1
|
Jain A, Das R, Giri M, Mane P, Shard A. Carbohydrate kinase inhibition: a promising strategy in cancer treatment. Drug Discov Today 2025; 30:104308. [PMID: 39912130 DOI: 10.1016/j.drudis.2025.104308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/21/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025]
Abstract
Carbohydrate kinases (CKs) are pivotal in various biological processes, including energy consumption, cell signaling, and biosynthesis. They are a group of enzymes that facilitate the phosphorylation of carbohydrates, playing a crucial role in cellular metabolism. These enzymes facilitate the transfer of a phosphate group from a high-energy donor like ATP to a specified location on a carbohydrate substrate. Dysregulated kinase activity drives tumor growth and progression. Inhibitors targeting these enzymes have been developed and used in cancer therapy. The CK family encompasses three major types: hexokinases, ribokinases, and phosphatidylinositol kinases, with inhibitors of paramount importance in cancer treatment. This review explores the role of CKs in cancer and its inhibitors, providing insights into improving existing inhibitors and designing new ones.
Collapse
Affiliation(s)
- Archit Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Rudradip Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Muskan Giri
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Pranita Mane
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India.
| |
Collapse
|
2
|
Pérez-Ramos L, Ibarra-Gómez L, Lubomirov R, García-Cremades M, Asín-Prieto E, Fudio S, Zubiaur P. Description and Modeling of Relevant Demographic and Laboratory Variables in a Large Oncology Cohort to Generate Virtual Populations. Pharmaceutics 2024; 16:1548. [PMID: 39771527 PMCID: PMC11728769 DOI: 10.3390/pharmaceutics16121548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/06/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025] Open
Abstract
Background/Objectives: Pathophysiological variability in patients with cancer is associated with differences in responses to pharmacotherapy. In this work, we aimed to describe the demographic characteristics and hematological, biochemical, and coagulation variables in a large oncology cohort and to develop, optimize, and provide open access to modeling equations for the estimation of variables potentially relevant in pharmacokinetic modeling. Methods: Using data from 1793 patients with cancer, divided into training (n = 1259) and validation (n = 534) datasets, a modeling network was developed and used to simulate virtual oncology populations. All analyses were conducted in RStudio 4.3.2 Build 494. Results: The simulation network based on sex, age, biogeographic origin/ethnicity, and tumor type (fixed or primary factors) was successfully validated, able to predict age, height, weight, alpha-1-acid glycoprotein, albumin, hemoglobin, C-reactive protein and lactate dehydrogenase serum levels, platelet-lymphocyte and neutrophil-lymphocyte ratios, and hematocrit. This network was then successfully extrapolated to simulate the laboratory variables of eight oncology populations (n = 1200); only East Asians, Sub-Saharan Africans, Europeans, only males, females, patients with an ECOG performance status equal to 2, and only patients with pancreas cancer or ovarian cancer. Conclusions: this network constitutes a valuable tool to predict relevant characteristics/variables of patients with cancer, which may be useful in the evaluation and prediction of pharmacokinetics in virtual oncology populations, as well as for model-based optimization of oncology treatments.
