1
|
Kulshrestha A, Gupta P. Multi-computational screening identifies homovanillic acid as a potential SAP5 inhibitor against Candida albicans biofilms. Comput Biol Chem 2025; 118:108453. [PMID: 40222055 DOI: 10.1016/j.compbiolchem.2025.108453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/24/2025] [Accepted: 03/30/2025] [Indexed: 04/15/2025]
Abstract
This work aims to find inhibitors of SAP5, a virulence factor in Candida albicans polymicrobial biofilms. The methodology included docking simulations, MMGBSA calculations, and molecular dynamics simulations. Of the 107 phenolic acids retrieved from PubChem, 20 passed ADMET screening. The research finds homovanillic acid to be a possible SAP5 inhibitor, with a binding energy of -19.92 kcal/mol as shown by molecular docking and MMGBSA analysis. The compound showed favorable ADMET properties, indicating low toxicity and high drug-likeness. Molecular dynamics simulations over 100 nanoseconds confirmed stable protein-ligand interactions. These findings suggest homovanillic acid's potential in treating AMR-associated biofilms and establish a foundation for experimental validation. The study demonstrates how computational methods can accelerate the discovery of novel antifungal medicines targeting polymicrobial infections.
Collapse
Affiliation(s)
- Anmol Kulshrestha
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, Chhattisgarh 492010, India.
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, Chhattisgarh 492010, India.
| |
Collapse
|
2
|
Liu W, Liu B, Zhang G, Jia H, Zhang Y, Cen X, Yao G, He M. Molecular and Functional Characterization of a Short-Type Peptidoglycan Recognition Protein, Ct-PGRP-S1 in the Giant Triton Snail Charonia tritonis. Int J Mol Sci 2022; 23:11062. [PMID: 36232364 PMCID: PMC9570181 DOI: 10.3390/ijms231911062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/22/2022] Open
Abstract
Peptidoglycan recognition proteins (PGRPs) are a family of pattern recognition receptors (PRRs) involved in host antibacterial responses, and their functions have been characterized in most invertebrate and vertebrate animals. However, little information is available regarding the potential function of PGRPs in the giant triton snail Charonia tritonis. In this study, a short-type PGRP gene (termed Ct-PGRP-S1) was identified in C. tritonis. Ct-PGRP-S1 was predicted to contain several structural features known in PGRPs, including a typical PGRP domain (Amidase_2) and Src homology-3 (SH3) domain. The Ct-PGRP-S1 gene was constitutively expressed in all tissues examined except in proboscis, with the highest expression level observed in the liver. As a typical PRR, Ct-PGRP-S1 has an ability to degrade peptidoglycan (PGN) and was proven to have non-Zn2+-dependent amidase activity and antibacterial activity against Vibrioalginolyticus and Staphylococcus aureus. It is the first report to reveal the peptidoglycan recognition protein in C. tritonis, and these results suggest that peptidoglycan recognition protein Ct-PGRP-S1 is an important effector of C. tritonis that modulates bacterial infection resistance of V. alginolyticus and S. aureus, and this study may provide crucial basic data for the understanding of an innate immunity system of C. tritonis.
Collapse
Affiliation(s)
- Wenguang Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Bing Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gege Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huixia Jia
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Xitong Cen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaoyou Yao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maoxian He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
3
|
Gheibi N, Ghorbani M, Shariatifar H, Farasat A. In silico assessment of human Calprotectin subunits (S100A8/A9) in presence of sodium and calcium ions using Molecular Dynamics simulation approach. PLoS One 2019; 14:e0224095. [PMID: 31622441 PMCID: PMC6797115 DOI: 10.1371/journal.pone.0224095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/04/2019] [Indexed: 11/19/2022] Open
Abstract
Calprotectin is a heterodimeric protein complex which consists of two subunits including S100A8 and S100A9. This protein has a major role in different inflammatory disease and various types of cancers. In current study we aimed to evaluate the structural and thermodynamic changes of the subunits and the complex in presence of sodium and calcium ions using molecular dynamics (MD) simulation. Therefore, the residue interaction network (RIN) was visualized in Cytoscape program. In next step, to measure the binding free energy, the potential of mean force (PMF) method was performed. Finally, the molecular mechanics Poisson-Boltzmann surface area (MMPBSA) method was applied as an effective tool to calculate the molecular model affinities. The MD simulation results of the subunits represented their structural changes in presence of Ca2+. Moreover, the RIN and Hydrogen bond analysis demonstrated that cluster interactions between Calprotectin subunits in presence of Ca2+ were greater in comparison with Na+. Our findings indicated that the binding free energy of the subunits in presence of Ca2+ was significantly greater than Na+. The results revealed that Ca2+ has the ability to induce structural changes in subunits in comparison with Na+ which lead to create stronger interactions between. Hence, studying the physical characteristics of the human proteins could be considered as a powerful tool in theranostics and drug design purposes.
Collapse
Affiliation(s)
- Nematollah Gheibi
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohammad Ghorbani
- Department of Nanobiotechnology/ Biophysics, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Hanifeh Shariatifar
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Farasat
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
4
|
Rout AK, Paramanik S, Dehury B, Acharya V, Swain HS, Pradhan SK, Behera B, Pati SK, Behera BK, Das BK. Elucidating the molecular interaction of Zebrafish (Danio rerio) peptidoglycan recognition protein 2 with diaminopimelic acid and lysine type peptidoglycans using in silico approaches. J Biomol Struct Dyn 2019; 38:3687-3699. [DOI: 10.1080/07391102.2019.1666742] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ajaya Kumar Rout
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, India
| | - Sunanda Paramanik
- Department of Bioinformatics, Orissa University of Agriculture and Technology, Bhubaneswar, India
| | - Budheswar Dehury
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Varsha Acharya
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, India
| | - Himanshu Sekhar Swain
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, India
| | - Sukanta Kumar Pradhan
- Department of Bioinformatics, Orissa University of Agriculture and Technology, Bhubaneswar, India
| | - Bhaskar Behera
- Department of Biosciences and Biotechnology, Fakir Mohan University, Balasore, India
| | - Soumen Kumar Pati
- Department of Bioinformatics, Maulana Abul Kalam Azad University of Technology, Haringhata, India
| | - Bijay Kumar Behera
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, India
| | - Basanta Kumar Das
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, India
| |
Collapse
|