1
|
Martínez-Lobos M, Silva V, Villena J, Jara-Gutiérrez C, Vera Quezada WE, Montenegro I, Madrid A. Phytoconstituents, Antioxidant Activity and Cytotoxicity of Puya chilensis Mol. Extracts in Colon Cell Lines. PLANTS (BASEL, SWITZERLAND) 2024; 13:2989. [PMID: 39519908 PMCID: PMC11548438 DOI: 10.3390/plants13212989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Puya chilensis Mol. is a plant of the Bromeliaceae family, which has been traditionally used for medicinal applications in various digestive disorders. In this study, the phytoconstituents of six extracts of stems and flowers of P. chilensis were evaluated: phenols, flavonoids and total anthraquinones, as well as their antioxidant capacity and cytotoxicity in colon cancer cell lines HT-29. The data demonstrate that the ethyl acetate extract of P. chilensis flowers is cytotoxic in HT-29 cell lines (IC50 = 41.70 µg/mL) without causing toxic effects on healthy colon cells (IC50 > 100 µg/mL); also, this extract concentrated the highest amount of phenols (4.63 μg GAE/g d.e.), flavonoids (31.5 μg QE/g d.e.) and anthraquinones (12.60 μg EE/g d.e.) among all the extracts tested, which also correlated with its highlighted antioxidant capacity (DPPH∙IC50 = 4.15 mg/mL and FRAP 26.52 mM TEAC) over the other extracts. About thirty-five compounds were identified in this extract-the fatty acid esters present have been shown to have therapeutic effects on several types of cancer and could explain its antiproliferative activity.
Collapse
Affiliation(s)
- Manuel Martínez-Lobos
- Laboratorio de Productos Naturales y Síntesis Orgánica (LPNSO), Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Avda. Leopoldo Carvallo 270, Playa Ancha, Valparaíso 2340000, Chile; (M.M.-L.); (V.S.)
| | - Valentina Silva
- Laboratorio de Productos Naturales y Síntesis Orgánica (LPNSO), Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Avda. Leopoldo Carvallo 270, Playa Ancha, Valparaíso 2340000, Chile; (M.M.-L.); (V.S.)
| | - Joan Villena
- Centro Interdisciplinario de Investigación Biomédica e Ingeniería para la Salud (MEDING), Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2340000, Chile;
| | - Carlos Jara-Gutiérrez
- Centro Interdisciplinario de Investigación Biomédica e Ingeniería para la Salud (MEDING), Escuela de Medicina, Escuela de Kinesiología, Universidad de Valparaíso, Valparaíso 2340000, Chile;
| | - Waleska E. Vera Quezada
- Laboratorio de Química de Metabolitos Bioactivos, Escuela de Química y Farmacia, Facultad de Farmacia, Centro de Investigación Farmacopea Chilena, Universidad de Valparaíso, Valparaíso 2340000, Chile;
| | - Iván Montenegro
- Centro Interdisciplinario de Investigación Biomédica e Ingeniería para la Salud (MEDING), Escuela de Obstetricia, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2340000, Chile;
| | - Alejandro Madrid
- Laboratorio de Productos Naturales y Síntesis Orgánica (LPNSO), Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Avda. Leopoldo Carvallo 270, Playa Ancha, Valparaíso 2340000, Chile; (M.M.-L.); (V.S.)
