1
|
Marciano CL, de Almeida AP, Bezerra FC, Giannesi GC, Cabral H, Teixeira de Moraes Polizeli MDL, Ruller R, Masui DC. Enhanced saccharification levels of corn starch using as a strategy a novel amylolytic complex (AmyHb) from the thermophilic fungus Humicola brevis var. thermoidea in association with commercial enzyme. 3 Biotech 2024; 14:198. [PMID: 39131173 PMCID: PMC11310185 DOI: 10.1007/s13205-024-04038-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
Amylases represent a versatile group of catalysts that are used for the saccharification of starch because they can hydrolyze the glycosidic bonds of starch molecules to release glucose, maltose, and short-chain oligosaccharides. The amylolytic complex of the thermophilic filamentous fungus Humicola brevis var. thermoidea (AmyHb) was produced, biochemically characterized, and compared with the commercial amylase Termamyl. In addition, the biotechnological application of AmyHb in starch saccharification was investigated. The highest production was achieved using a wheat bran medium at 50 °C for 5-6 days in solid-state fermentation (849.6 ± 18.2 U·g-1) without the addition of inducers. Optimum amylolytic activity occurred at pH 5.0 at 60 °C, and stability was maintained between pH 5.0 and 6.0, with thermal stability at 50-60 °C, especially in the presence of Ca2+. These results were superior to those found with Termamyl. Both enzymes were strongly inhibited by Hg2+, Cu2+, and Ag+; however, AmyHb displayed increased activity in the presence of Mn2+ and Na+. In addition, AmyHb showed greater tolerance to a wide range of ethanol concentrations. AmyHb appears to be a complex consisting of glucoamylase and α-amylase, based on its substrate specificity and TLC. The hydrolysis tests on cornstarch flour showed that the cocktail of AmyHb50% + Termamyl50% significantly increased the release of glucose and total reducing sugars (36.6%) when compared to the enzymes alone. AmyHb exhibited promising physicochemical properties and good performance with commercial amylase; therefore, this complex is a biotechnological alternative candidate for the bioprocessing of starch sources.
Collapse
Affiliation(s)
- Camila Langer Marciano
- Laboratório de Bioquímica Geral E de Microrganismos-LBQ, Instituto de Biociências-INBIO, Universidade Federal de Mato Grosso Do Sul-UFMS, Campo Grande, MS CEP: 79070-900 Brazil
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, FCFRP – Universidade de São Paulo, Ribeirão Preto, SP CEP: 14040-903 Brazil
| | - Aline Pereira de Almeida
- Faculdade de Medicina de Ribeirão Preto, FMRP – Universidade de São Paulo, Ribeirão Preto, SP CEP: 14049-900 Brazil
- Departamento de Biologia, Faculdade de Filosofia, Ciências E Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto, SP CEP: 14040-901 Brazil
| | - Fabiane Cruz Bezerra
- Laboratório de Bioquímica Geral E de Microrganismos-LBQ, Instituto de Biociências-INBIO, Universidade Federal de Mato Grosso Do Sul-UFMS, Campo Grande, MS CEP: 79070-900 Brazil
| | - Giovana Cristina Giannesi
- Laboratório de Bioquímica Geral E de Microrganismos-LBQ, Instituto de Biociências-INBIO, Universidade Federal de Mato Grosso Do Sul-UFMS, Campo Grande, MS CEP: 79070-900 Brazil
| | - Hamilton Cabral
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, FCFRP – Universidade de São Paulo, Ribeirão Preto, SP CEP: 14040-903 Brazil
| | | | - Roberto Ruller
- Departamento de Biologia, Faculdade de Filosofia, Ciências E Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto, SP CEP: 14040-901 Brazil
- Universidade Estadual Paulista - UNESP, Instituto de Biociências, Letras e Ciências Exatas - IBILCE, São José do Rio Preto, SP CEP: 15054-000 Brazil
- Centro de Ciências Naturais e Humanas - CCNH, Universidade Federal do ABC - UFABC, Santo André, SP CEP: 09210-170 Brazil
| | - Douglas Chodi Masui
- Laboratório de Bioquímica Geral E de Microrganismos-LBQ, Instituto de Biociências-INBIO, Universidade Federal de Mato Grosso Do Sul-UFMS, Campo Grande, MS CEP: 79070-900 Brazil
| |
Collapse
|
2
|
Sidar A, Voshol GP, Vijgenboom E, Punt PJ. Novel Design of an α-Amylase with an N-Terminal CBM20 in Aspergillus niger Improves Binding and Processing of a Broad Range of Starches. Molecules 2023; 28:5033. [PMID: 37446690 DOI: 10.3390/molecules28135033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/17/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
In the starch processing industry including the food and pharmaceutical industries, α-amylase is an important enzyme that hydrolyses the α-1,4 glycosidic bonds in starch, producing shorter maltooligosaccharides. In plants, starch molecules are organised in granules that are very compact and rigid. The level of starch granule rigidity affects resistance towards enzymatic hydrolysis, resulting in inefficient starch degradation by industrially available α-amylases. In an approach to enhance starch hydrolysis, the domain architecture of a Glycoside Hydrolase (GH) family 13 α-amylase from Aspergillus niger was engineered. In all fungal GH13 α-amylases that carry a carbohydrate binding domain (CBM), these modules are of the CBM20 family and are located at the C-terminus of the α-amylase domain. To explore the role of the domain order, a new GH13 gene encoding an N-terminal CBM20 domain was designed and found to be fully functional. The starch binding capacity and enzymatic activity of N-terminal CBM20 α-amylase was found to be superior to that of native GH13 without CBM20. Based on the kinetic parameters, the engineered N-terminal CBM20 variant displayed surpassing activity rates compared to the C-terminal CBM20 version for the degradation on a wide range of starches, including the more resistant raw potato starch for which it exhibits a two-fold higher Vmax underscoring the potential of domain engineering for these carbohydrate active enzymes.
