1
|
Święcicka M, Dmochowska-Boguta M, Orczyk W, Grądzielewska A, Stochmal A, Kowalczyk M, Bolibok L, Rakoczy-Trojanowska M. Changes in benzoxazinoid contents and the expression of the associated genes in rye (Secale cereale L.) due to brown rust and the inoculation procedure. PLoS One 2020; 15:e0233807. [PMID: 32470009 PMCID: PMC7259783 DOI: 10.1371/journal.pone.0233807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/12/2020] [Indexed: 12/19/2022] Open
Abstract
Benzoxazinoids (BXs) are secondary metabolites with diverse functions, but are primarily involved in protecting plants, mainly from the family Poaceae, against insects and fungal pathogens. Rye is a cereal crop that is highly resistant to biotic stresses. However, its susceptibility to brown rust caused by Puccinia recondita f. sp. secalis (Prs) is still a major problem affecting its commercial production. Additionally, the genetic and metabolic factors related to this disease remain poorly characterized. In this study, we investigated whether and to what extent the brown rust infection and the inoculation procedure affect the contents of specific BXs (HBOA, GDIBOA, DIBOA, GDIMBOA, DIMBOA, and MBOA) and the expression of genes related to BX (ScBx1-5, ScIgl, and Scglu). We revealed that treatments with water and a urediniospore suspension usually downregulate gene expression levels. Moreover, HBOA and DIBOA contents decreased, whereas the contents of the remaining metabolites increased. Specifically, the MBOA content increased more after the mock treatment than after the Prs treatment, whereas the increase in GDIBOA and GDIMBOA levels was usually due to the Prs infection, especially at two of the most critical time-points, 17 and 24 h post-treatment. Therefore, GDIBOA and GDIMBOA are glucosides that are important components of rye defence responses to brown rust. Furthermore, along with MBOA, they protect rye against the stress associated with the inoculation procedure used in this study.
Collapse
Affiliation(s)
- Magdalena Święcicka
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Marta Dmochowska-Boguta
- Department of Genetic Engineering, Plant Breeding and Acclimatization Institute–National Research Institute, Radzików, Błonie, Poland
| | - Wacław Orczyk
- Department of Genetic Engineering, Plant Breeding and Acclimatization Institute–National Research Institute, Radzików, Błonie, Poland
| | - Agnieszka Grądzielewska
- Department of Horticultural Plant Genetics and Breeding, Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Lublin, Poland
| | - Anna Stochmal
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Puławy, Poland
| | - Mariusz Kowalczyk
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Puławy, Poland
| | - Leszek Bolibok
- Department of Forest Silviculture, Institute of Forest Sciences, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Monika Rakoczy-Trojanowska
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| |
Collapse
|
2
|
Qi F, Zhang L, Dong X, Di H, Zhang J, Yao M, Dong L, Zeng X, Liu X, Wang Z, Zhou Y. Analysis of Cytology and Expression of Resistance Genes in Maize Infected with Sporisorium reilianum. PLANT DISEASE 2019; 103:2100-2107. [PMID: 31215852 DOI: 10.1094/pdis-09-18-1687-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Head smut, caused by the fungus Sporisorium reilianum, is a devastating global disease of maize (Zea mays). In the present study, maize seedlings were artificially inoculated with compatible mating-type strains of S. reilianum by needle inoculation of mesocotyls (NIM) or by soaking inoculation of radicles (SIR). After NIM or SIR, Huangzao4 mesocotyls exhibited severe damage with brownish discoloration and necrosis, whereas Mo17 mesocotyls exhibited few lesions. Fluorescence and electron microscopy showed that S. reilianum infected maize within 0.5 day after SIR and mainly colonized the phloem. With longer incubation, the density of S. reilianum hyphae increased in the vascular bundles, concentrated mainly in the phloem. In Mo17, infected cells exhibited apoptosis-like features, and hyphae became sequestered within dead cells. In contrast, in Huangzao4, pathogen invasion resulted in autophagy that failed to prevent hyphal spreading. The growth of S. reilianum hyphae diminished at 6 days after inoculation when expression of the R genes ZmWAK and ZmNL peaked. Thus, 6 days after SIR inoculation might be an important time for inhibiting the progress of S. reilianum infection in maize. The results of this study will provide a basis for further analysis of the mechanisms of maize resistance to S. reilianum.
Collapse
Affiliation(s)
- Fengkun Qi
- Northeast Agricultural University, Changjiang Road, Xiangfang District, Harbin, Heilongjiang Province, China 150030
| | - Lin Zhang
- Northeast Agricultural University, Changjiang Road, Xiangfang District, Harbin, Heilongjiang Province, China 150030
| | - Xiaojie Dong
- Northeast Agricultural University, Changjiang Road, Xiangfang District, Harbin, Heilongjiang Province, China 150030
| | - Hong Di
- Northeast Agricultural University, Changjiang Road, Xiangfang District, Harbin, Heilongjiang Province, China 150030
| | - Jiayue Zhang
- Northeast Agricultural University, Changjiang Road, Xiangfang District, Harbin, Heilongjiang Province, China 150030
| | - Minhao Yao
- Northeast Agricultural University, Changjiang Road, Xiangfang District, Harbin, Heilongjiang Province, China 150030
| | - Ling Dong
- Northeast Agricultural University, Changjiang Road, Xiangfang District, Harbin, Heilongjiang Province, China 150030
| | - Xing Zeng
- Northeast Agricultural University, Changjiang Road, Xiangfang District, Harbin, Heilongjiang Province, China 150030
| | - Xianjun Liu
- Northeast Agricultural University, Changjiang Road, Xiangfang District, Harbin, Heilongjiang Province, China 150030
| | - Zhenhua Wang
- Northeast Agricultural University, Changjiang Road, Xiangfang District, Harbin, Heilongjiang Province, China 150030
| | - Yu Zhou
- Northeast Agricultural University, Changjiang Road, Xiangfang District, Harbin, Heilongjiang Province, China 150030
| |
Collapse
|