Collapse
Affiliation(s)
- Laura Pérez-Ramos
- PharmaMar S.A., Clinical Pharmacology Department, Clinical Development, 28770 Madrid, Spain
| | - Laura Ibarra-Gómez
- PharmaMar S.A., Clinical Pharmacology Department, Clinical Development, 28770 Madrid, Spain
| | - Rubin Lubomirov
- PharmaMar S.A., Clinical Pharmacology Department, Clinical Development, 28770 Madrid, Spain
| | - María García-Cremades
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Eduardo Asín-Prieto
- PharmaMar S.A., Clinical Pharmacology Department, Clinical Development, 28770 Madrid, Spain
| | - Salvador Fudio
- PharmaMar S.A., Clinical Pharmacology Department, Clinical Development, 28770 Madrid, Spain
| | - Pablo Zubiaur
- PharmaMar S.A., Clinical Pharmacology Department, Clinical Development, 28770 Madrid, Spain
| |
Collapse
|
3
|
Shee M, Lal Banerjee S, Dey A, Das Jana I, Basak P, Mandal M, Mondal A, Kumar Das A, Das NC. pH-induced fluorescent active sodium alginate-based ionically conjugated and REDOX responsive multi-functional microgels for the anticancer drug delivery. Int J Pharm 2024; 662:124490. [PMID: 39032873 DOI: 10.1016/j.ijpharm.2024.124490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
A sodium alginate (Alg) based REDOX (reduction and oxidation)-responsive and fluorescent active microgel was prepared via water in oil (w/o) mini-emulsion polymerization technique. Here, we initially synthesized sodium alginate-based disulfide cross linked microgels and after that those microgels were tagged with rhodamine amine derivative (RhB-NH2) by ionic interaction to get the pH-responsive fluorescent property. Functionalized microgels were characterized using 1H NMR, FTIR, DLS, HRTEM, FESEM, UV-vis, and fluorescence spectroscopy analyses. Presence of the REDOX-responsive disulfide-containing crosslinkers in the microgels enhances the release of doxorubicin (DOX), an anti-cancer drug in the reducing environment of the cancer-cells (simulated). Existence of the rhodamine-amine derivative in the microgels triggers the pH-dependent fluorescence property by showing fluorescence emission at 560-580 nm at pH 5.5 (cancer cell pH). The cytotoxicity of the biopolymer based microgel was assessed over both cancerous HeLa (IC50 100 µg/mL) and non-cancerous MDCK (IC50 200 µg/mL) cells by MTT assay which showed the synthesized microgel is non-toxic whereas DOX-loaded microgels showed significant toxicity. FACS and cell uptake (in vitro) analyses were conducted to understand the cell apoptosis cycle and behavior of the cancer cells in presence of the DOX-loaded microgels. This pH-responsive fluorescent active alginate-based biomaterial could be a promising material for the anti-cancer drug delivery and other medical fields.
Collapse
Affiliation(s)
- Moumita Shee
- School of Nano Science and Technology (SNST), Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Sovan Lal Banerjee
- Department of Chemical Engineering and Materials Science, University of Minnesota, Amundson Hall, 421 Washington Ave SE #151, Minneapolis, MN 55455, USA
| | - Ankita Dey
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Indrani Das Jana
- Department of Bioscience and Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Piyali Basak
- School of Bioscience and Engineering, Jadavpur University, Kolkata, West Bengal, India
| | - Mahitosh Mandal
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Arindam Mondal
- Department of Bioscience and Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Narayan Ch Das
- School of Nano Science and Technology (SNST), Indian Institute of Technology, Kharagpur, West Bengal 721302, India; Rubber Technology Center, Indian Institute of Technology, Kharagpur, West Bengal 721302, India.
| |
Collapse
|
4
|
Barzegar S, Pirouzpanah S. Zinc finger proteins and ATP-binding cassette transporter-dependent multidrug resistance. Eur J Clin Invest 2024; 54:e14120. [PMID: 37930002 DOI: 10.1111/eci.14120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/12/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Multidrug resistance (MDR) remains a significant challenge in cancer treatment, leading to poor clinical outcomes. Dysregulation of ATP-binding cassette (ABC) transporters has been identified as a key contributor to MDR. Zinc finger proteins (ZNPs) are key regulators of transcription and have emerged as potential contributors to cancer drug resistance. Bridging the knowledge gap between ZNPs and MDR is essential to understand a source of heterogeneity in cancer treatment. This review sought to elucidate how different ZNPs modulate the transcriptional regulation of ABC genes, contributing to resistance to cancer therapies. METHODS The search was conducted using PubMed, Google Scholar, EMBASE and Web of Science. RESULTS In addition to ABC-blockers, the transcriptional features regulated by ZNP are expected to play a role in reversing ABC-mediated MDR and predicting the efficacy of anticancer treatments. Among the ZNP-induced epithelial to mesenchymal transition, SNAIL, SLUG and Zebs have been identified as important factors in promoting MDR through activation of ATM, NFκB and PI3K/Akt pathways, exposing the metabolism to potential ZNP-MDR interactions. Additionally, nuclear receptors, such as VDR, ER and PXR have been found to modulate certain ABC regulations. Other C2H2-type zinc fingers, including Kruppel-like factors, Gli and Sp also have the potential to contribute to MDR. CONCLUSION Besides reviewing evidence on the effects of ZNP dysregulation on ABC-related chemoresistance in malignancies, significant markers of ZNP functions are discussed to highlight the clinical implications of gene-to-gene and microenvironment-to-gene interactions on MDR prospects. Future research on ZNP-derived biomarkers is crucial for addressing heterogeneity in cancer therapy.