Collapse
Affiliation(s)
- Andika Sidar
- Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
- Department of Food and Agricultural Product Technology, Gadjah Mada University, Yogyakarta 55281, Indonesia
| | - Gerben P Voshol
- Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
- GenomeScan, 2333 BZ Leiden, The Netherlands
| | - Erik Vijgenboom
- Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Peter J Punt
- Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
- Ginkgo Bioworks, 3704 HE Zeist, The Netherlands
| |
Collapse
|
3
|
Priyanka U, Lens PNL. Enhanced production of amylase, pyruvate and phenolic compounds from glucose by light-driven Aspergillus niger-CuS nanobiohybrids. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY (OXFORD, OXFORDSHIRE : 1986) 2023; 98:602-614. [PMID: 37066082 PMCID: PMC10087041 DOI: 10.1002/jctb.7153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/29/2022] [Accepted: 06/08/2022] [Indexed: 06/19/2023]
Abstract
BACKGROUND The demand for value-added compounds such as amylase, pyruvate and phenolic compounds produced by biological methods has prompted the rapid development of advanced technologies for their enhanced production. Nanobiohybrids (NBs) make use of both the microbial properties of whole-cell microorganisms and the light-harvesting efficiency of semiconductors. Photosynthetic NBs were constructed that link the biosynthetic pathways of Aspergillus niger with CuS nanoparticles. RESULTS In this work, NB formation was confirmed by negative values of the interaction energy, i.e., 2.31 × 108 to -5.52 × 108 kJ mol-1 for CuS-Che NBs, whereas for CuS-Bio NBs the values were -2.31 × 108 to -4.62 × 108 kJ mol-1 for CuS-Bio NBs with spherical nanoparticle interaction. For CuS-Bio NBs with nanorod interaction, it ranged from -2.3 × 107 to -3.47 × 107 kJ mol-1 . Further, the morphological changes observed by scanning electron microscopy showed the presence of the elements Cu and S in the energy-dispersive X-ray spectra and the presence of CuS bonds in Fourier transform infrared spectroscopy indicate NB formation. In addition, the quenching effect in photoluminescence studies confirmed NB formation. Production yields of amylase, phenolic compounds and pyruvate amounted to 11.2 μmol L-1, 52.5 μmol L-1 and 28 nmol μL-1, respectively, in A. niger-CuS Bio NBs on the third day of incubation in the bioreactor. Moreover, A niger cells-CuS Bio NBs had amino acids and lipid yields of 6.2 mg mL-1 and 26.5 mg L-1, respectively. Furthermore, probable mechanisms for the enhanced production of amylase, pyruvate and phenolic compounds are proposed. CONCLUSION Aspergillus niger-CuS NBs were used for the production of the amylase enzyme and value-added compounds such as pyruvate and phenolic compounds. Aspergillus niger-CuS Bio NBs showed a greater efficiency compared to A. niger-CuS Che NBs as the biologically produced CuS nanoparticles had a higher compatibility with A. niger cells. © 2022 The Authors. Journal of Chemical Technology and Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry (SCI).