| |
Collapse
|
2
|
Kauser S, Mughees M, Swami S, Wajid S. Pre-clinical toxicity assessment of Artemisia absinthium extract-loaded polymeric nanoparticles associated with their oral administration. Front Pharmacol 2023; 14:1196842. [PMID: 37492095 PMCID: PMC10363985 DOI: 10.3389/fphar.2023.1196842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023] Open
Abstract
Background: This study was designed to quantify the composition of the ethanolic extract of Artemisia absinthium through gas chromatography-mass spectrometry analysis and ensure in vivo safety of A. absinthium extract-loaded polymeric nanoparticles (ANPs) before considering their application as a drug carrier via the oral route. Methods: We synthesized N-isopropylacrylamide, N-vinyl pyrrolidone, and acrylic acid crosslinked polymeric NPs by free-radical polymerization reaction and characterized them by Fourier-transform infrared spectroscopy, transmission electron microscopy, and dynamic light scattering spectroscopy. Different concentrations of extract (50 mg/kg, 300 mg/kg, and 2,000 mg/kg body weight) were encapsulated into the hydrophobic core of polymeric micelles for the assessment of acute oral toxicity and their LD50 cut-off value as per the test procedure of OECD guideline 423. Orally administered female Wistar rats were observed for general appearance, behavioral changes, and mortality for the first 30 min, 4 h, 24 h, and then, daily once for 14 days. Result: ANPs at the dose of 300 mg/kg body weight were used as an initial dose, and rats showed few short-lived signs of toxicity, with few histological alterations in the kidney and intestine. Based on these observations, the next set of rats were treated at a lower dose of 50 mg/kg and a higher dose of 2,000 mg/kg ANPs. Rats administered with 50 mg/kg ANPs remained normal throughout the study with insignificant histological disintegration; however, rats treated at 2,000 mg/kg ANPs showed some signs of toxicity followed by mortality among all three rats within 24-36 h, affecting the intestine, liver, and kidney. There were no significant differences in hematological and biochemical parameters among rats treated at 50 mg/kg and 300 mg/kg ANPs. Conclusion: We conclude that the LD50 cut-off value of these ANPs will be 500 mg/kg extract loaded in polymeric NPs.
Collapse
|
3
|
Arora V, Rani L, Grewal AS, Dureja H. Natural product-based antiinflammatory agents. RECENT DEVELOPMENTS IN ANTI-INFLAMMATORY THERAPY 2023:183-232. [DOI: 10.1016/b978-0-323-99988-5.00011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Abdelhameed RFA, Habib ES, Ibrahim AK, Yamada K, Abdel-Kader MS, Ibrahim AK, Ahmed SA, Badr JM, Nafie MS. Chemical profiling, cytotoxic activities through apoptosis induction in MCF-7 cells and molecular docking of Phyllostachys heterocycla bark nonpolar extract. J Biomol Struct Dyn 2022; 40:9636-9647. [PMID: 34074230 DOI: 10.1080/07391102.2021.1932599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The chemical constituents of the nonpolar fractions of the bamboo shoot skin Phyllostachys heterocycla were extensively studied. The phytochemical study was divided into two parts: the first deals with isolation of the chemical constituents using different chromatographic techniques that resulted in isolation of four compounds. The chemical structures of the pure isolated compounds were elucidated using different spectroscopic data. The second part deals with identification of the rest of the constituents using the GC technique. Additionally, both crude extract and the pure isolated compounds were investigated for cytotoxic activity. One of the isolated compounds; namely glyceryl 1-monopalmitate showed highly promising effect against the MCF-7 cells with (IC50 = 19.78 µM) compared to 5-FU (26.98 µM), and it remarkably stimulated apoptotic breast cancer cell death with 31.6-fold (16.13% compared to 0.51 for the control) at pre-G1 and G2/M-phase cell cycle arrest and blocked the progression of MCF-7 cells. Moreover, the identified compounds especially 1 were found to have high binding affinity towards both TPK and VEGFR-2 through the molecular docking studies which highlight its mode of action. HighlightsChemical profiling of Phyllostachys heterocycla bark nonpolar extract was fully identified.Glyceryl 1-monopalmitate showed highly promising effect against the MCF-7 cells with (IC50 = 19.78 µM) compared to 5-FU (26.98 µM).Glyceryl 1-monopalmitate significantly stimulated apoptotic breast cancer cell death with 31.6-fold by arresting cell cycle at G2/M and preG1 phases.Molecular docking simulation showed good binding affinities towards TPK and VEGFR-2 proteins.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Reda F A Abdelhameed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Eman S Habib
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Ahmed K Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Koji Yamada
- Garden for Medicinal Plants, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Maged S Abdel-Kader
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Amany K Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Safwat A Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Jihan M Badr
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Mohamed S Nafie
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
5
|