Collapse
Affiliation(s)
- Sanaz Barzegar
- Shahid Madani Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Pirouzpanah
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Le Sauteur-Robitaille J, Crosley P, Hitt M, Jenner AL, Craig M. Mathematical modeling predicts pathways to successful implementation of combination TRAIL-producing oncolytic virus and PAC-1 to treat granulosa cell tumors of the ovary. Cancer Biol Ther 2023; 24:2283926. [PMID: 38010777 PMCID: PMC10783843 DOI: 10.1080/15384047.2023.2283926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023] Open
Abstract
The development of new cancer therapies requires multiple rounds of validation from in vitro and in vivo experiments before they can be considered for clinical trials. Mathematical models assist in this preclinical phase by combining experimental data with human parameters to provide guidance about potential therapeutic regimens to bring forward into trials. However, granulosa cell tumors of the ovary lack a relevant mouse model, complexifying preclinical drug development for this rare tumor. To bridge this gap, we established a mathematical model as a framework to explore the potential of using a tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-producing oncolytic vaccinia virus in combination with the chemotherapeutic agent first procaspase activating compound (PAC-1). We have previously shown that TRAIL and PAC-1 act synergistically on granulosa tumor cells. In line with our previous results, our current model predicts that, although it is unable to stop the tumor from growing in its current form, combination oral PAC-1 with oncolytic virus (OV) provides the best result compared to monotherapies. Encouragingly, our results suggest that increases to the OV infection rate can lead to the success of this combination therapy within a year. The model developed here can continue to be improved as more data become available, allowing for regimen-tailoring via virtual clinical trials, ultimately shepherding effective regimens into trials.
Collapse
Affiliation(s)
- Justin Le Sauteur-Robitaille
- Department of Mathematics and Statistics, Université de Montréal, Quebec, Canada
- Sainte-Justine University Hospital Research Centre, Montréal, Québec, Canada
| | - Powel Crosley
- Department of Oncology, University of Alberta, Edmonton, Canada
| | - Mary Hitt
- Department of Oncology, University of Alberta, Edmonton, Canada
| | - Adrianne L Jenner
- School of Mathematics, Queensland University of Technology, Brisbane, Australia
| | - Morgan Craig
- Department of Mathematics and Statistics, Université de Montréal, Quebec, Canada
- Sainte-Justine University Hospital Research Centre, Montréal, Québec, Canada
| |
Collapse
|
6
|
Raja J, Madoff DC. Oncopharmacology in Interventional Radiology. Semin Intervent Radiol 2022; 39:411-415. [PMID: 36406031 PMCID: PMC9671678 DOI: 10.1055/s-0042-1758076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The broad scope of malignancies treated in interventional oncology is mirrored by the breadth of oncotherapeutics, drugs used to treat cancer. Many of these treatments are administered endovascularly, though a group of therapies can be delivered percutaneously. Perhaps the best taxonomy of oncotherapeutics is based on their biological inactivity or activity and the mechanism by which they interact with treated and targeted tissues. As the fields of interventional oncology and oncotherapeutics continue to grow and expand, this framework may provide a more organized approach in helping distinguish and select the best therapy for patients.