Collapse
Affiliation(s)
- Uddandarao Priyanka
- Department of Microbiology and Ryan InstituteNational University of IrelandGalwayIreland
| | - Piet NL Lens
- Department of Microbiology and Ryan InstituteNational University of IrelandGalwayIreland
| |
Collapse
|
4
|
Chen L, Yi Z, Fang Y, Jin Y, He K, Xiao Y, Zhao D, Luo H, He H, Sun Q, Zhao H. Biochemical and synergistic properties of a novel alpha-amylase from Chinese nong-flavor Daqu. Microb Cell Fact 2021; 20:80. [PMID: 33827572 PMCID: PMC8028695 DOI: 10.1186/s12934-021-01571-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/25/2021] [Indexed: 11/10/2022] Open
Abstract
Background Daqu is the most important fermentation starter for Chinese liquor, with large number of microbes and enzymes being openly enriched in the Daqu system over thousands of years. However, only a few enzymes have been analyzed with crude protein for total liquefying power and saccharifying power of Daqu. Therefore, the complex enzymatic system present in Daqu has not been completely characterized. Moreover, their pivotal and complicated functions in Daqu are completely unknown. Results
In this study, a novel α-amylase NFAmy13B, from GH13_5 subfamily (according to the Carbohydrate-Active enZYmes Database, CAZy) was successfully heterologous expressed by Escherichia coli from Chinese Nong-flavor (NF) Daqu. It exhibited high stability ranging from pH 5.5 to 12.5, and higher specific activity, compared to other GH13_5 fungal α-amylases. Moreover, NFAmy13B did not show activity loss and retained 96% residual activity after pre-incubation at pH 11 for 21 h and pH 12 for 10 h, respectively. Additionally, 1.25 mM Ca2+ significantly improved its thermostability. NFAmy13B showed a synergistic effect on degrading wheat starch with NFAmy13A (GH13_1), another α-amylase from Daqu. Both enzymes could cleave maltotetraose and maltopentaose in same degradation pattern, and only NFAmy13A could efficiently degrade maltotriose. Moreover, NFAmy13B showed higher catalytic efficiency on long-chain starch, while NFAmy13A had higher catalytic efficiency on short-chain maltooligosaccharides. Their different catalytic efficiencies on starch and maltooligosaccharides may be caused by their discrepant substrate-binding region. Conclusions This study mined a novel GH13_5 fungal α-amylase (NFAmy13B) with outstanding alkali resistance from Nong-flavor (NF) Daqu. Furthermore, its synergistic effect with NFAmy13A (GH13_1) on hydrolyzing wheat starch was confirmed, and their possible contribution in NF Daqu was also speculated. Thus, we not only provide a candidate α-amylase for industry, but also a useful strategy for further studying the interactions in the complex enzyme system of Daqu. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01571-w.
Collapse
Affiliation(s)
- Lanchai Chen
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin Nan Road, Chengdu, 610041, Sichuan, People's Republic of China.,Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, People's Republic of China
| | - Zhuolin Yi
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin Nan Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yang Fang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin Nan Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yanling Jin
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin Nan Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Kaize He
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin Nan Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yao Xiao
- Analytical and Testing Center, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Dong Zhao
- Wuliangye Group, Yibin, 644007, China
| | - Huibo Luo
- Liquor Making Bio-Technology and Application of Key Laboratory of Sichuan Province, Bioengineering College, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Hui He
- Department of Liquor Making Engineering, Moutai College, Renhuai, 564501, China
| | - Qun Sun
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, People's Republic of China.
| | - Hai Zhao
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin Nan Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
5
|
Paul JS, Gupta N, Beliya E, Tiwari S, Jadhav SK. Aspects and Recent Trends in Microbial α-Amylase: a Review. Appl Biochem Biotechnol 2021; 193:2649-2698. [PMID: 33715051 DOI: 10.1007/s12010-021-03546-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/26/2021] [Indexed: 10/21/2022]
Abstract
α-Amylases are the oldest and versatile starch hydrolysing enzymes which can replace chemical hydrolysis of starch in industries. It cleaves the α-(1,4)-D-glucosidic linkage of starch and other related polysaccharides to yield simple sugars like glucose, maltose and limit dextrin. α-Amylase covers about 30% shares of the total enzyme market. On account of their superior features, α-amylase is the most widely used among all the existing amylases for hydrolysis of polysaccharides. Endo-acting α-amylase of glycoside hydrolase family 13 is an extensively used biocatalyst and has various biotechnological applications like in starch processing, detergent, textile, paper and pharmaceutical industries. Apart from these, it has some novel applications including polymeric material for drug delivery, bioremediating agent, biodemulsifier and biofilm inhibitor. The present review will accomplish the research gap by providing the unexplored aspects of microbial α-amylase. It will allow the readers to know about the works that have already been done and the latest trends in this field. The manuscript has covered the latest immobilization techniques and the site-directed mutagenesis approaches which are readily being performed to confer the desirable property in wild-type α-amylases. Furthermore, it will state the inadequacies and the numerous obstacles coming in the way of its production during upstream and downstream steps and will also suggest some measures to obtain stable and industrial-grade α-amylase.
