrids was only confirmed in Egypt and Chad but is suspected in South Africa and Zimbabwe. These were identified based on liver fluke morphometrics, assessment of the sperms in the seminal vesicle, and molecular techniques. The occurrence of intermediate host snails Galba truncatula and Radix natalensis was reported in Ethiopia, Egypt, South Africa, Tanzania, and Uganda, where F. hepatica and F. gigantica co-occurrences were reported. The invasive Pseudosuccinea columella snails naturally infected with F. gigantica were documented in South Africa and Egypt. In Zimbabwe, P. columella was infected with a presumed parthenogenetic Fasciola. This suggests that the invasive species might also be contributing to the overlapping distributions of the two Fasciola species since it can transmit both species. Notwithstanding the limited studies in Africa, the potential existence of Fasciola hybrids in Africa is real and might mimic scenarios in Asia, where parthenogenetic Fasciola exist in most Asian countries. In South Africa, aspermic F. hepatica and Fasciola sp. have been reported already, and Fasciola hybrids have been reported? in Chad and Egypt. Thus, the authors recommend future surveys using molecular markers recommended to identify Fasciola spp. and their snail intermediate hosts to demarcate areas of overlapping distribution where Fasciola hybrids and/or parthenogenetic Fasciola may occur. Further studies should also be conducted to determine the presence and role of P. columella in the transmission of Fasciola spp. in these geographical overlaps to help prevent parasite spillbacks.
Collapse
Affiliation(s)
- Sophy Nukeri
- School of Life Science, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
- Foundational Research & Services, South African National Biodiversity Institute, Pretoria 0001, South Africa
| | - Mokgadi Pulane Malatji
- School of Life Science, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
- Foundational Research & Services, South African National Biodiversity Institute, Pretoria 0001, South Africa
| | - Mita Eva Sengupta
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Copenhagen, Denmark
| | - Birgitte Jyding Vennervald
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Copenhagen, Denmark
| | - Anna-Sofie Stensgaard
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Copenhagen, Denmark
- Center for Macroecology, Evolution and Climate Change, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Copenhagen, Denmark
| | - Mamohale Chaisi
- Foundational Research & Services, South African National Biodiversity Institute, Pretoria 0001, South Africa
- Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort 0110, South Africa
| | - Samson Mukaratirwa
- School of Life Science, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
- One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre KN 0101, Saint Kitts and Nevis
| |
Collapse
|
3
|
Geography and ecology of invasive Pseudosuccinea columella (Gastropoda: Lymnaeidae) and implications in the transmission of Fasciola species (Digenea: Fasciolidae) - a review. J Helminthol 2022; 96:e1. [PMID: 34991739 DOI: 10.1017/s0022149x21000717] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pseudosuccinea columella is considered invasive and has become an important intermediate host of both Fasciola species in many regions of the world. This systematic review assessed the geographical distribution of P. columella, and its implications in the transmission of Fasciola hepatica and Fasciola gigantica, globally. A literature search was conducted on Google Scholar, JSTOR and PubMed databases using Boolean operators in combination with predetermined search terms for thematic analysis. Results show that P. columella has been documented in 22 countries from Europe (3), Africa (8), Oceania (2), North America (3) and South America (6). Furthermore, this snail species has shown to adapt to and inhabit a vast array of freshwater bodies including thermal lakes and ditches with acidic soils. Studies showed that P. columella transmits F. hepatica, with natural and experimental infections documented in sub-Saharan Africa, Europe, South America and North America. Experimental infection studies in Cuba showed the presence of P. columella populations resistant to F. hepatica infection. Furthermore, some populations of this invasive snail collected from F. hepatica endemic locations in Brazil, Venezuela, Australia, South Africa, Colombia and Argentina were found without Fasciola infection. As a result, the role played by this snail in the transmission of Fasciola spp. in these endemic areas is still uncertain. Therefore, further studies to detect natural infections are needed in regions/countries where the snail is deemed invasive to better understand the veterinary and public health importance of this snail species in Fasciola-endemic areas and determine the global dispersion of resistant populations of P. columella.