Collapse
Affiliation(s)
- Junaid Raja
- Division of Interventional Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - David C. Madoff
- Division of Interventional Radiology, Yale New Haven Hospital, New Haven, Connecticut
| |
Collapse
|
7
|
Vaghari-Tabari M, Hassanpour P, Sadeghsoltani F, Malakoti F, Alemi F, Qujeq D, Asemi Z, Yousefi B. CRISPR/Cas9 gene editing: a new approach for overcoming drug resistance in cancer. Cell Mol Biol Lett 2022; 27:49. [PMID: 35715750 PMCID: PMC9204876 DOI: 10.1186/s11658-022-00348-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/24/2022] [Indexed: 12/18/2022] Open
Abstract
The CRISPR/Cas9 system is an RNA-based adaptive immune system in bacteria and archaea. Various studies have shown that it is possible to target a wide range of human genes and treat some human diseases, including cancers, by the CRISPR/Cas9 system. In fact, CRISPR/Cas9 gene editing is one of the most efficient genome manipulation techniques. Studies have shown that CRISPR/Cas9 technology, in addition to having the potential to be used as a new therapeutic approach in the treatment of cancers, can also be used to enhance the effectiveness of existing treatments. Undoubtedly, the issue of drug resistance is one of the main obstacles in the treatment of cancers. Cancer cells resist anticancer drugs by a variety of mechanisms, such as enhancing anticancer drugs efflux, enhancing DNA repair, enhancing stemness, and attenuating apoptosis. Mutations in some proteins of different cellular signaling pathways are associated with these events and drug resistance. Recent studies have shown that the CRISPR/Cas9 technique can be used to target important genes involved in these mechanisms, thereby increasing the effectiveness of anticancer drugs. In this review article, studies related to the applications of this technique in overcoming drug resistance in cancer cells will be reviewed. In addition, we will give a brief overview of the limitations of the CRISP/Cas9 gene-editing technique.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Hassanpour
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Sadeghsoltani
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Malakoti
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Forough Alemi
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Das R, Fernandez JG. Biomaterials for Mimicking and Modelling Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:139-170. [DOI: 10.1007/978-3-031-04039-9_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
CDK4/6 Inhibitors in Breast Cancer Treatment: Potential Interactions with Drug, Gene, and Pathophysiological Conditions. Int J Mol Sci 2020; 21:ijms21176350. [PMID: 32883002 PMCID: PMC7504705 DOI: 10.3390/ijms21176350] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/11/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Palbociclib, ribociclib, and abemaciclib belong to the third generation of cyclin-dependent kinases inhibitors (CDKis), an established therapeutic class for advanced and metastatic breast cancer. Interindividual variability in the therapeutic response of CDKis has been reported and some individuals may experience increased and unexpected toxicity. This narrative review aims at identifying the factors potentially concurring at this variability for driving the most appropriate and tailored use of CDKis in the clinic. Specifically, concomitant medications, pharmacogenetic profile, and pathophysiological conditions could influence absorption, distribution, metabolism, and elimination pharmacokinetics. A personalized therapeutic approach taking into consideration all factors potentially contributing to an altered pharmacokinetic/pharmacodynamic profile could better drive safe and effective clinical use.