Collapse
Affiliation(s)
- Jai Shankar Paul
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, CG, 492010, India
| | - Nisha Gupta
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, CG, 492010, India
| | - Esmil Beliya
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, CG, 492010, India.,Department of Botany, Govt. College, Bichhua, Chhindwara, MP, 480111, India
| | - Shubhra Tiwari
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, CG, 492010, India
| | - Shailesh Kumar Jadhav
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, CG, 492010, India.
| |
Collapse
|
6
|
Akhmetova VR, Akhmadiev NS, Zainullin RA, Khayrullina VR, Mescheryakova ES, Glushkova NA. Synthesis, in vitro and in silico studies of inhibitory activity towards α-amylase of bis-azole scaffolds linked by an alkylsulfanyl chain. CAN J CHEM 2020. [DOI: 10.1139/cjc-2019-0186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Twelve new α,ω-bis[(3,5-dimethylpyrazol-4-yl)methylsulfanyl]alkanes linked by alkyl, diethyl sulfide, and triethyl dioxide spacers were prepared by the multicomponent reaction of acetylacetone, formaldehyde, α,ω-dithiols, and monosubstituted hydrazines. Testing of these products for inhibition of α-amylase enzyme in vitro showed that bis(N-methylpyrazolylmethylsulfanyl)ethane 4a inhibits the enzyme by the competitive mechanism. Meanwhile, the water-soluble adduct of bis(isoxazolylmethylsulfanyl)ethane 2 with HCl (2·HCl) is a noncompetitive inhibitor. The molecular docking results attest to high complementarity between the test molecules and the enzymes such as α-amylases from Aspergillus niger and human pancreas. Bis-pyrazole compounds 1, 1·HCl, and 4a and bis-isoxazole compounds 2 and 2·HCl positioned in the active site of both α-amylases form two closely spaced clusters. For all cases, the bioactive conformations of the modeled ligands were identified, demonstrating high affinity of the bis-azoles (1, 1·HCl, 2, 2·HCl, 4a) to the enzymes. Hydrogen bonds stabilizing their position in both α-amylases active sites were identified.
Collapse
Affiliation(s)
- Vnira R. Akhmetova
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russia
| | - Nail S. Akhmadiev
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russia
| | - Radik A. Zainullin
- Ufa State Petroleum Technological University, 1 Kosmonavtov Str., Ufa 450062, Russia
| | | | - Ekaterina S. Mescheryakova
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russia
| | - Natalia A. Glushkova
- Ufa State Petroleum Technological University, 1 Kosmonavtov Str., Ufa 450062, Russia
| |
Collapse
|
7
|
Khusniati T, Trieska Dewi G, P. Roswiem A, Ayu Azhari S, Ishfahani F, Sulistiani S. CARBOHYDRATE DEGRADATION OF TUBER PASTE FLOUR BY THE ADDITION OF α-AMYLASE FROM TWO Lactobacillus SPECIES. JURNAL TEKNOLOGI DAN INDUSTRI PANGAN 2020. [DOI: 10.6066/jtip.2020.31.1.60] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
8
|
Polyextremotolerant Amylase Produced from Novel Enterococcus with Potpourri of Applications. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09809-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Wang YC, Hu HF, Ma JW, Yan QJ, Liu HJ, Jiang ZQ. A novel high maltose-forming α-amylase from Rhizomucor miehei and its application in the food industry. Food Chem 2019; 305:125447. [PMID: 31499289 DOI: 10.1016/j.foodchem.2019.125447] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/24/2019] [Accepted: 08/28/2019] [Indexed: 12/23/2022]
Abstract
A novel α-amylase gene (RmAmyA) from Rhizomucor miehei was cloned and expressed in Pichia pastoris. RmAmyA showed 70% amino acid identity with the α-amylase from Rhizomucor pusillus. A high α-amylase activity of 29,794.2 U/mL was found through high cell density fermentation. The molecular mass of RmAmyA was determined to be 49.9 kDa via SDS-PAGE. RmAmyA was optimally active at 75 °C and pH 6.0, and it did not require Ca2+ to improve its activity. It exhibited broad substrate specificity towards amylose, amylopectin, soluble starch, pullulan, and cyclodextrins. High level of maltose (54%, w/w) was produced after liquefied starch was hydrolysed with RmAmyA for 16 h. Moreover, the addition of RmAmyA into Chinese steamed bread resulted in 7.7% increment in the specific volume, and 17.2% and 11.5% reduction in the chewiness and hardness, respectively. These results indicate that RmAmyA might be a potential candidate for applications in the food industry.