Maela MP, van der Walt H, Serepa-Dlamini MH. The Antibacterial, Antitumor Activities, and Bioactive Constituents’ Identification of Alectra sessiliflora Bacterial Endophytes. Front Microbiol 2022; 13:870821. [PMID: 35865925 PMCID: PMC9294510 DOI: 10.3389/fmicb.2022.870821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Due to increased antimicrobial resistance against current drugs, new alternatives are sought. Endophytic bacteria associated with medicinal plants are recognized as valuable sources of novel secondary metabolites possessing antimicrobial, antitumor, insecticidal, and antiviral activities. In this study, five bacterial endophytes were isolated and identified from the medicinal plant, Alectra sessiliflora, and their antibacterial and antitumor activities were investigated. In addition, the crude extracts of the endophytes were analyzed using gas chromatography (GC) coupled with time-of-flight mass spectrometry (TOF-MS). The identified bacterial endophytes belong to three genera viz Lysinibacillus, Peribacillus, and Bacillus, with the latter as the dominant genus with three species. Ethyl acetate extracts from the endophytes were used for antimicrobial activity against eleven pathogenic strains through minimum inhibitory concentration (MIC). The antitumor activity against the Hela cervical, Hek 293 kidney, and A549 lung carcinoma cells was determined by the MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxy-phenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay. Lysinibacillus sp. strain AS_1 exhibited broad antibacterial activity against the pathogenic strains with MIC values ranging from 4 to 8 mg/ml, while Bacillus sp. strain AS_3 displayed MIC of 0.25 mg/ml. Crude extracts of Lysinibacillus sp. strain AS_1, Peribacillus sp. strain AS_2, and Bacillus sp. strain AS_3 showed growth inhibition of more than 90% against all the cancer cell lines at a concentration of 1,000 μg/ml. Untargeted secondary metabolite profiling of the crude extracts revealed the presence of compounds with reported biological activity, such as antimicrobial, antioxidant, anti-inflammatory, antitumor, and antidiabetic properties. This study reported for the first time, bacterial endophytes associated with A. sessiliflora with antibacterial and antitumor activities.
Collapse
Affiliation(s)
- Mehabo Penistacia Maela
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | | | - Mahloro Hope Serepa-Dlamini
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
- *Correspondence: Mahloro Hope Serepa-Dlamini,
| |
Collapse
|
6
|
Phenolic and flavonoid contents and antioxidant activity of an endophytic fungus Nigrospora sphaerica (EHL2), inhabiting the medicinal plant Euphorbia hirta (dudhi) L. Arch Microbiol 2022; 204:140. [PMID: 35039945 PMCID: PMC8763303 DOI: 10.1007/s00203-021-02650-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/02/2022]
Abstract
Since endophytic fungi are pivotal sources of various bioactive natural compounds, the present study is aimed to investigate the antioxidant compounds of the endophytic fungus Nigrospora sphaerica isolated from a pantropical weed, Euphorbia hirta L. The fungus was fermented in four different media and each filtered broth was sequentially extracted in various solvents. Crude extracts collected from different solvents were subjected to phytochemical analysis and antioxidant activity. The total phenolic content (TPC) and total flavonoid content (TFC) were maximal in ethyl acetate crude extract (EtOAcE) of endophyte fermented in potato dextrose broth (PDB) medium (77.74 ± 0.046mgGAE/g and 230.59 ± 2.0 mgRE/g) with the highest 96.80% antioxidant activity. However, TPC and TFC were absent in hexane extract of Czapek Dox broth (CDB) medium exhibiting the lowest 4.63 ± 2.75% activity. The EtOAcE (PDB) showed a positive correlation between TFC and antiradical activity (R2 = 0.762; P < 0.05), whereas a high positive correlation was noticed between TPC and antioxidant activity (R2 = 0.989; P < 0.05). Furthermore, to determine the antioxidant activity, EtOAcE (PDB) was subjected to TLC bioautography-based partial purification, while GC/MS analysis of the partial purified extract was done to confirm the presence of phenolics along with antioxidant compounds that resulted in the detection of 2,4-Di-tert-butylphenol (13.83%), a phenolic compound accountable for the antioxidant potential. Conclusively, N. sphaerica is a potential candidate for natural antioxidant.
Collapse
|
7
|
Abstract
Acorn oil has been receiving increasing attention due to its nutritional potentials. However, its application as a novel food ingredient has not yet been fully explored. This paper summarizes chemical composition, extraction methods, potential health benefits, and current applications of acorn oil, with the aim of providing suggestions for its exploitation. Acorn oil is an excellent source of essential fatty acids (oleic, linoleic, α-linolenic, and palmitic acids). Acorns are a rich source of tocopherols, with γ-tocopherol being the most abundant. It also contains various bioactive compounds such as polyphenols and sterols (mainly β-sitosterol). Diets enriched with acorn oil can be beneficial in preventing cardiovascular disease (CVD), cancer, and type 2 diabetes as well as offer antioxidant activity. Further studies should focus on producing better quality acorn oil such as the application of more innovative and optimized techniques that can increase its health benefits and hence utilization.