Collapse
|
10
|
Krens SD, Lassche G, Jansman FGA, Desar IME, Lankheet NAG, Burger DM, van Herpen CML, van Erp NP. Dose recommendations for anticancer drugs in patients with renal or hepatic impairment. Lancet Oncol 2020; 20:e200-e207. [PMID: 30942181 DOI: 10.1016/s1470-2045(19)30145-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 01/22/2023]
Abstract
Renal or hepatic impairment is a common comorbidity for patients with cancer either because of the disease itself, toxicity of previous anticancer treatments, or because of other factors affecting organ function, such as increased age. Because renal and hepatic function are among the main determinants of drug exposure, the pharmacokinetic profile might be altered for patients with cancer who have renal or hepatic impairment, necessitating dose adjustments. Most anticancer drugs are dosed near their maximum tolerated dose and are characterised by a narrow therapeutic index. Consequently, selecting an adequate dose for patients who have either hepatic or renal impairment, or both, is challenging and definitive recommendations on dose adjustments are scarce. In this Review, we discuss the effect of renal and hepatic impairment on the pharmacokinetics of anticancer drugs. To guide clinicians in selecting appropriate dose adjustments, information from available drug labels and from the published literature were combined to provide a practical set of recommendations for dose adjustments of 160 anticancer drugs for patients with hepatic and renal impairment.
Collapse
Affiliation(s)
- Stefanie D Krens
- Department of Clinical Pharmacy, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gerben Lassche
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Frank G A Jansman
- Department of Pharmacy, Deventer Hospital, Deventer, Netherlands; PharmacoTherapy, Epidemiology and Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Ingrid M E Desar
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Nienke A G Lankheet
- Department of Clinical Pharmacy, Radboud University Medical Center, Nijmegen, Netherlands; Department of Clinical Pharmacy, Medisch Spectrum Twente, Enschede, Netherlands
| | - David M Burger
- Department of Clinical Pharmacy, Radboud University Medical Center, Nijmegen, Netherlands
| | - Carla M L van Herpen
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Nielka P van Erp
- Department of Clinical Pharmacy, Radboud University Medical Center, Nijmegen, Netherlands.
| |
Collapse
|
11
|
Atlihan-Gundogdu E, Ilem-Ozdemir D, Ekinci M, Ozgenc E, Demir ES, Sánchez-Dengra B, González-Alvárez I. Recent developments in cancer therapy and diagnosis. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2020. [DOI: 10.1007/s40005-020-00473-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Seynhaeve A, Amin M, Haemmerich D, van Rhoon G, ten Hagen T. Hyperthermia and smart drug delivery systems for solid tumor therapy. Adv Drug Deliv Rev 2020; 163-164:125-144. [PMID: 32092379 DOI: 10.1016/j.addr.2020.02.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 12/31/2022]
Abstract
Chemotherapy is a cornerstone of cancer therapy. Irrespective of the administered drug, it is crucial that adequate drug amounts reach all cancer cells. To achieve this, drugs first need to be absorbed, then enter the blood circulation, diffuse into the tumor interstitial space and finally reach the tumor cells. Next to chemoresistance, one of the most important factors for effective chemotherapy is adequate tumor drug uptake and penetration. Unfortunately, most chemotherapeutic agents do not have favorable properties. These compounds are cleared rapidly, distribute throughout all tissues in the body, with only low tumor drug uptake that is heterogeneously distributed within the tumor. Moreover, the typical microenvironment of solid cancers provides additional hurdles for drug delivery, such as heterogeneous vascular density and perfusion, high interstitial fluid pressure, and abundant stroma. The hope was that nanotechnology will solve most, if not all, of these drug delivery barriers. However, in spite of advances and decades of nanoparticle development, results are unsatisfactory. One promising recent development are nanoparticles which can be steered, and release content triggered by internal or external signals. Here we discuss these so-called smart drug delivery systems in cancer therapy with emphasis on mild hyperthermia as a trigger signal for drug delivery.