Collapse
Affiliation(s)
- Yu-Chuan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hui-Fang Hu
- Bioresource Utilization Laboratory, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Jun-Wen Ma
- Bioresource Utilization Laboratory, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Qiao-Juan Yan
- Bioresource Utilization Laboratory, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Hai-Jie Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Zheng-Qiang Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
10
|
Shukla P. Synthetic Biology Perspectives of Microbial Enzymes and Their Innovative Applications. Indian J Microbiol 2019; 59:401-409. [PMID: 31762501 DOI: 10.1007/s12088-019-00819-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 11/29/2022] Open
Abstract
Microbial enzymes are high in demand and there is focus on their efficient, cost effective and eco-friendly production. The relevant microbial enzymes for respective industries needs to be identified but the conventional technologies don't have much edge over it. So, there is more attention towards high throughput methods for production of efficient enzymes. The enzymes produced by microbes need to be modified to bear the extreme conditions of the industries in order to get prolific outcomes and here the synthetic biology tools may be augmented to modify such microbes and enzymes. These tools are applied to synthesize novel and efficient enzymes. Use of computational tools for enzyme modification has provided new avenues for faster and specific modification of enzymes in a shorter time period. This review focuses on few important enzymes and their modification through synthetic biology tools including genetic modification, nanotechnology, post translational modification.
Collapse
Affiliation(s)
- Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| |
Collapse
|
11
|
Enzymatic characteristics of a recombinant protease (rPepD) from Aspergillus niger expressed in Pichia pastoris. Protein Expr Purif 2019; 162:67-71. [PMID: 31181254 DOI: 10.1016/j.pep.2019.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/12/2019] [Accepted: 06/07/2019] [Indexed: 11/21/2022]
Abstract
The Aspergillus niger AS3.350 protease gene (pepD) was successfully cloned and expressed in Pichia pastoris KM71. The rPepD activity was 331.5 U/ml, and the optimum temperature and pH were 45 °C and 8-9 respectively. In addition, enzyme activity was significantly inhibited by PMSF, EDTA, Mg2+, Fe2+ and Zn2+ ions, and stimulated by Ca2+ which selectively bound to the T302 and D323 residues. Mutation in either or both of the residues inhibited rPepD expression, indicating that binding to Ca2+ is necessary for PepD expression and activity. The rPepD showed a wide substrate range, and was particularly selective to those with hydrophobic amino acids. The degree of rPepD-mediated hydrolysis of soy protein isolate, corn flour and gluten meal were 8.7%, 38.1% and 33.6% respectively, which was higher than that by Alcalase, indicating that rPepD has potential applications in the food processing industry.
Collapse
|
12
|
Li J, Gu X, Pan A. Multifunctional α-amylase Amy19 possesses agarase, carrageenase, and cellulase activities. Int J Biol Macromol 2019; 126:585-594. [DOI: 10.1016/j.ijbiomac.2018.12.217] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/29/2018] [Accepted: 12/22/2018] [Indexed: 11/28/2022]
|
13
|
Kehinde BA, Sharma P. Recently isolated antidiabetic hydrolysates and peptides from multiple food sources: a review. Crit Rev Food Sci Nutr 2018; 60:322-340. [PMID: 30463420 DOI: 10.1080/10408398.2018.1528206] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Diabetes, a metabolic syndrome of global importance has been on a progressive rise in recent years. Several pharmacological approaches have been made, which have proved effective, but with underlying side effects. Bioactive hydrolysates (BHs) and peptides (BPs) from food sources, however, have shown the relative advantage of imparting less adverse effects. Furthermore, BHs and BPs from food have been discovered to impart their antidiabetic potentials through one or more mechanisms such as inhibition of digestive enzymes, inhibition of the antigenic enzyme - Dipeptyl peptidase IV (DPP-IV), decrease in blood glucose levels and increase in insulin uptake. Several plants and animal sources have been used as protein sources for the isolation of antidiabetic hydrolysates and peptides through different mechanisms and analytical techniques. This review integrates recent research information about several popular and unconventional food sources of BHs and BPs, their isolation techniques, antidiabetic effects and protein profiles. In addition, the fractionation technique(s) employed in each study and inhibition potentials of BHs and BPs are reviewed. This article is intended to supplement accessible scholarly literature and intellectual awareness on the subject of food-oriented approach for the management of diabetes.
Collapse
Affiliation(s)
- Bababode Adesegun Kehinde
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Poorva Sharma
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|