Collapse
|
4
|
Mahmoud MM, Younes AA, El-Sherif HA, Gawish FA, Habib MR, Kamel M. Predicting the habitat suitability of Schistosoma intermediate host Bulinus truncatus, its predatory aquatic insect Odonata nymph, and the associated aquatic plant Ceratophyllum demersum using MaxEnt. Parasitol Res 2022; 121:205-216. [PMID: 34981215 DOI: 10.1007/s00436-021-07392-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 11/19/2021] [Indexed: 11/30/2022]
Abstract
Schistosomiasis is one of the most important parasitic diseases in tropical and subtropical areas. Its prevalence is associated with the distribution of freshwater snails, which are their intermediate hosts. Thus, control of freshwater snails is the solution to reduce the transmission of this disease. This will be achieved by understanding the relationship between the snails and their habitats including natural enemies and associated aquatic plants as well as the factors affecting their distribution. In this study, Maximum Entropy model (MaxEnt) was used for mapping and predicting the possible geographic distribution of Bulinus truncatus snail (the intermediate host of Schistosoma haematobium), Odonata nymph (predatory aquatic insect), and Ceratophyllum demersum (the associated aquatic plant) in Egypt based on topographic and climatic factors. The models of the investigated species were evaluated using the area under receiver operating characteristic curve. The results showed that the potential risk areas were along the banks of the Nile River and its irrigation canals. In addition, the MaxEnt models revealed some similarities in the distribution pattern of the vector, the predator, and the aquatic plant. It is obvious that the predictive distribution range of B. truncatus was affected by altitude, precipitation seasonality, isothermality, and mean temperature of warmest quarter. The presence of B. truncatus decreases with the increase of altitude and precipitation seasonality values. It could be concluded that the MaxEnt model could help introducing a predictive risk map for Schistosoma haematobium prevalence and performing better management strategies for schistosomiasis.
Collapse
Affiliation(s)
- Marwa M Mahmoud
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt. .,Department of Medical Malacology, Theodor Bilharz Research Institute, Giza, Egypt.
| | - Aly A Younes
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt
| | - Hanaa A El-Sherif
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt
| | - Fathia A Gawish
- Department of Medical Malacology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mohamed R Habib
- Department of Medical Malacology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mohamed Kamel
- Department of Environmental Basic Sciences, Institute of Environmental Studies and Research, Ain Shams University, Cairo, Egypt
| |
Collapse
|
5
|
Population genetics of the Schistosoma snail host Bulinus truncatus in Egypt. Acta Trop 2017; 172:36-43. [PMID: 28408098 DOI: 10.1016/j.actatropica.2017.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 03/29/2017] [Accepted: 04/08/2017] [Indexed: 11/23/2022]
Abstract
The tropical freshwater snail Bulinus truncatus serves as an important intermediate host of several human and cattle Schistosoma species in many African regions. Despite some ecological and malacological studies, there is no information on the genetic diversity of B. truncatus in Egypt. Here, we sampled 70-100 snails in ten localities in Upper Egypt and the Nile Delta. Per locality, we sequenced 10 snails at a partial fragment of the cytochrome c oxidase subunit 1 gene (cox1) and we genotyped 25-30 snails at six microsatellite markers. A total of nine mitochondrial haplotypes were detected, of which five were unique to the Nile Delta and three were unique to Upper Egypt, indicating that snail populations may have evolved independently in both regions. Bayesian clustering and hierarchical F-statistics using microsatellite markers further revealed strong population genetic structure at the level of locality. Observed heterozygosity was much lower compared to what is expected under random mating, which could be explained by high selfing rates, population size reductions and to a lesser extent by the Wahlund effect. Despite these observations, we found signatures of gene flow and cross-fertilization, even between snails from the Nile Delta and Upper Egypt, indicating that B. truncatus can travel across large distances in Egypt. These observations could have serious consequences for disease epidemiology, as it means that infected snails from one region could rapidly and unexpectedly spark a new epidemic in another distant region. This could be one of the factors explaining the rebound of human Schistosoma infections in the Nile Delta, despite decades of sustained schistosomiasis control.
Collapse
|
6
|
Lotfy WM, Lotfy LM. Synopsis of the Egyptian freshwater snail fauna. FOLIA MALACOLOGICA 2015. [DOI: 10.12657/folmal.023.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|