Collapse
|
13
|
Pillarsetty N, Jhaveri K, Taldone T, Caldas-Lopes E, Punzalan B, Joshi S, Bolaender A, Uddin MM, Rodina A, Yan P, Ku A, Ku T, Shah SK, Lyashchenko S, Burnazi E, Wang T, Lecomte N, Janjigian Y, Younes A, Batlevi CW, Guzman ML, Roboz GJ, Koziorowski J, Zanzonico P, Alpaugh ML, Corben A, Modi S, Norton L, Larson SM, Lewis JS, Chiosis G, Gerecitano JF, Dunphy MPS. Paradigms for Precision Medicine in Epichaperome Cancer Therapy. Cancer Cell 2019; 36:559-573.e7. [PMID: 31668946 PMCID: PMC6996250 DOI: 10.1016/j.ccell.2019.09.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 08/20/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022]
Abstract
Alterations in protein-protein interaction networks are at the core of malignant transformation but have yet to be translated into appropriate diagnostic tools. We make use of the kinetic selectivity properties of an imaging probe to visualize and measure the epichaperome, a pathologic protein-protein interaction network. We are able to assay and image epichaperome networks in cancer and their engagement by inhibitor in patients' tumors at single-lesion resolution in real time, and demonstrate that quantitative evaluation at the level of individual tumors can be used to optimize dose and schedule selection. We thus provide preclinical and clinical evidence in the use of this theranostic platform for precision medicine targeting of the aberrant properties of protein networks.
Collapse
Affiliation(s)
| | - Komal Jhaveri
- Breast Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tony Taldone
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Eloisi Caldas-Lopes
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Blesida Punzalan
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Suhasini Joshi
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Alexander Bolaender
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Mohammad M Uddin
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Anna Rodina
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Pengrong Yan
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Anson Ku
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Thomas Ku
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Smit K Shah
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Serge Lyashchenko
- Radiochemistry and Molecular Imaging Probes Core, Sloan Kettering Institute, New York, NY 10065, USA
| | - Eva Burnazi
- Radiochemistry and Molecular Imaging Probes Core, Sloan Kettering Institute, New York, NY 10065, USA
| | - Tai Wang
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Nicolas Lecomte
- Gastrointestinal Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yelena Janjigian
- Gastrointestinal Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anas Younes
- Lymphoma Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Connie W Batlevi
- Lymphoma Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Monica L Guzman
- Division of Hematology and Medical Oncology, Leukemia Program, Weill Cornell Medicine/New York-Presbyterian Hospital, New York, NY 10065, USA
| | - Gail J Roboz
- Division of Hematology and Medical Oncology, Leukemia Program, Weill Cornell Medicine/New York-Presbyterian Hospital, New York, NY 10065, USA
| | - Jacek Koziorowski
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Pat Zanzonico
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mary L Alpaugh
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Adriana Corben
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Shanu Modi
- Breast Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Larry Norton
- Breast Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Steven M Larson
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Program in Molecular Pharmacology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Program in Molecular Pharmacology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Gabriela Chiosis
- Breast Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA.
| | - John F Gerecitano
- Lymphoma Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mark P S Dunphy
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
14
|
Blosser N, Jupp J, Yau P, Stewart D. Clinical Pharmacokinetic and Pharmacodynamic Considerations in Treating Non-Hodgkin Lymphoma. Clin Pharmacokinet 2019; 59:7-23. [PMID: 31385204 DOI: 10.1007/s40262-019-00807-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Non-Hodgkin lymphoma (NHL) includes a variety of closely related malignancies that originate from lymphoid precursors. The majority of NHLs are of B-cell lineage, for which traditional therapy involves chemotherapy in combination with the anti-CD20 monoclonal antibody rituximab. Ongoing research into the pathogenesis of NHL subtypes has given rise to the use of novel agents that target specific molecular pathways. While the incidence of NHL extends over a range of ages from pediatric to elderly settings, the majority of diagnoses occur over age 60 years. Increasing the use of concomitant medication coupled with declining organ function among this group of patients creates pharmacokinetic (PK) challenges in administering a number of agents involved in the treatment of NHL. In addition, since many of the new agents are administered orally, there are a number of added PK factors that must be taken into consideration with their prescribing and administration. This article will review the available literature on the PK and pharmacodynamic properties of agents commonly used in the treatment of NHL, and intends to provide information that can assist with properly using these drugs in this setting.