Collapse
|
8
|
Fernandes T, Martel A, Cordeiro N. Exploring Pavlova pinguis chemical diversity: a potentially novel source of high value compounds. Sci Rep 2020; 10:339. [PMID: 31941962 PMCID: PMC6962392 DOI: 10.1038/s41598-019-57188-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 12/19/2019] [Indexed: 11/09/2022] Open
Abstract
To uncover the potential of Pavlova pinguis J.C. Green as a natural source of value added compounds, its lipophilic extracts were studied before and after alkaline hydrolysis using gas chromatography-mass spectrometry (GC-MS). The GC-MS analysis of the lipophilic extracts showed a wide chemical diversity including 72 compounds distributed by fatty acids (29), sterols (14), fatty alcohols (13) and other lipophilic compounds (16). Fatty acids represented the main class of identified compounds presenting myristic, palmitic, palmitoleic and eicosapentaenoic acids as its main components. Through the ∑ω6/∑ω3 ratio (0.25) and sterol composition it was possible to observe that P. pinguis is a valuable source of ω3 fatty acids and stigmasterol (up to 43% of total sterols). After alkaline hydrolysis, fatty acids and fatty alcohols content increased by 32 and 14% respectively, in contrast to, monoglycerides which decreased by 84%. The long chain alcohols content enables the exploitation of this microalga as a source of these bioactive compounds. Smaller amounts of sugars and other compounds were also detected. The present study is a valuable reference to the metabolite characterization of P. pinguis and shows the potential of this microalga for nutraceutical and pharmaceutical industries.
Collapse
Affiliation(s)
- Tomásia Fernandes
- LB3, Faculty of Sciences and Engineering, University of Madeira, Campus Universitário da Penteada, 9020-105, Funchal, Portugal
| | - Antera Martel
- Banco Español de Algas (BEA), Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Nereida Cordeiro
- LB3, Faculty of Sciences and Engineering, University of Madeira, Campus Universitário da Penteada, 9020-105, Funchal, Portugal. .,CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208, Matosinhos, Portugal.
| |
Collapse
|
9
|
In vitro antioxidant and antiproliferative effect of the extracts of Ephedra chilensis K Presl aerial parts. Altern Ther Health Med 2019; 19:53. [PMID: 30832627 PMCID: PMC6399944 DOI: 10.1186/s12906-019-2462-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/20/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Ephedra chilensis K Presl, known locally as pingo-pingo, is a Chilean endemic plant used in traditional medicine as an anti-inflammatory and used in other treatments. However, unlike for the other Ephedra species, there have been no reports on the antioxidant and cytotoxic effects of this plant. The present study aims to explore the potential applications of E. chilensis extract as a cytotoxic agent against in vitro cancer cell lines and to explore the relationship between this extract and antioxidant activity. METHODS Total anthraquinone, flavonoid, and phenolic contents, as well as antioxidant activity (DPPH, FRAP, and TRAP assays) and cytotoxic effect on several cancer cell lines (MCF-7, PC-3, DU-145, and HT-29) were measured for the hexane, dichloromethane and ethanol extracts of E. chilensis. In addition, several correlations among the phytochemical content, antioxidant activity, and cytotoxic effect were evaluated. Finally, GC-MS analyses of the most active extracts were carried out to identify their major components and to relate these components to the cytotoxic effect. RESULTS Antioxidant activity was found in the EtOH extracts of Ephedra, and the results were correlated with the phenolic content. For the cytotoxic activity, the non-polar extracts of E. chilensis had the highest antiproliferative effect for the MCF-7 and PC-3 cancer lines; the extract was shown to be up to three times more selective than doxorubicin. However, the cytotoxic effect was not correlated with the antioxidant activity. Lastly, the GC-MS analysis showed a high concentration of saturated fatty acids (mainly n-hexadecanoic acid) and terpenoids (mainly 4-(hydroxy-ethyl)-γ-butanolactone). CONCLUSION The cytotoxic activity and selectivity of the non-polar extracts of E. chilensis for the MCF-7 and PC-3 cell lines could be related to the terpenic compounds and fatty acids of the extracts or to the synergistic effect of all of the compounds in the extracts. These non-polar extracts can be used for the development of new drugs against breast and prostate cancer.
Collapse
|