Collapse
Affiliation(s)
- Nikki Blosser
- Pharmacy Services, Tom Baker Cancer Centre, Alberta Health Services, Edmonton, AB, Canada
| | - Jennifer Jupp
- Pharmacy Services, Tom Baker Cancer Centre, Alberta Health Services, Edmonton, AB, Canada
| | - Patrick Yau
- Pharmacy Services, Tom Baker Cancer Centre, Alberta Health Services, Edmonton, AB, Canada
| | - Douglas Stewart
- Departments of Oncology and Medicine, University of Calgary and Tom Baker Cancer Centre, Alberta Health Services, 1331-29th Street NW, Calgary, AB, T2N4N2, Canada.
| |
Collapse
|
15
|
Sreekanth V, Bajaj A. Recent Advances in Engineering of Lipid Drug Conjugates for Cancer Therapy. ACS Biomater Sci Eng 2019; 5:4148-4166. [DOI: 10.1021/acsbiomaterials.9b00689] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vedagopuram Sreekanth
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
- Manipal Academy of Higher Education, Manipal-576104, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| |
Collapse
|
16
|
Tosca EM, Pigatto MC, Dalla Costa T, Magni P. A Population Dynamic Energy Budget-Based Tumor Growth Inhibition Model for Etoposide Effects on Wistar Rats. Pharm Res 2019; 36:38. [PMID: 30635794 DOI: 10.1007/s11095-019-2568-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/03/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE This work aimed to develop a population PK/PD tumor-in-host model able to describe etoposide effects on both tumor cells and host in Walker-256 tumor-bearing rats. METHODS Etoposide was investigated on thirty-eight Wistar rats randomized in five arms: two groups of tumor-free animals receiving either placebo or etoposide (10 mg/kg bolus for 4 days) and three groups of tumor-bearing animals receiving either placebo or etoposide (5 or 10 mg/kg bolus for 8 or 4 days, respectively). To analyze experimental data, a tumor-in-host growth inhibition (TGI) model, based on the Dynamic Energy Budget (DEB) theory, was developed. Total plasma and free-interstitial tumor etoposide concentrations were assessed as driver of tumor kinetics. RESULTS The model simultaneously describes tumor and host growths, etoposide antitumor effect as well as cachexia phenomena related to both the tumor and the drug treatment. The schedule-dependent inhibitory effect of etoposide is also well captured when the intratumoral drug concentration is considered as the driver of the tumor kinetics. CONCLUSIONS The DEB-based TGI model capabilities, up to now assessed only in mice, are fully confirmed in this study involving rats. Results suggest that well designed experiments combined with a mechanistic modeling approach could be extremely useful to understand drug effects and to describe all the dynamics characterizing in vivo tumor growth studies.
Collapse
Affiliation(s)
- E M Tosca
- Dipartimento di Ingegneria Industriale e dell'Informazione, Universita degli Studi di Pavia, I-27100, Pavia, Italy
| | - M C Pigatto
- Pharmacokinetics and PK/PD Modeling Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90.610-000, Brazil.,R&D Department, Eurofarma Laboratories S.A., Itapevi, SP, 06, Brazil
| | - T Dalla Costa
- Pharmacokinetics and PK/PD Modeling Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90.610-000, Brazil
| | - P Magni
- Dipartimento di Ingegneria Industriale e dell'Informazione, Universita degli Studi di Pavia, I-27100, Pavia, Italy.
| |
Collapse
|
17
|
Pefani E, Panoskaltsis N, Mantalaris A, Georgiadis MC, Pistikopoulos EN. Chemotherapy drug scheduling for the induction treatment of patients with acute myeloid leukemia. IEEE Trans Biomed Eng 2014; 61:2049-56. [PMID: 24686224 DOI: 10.1109/tbme.2014.2313226] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Leukemia is an immediately life-threatening cancer wherein immature blood cells are overproduced, accumulate in the bone marrow (BM) and blood and causes immune and blood system failure. Treatment with chemotherapy can be intensive or nonintensive and can also be life-threatening since only relatively few patient-specific and leukemia-specific factors are considered in current protocols. We have already presented a mathematical model for one intensive chemotherapy cycle with intravenous (i.v.) daunorubicin (DNR), and cytarabine (Ara-C). This model is now extended to nonintensive subcutaneous (SC) Ara-C and for a standard intensive chemotherapy course (four cycles), consistent with clinical practice. Model parameters mainly consist of physiological patient data, indicators of tumor burden and characteristics of cell cycle kinetics. A sensitivity analysis problem is solved and cell cycle parameters are identified to control treatment outcome. Simulation results using published cell cycle data from two acute myeloid leukemia patients are presented for a course of standard treatment using intensive and nonintensive protocols. The aim of remission-induction therapy is to debulk the tumor and achieve normal BM function; by treatment completion, the total leukemic population should be reduced to at most 10(9) cells, at which point BM hypoplasia is achieved. The normal cell number should be higher than that of the leukemic, and a 3-log reduction is the maximum permissible level of population reduction. This optimization problem is formulated and solved for the two patient case studies. The results clearly present the benefits from the use of optimization as an advisory tool for treatment design.
Collapse
|
18
|
Ibrahim MA, Srivenugop KS, Rasul KI. Platinum Resistance: The Role of Molecular, Genetic and Epigenetic Factors. JOURNAL OF MEDICAL SCIENCES 2013. [DOI: 10.3923/jms.2013.160.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
19
|
Chhikara BS, Mandal D, Parang K. Synthesis, anticancer activities, and cellular uptake studies of lipophilic derivatives of doxorubicin succinate. J Med Chem 2012; 55:1500-1510. [PMID: 22276998 DOI: 10.1021/jm201653u] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A number of lipophilic 14-substituted derivatives of doxorubicin were synthesized through conjugation of doxorubicin-14-hemisuccinate with different fatty amines or tetradecanol to enhance the lipophilicity, cellular uptake, and cellular retention for sustained anticancer activity. The conjugates inhibited the cell proliferation of human leukemia (CCRF-CEM, 69-76%), colon adenocarcinoma (HT-29, 60-77%), and breast adenocarcinoma (MDA-MB-361, 66-71%) cells at a concentration of 1 μM after 96-120 h of incubation. The N-tetradecylamido derivative of doxorubicin 14-succinate (10) exhibited consistently comparable antiproliferative activity to doxorubicin in a time-dependent manner (IC(50) = 77 nM in CCRF-CEM cells). Flow cytometry analysis showed a 3-fold more cellular uptake of 10 than doxorubicin in SK-OV-3 cells. Confocal microscopy revealed that the conjugate was distributed in cytoplasmic and perinuclear areas during the first 1 h of incubation and slowly relocalized in the nucleus after 24 h. The cellular hydrolysis study showed that 98% of compound 10 was hydrolyzed intracellularly within 48 h and released doxorubicin.
Collapse
Affiliation(s)
- Bhupender S Chhikara
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 41 Lower College Road, Kingston, Rhode Island 02881, United States
| | | | | |
Collapse
|
20
|
Chhikara BS, St Jean N, Mandal D, Kumar A, Parang K. Fatty acyl amide derivatives of doxorubicin: synthesis and in vitro anticancer activities. Eur J Med Chem 2011; 46:2037-2042. [PMID: 21420207 DOI: 10.1016/j.ejmech.2011.02.056] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 02/14/2011] [Accepted: 02/22/2011] [Indexed: 12/28/2022]
Abstract
Doxorubicin is extensively used in anticancer therapy. Doxorubicin is highly hydrophilic, has short half-life, and its use is associated with severe side effects at high doses. Fatty acyl amide derivatives of doxorubicin were synthesized with the expectation to improve the lipophilicity and anticancer activity of the drug. The lipophilicity was enhanced with the increase in chain length of fatty acyl moiety. Conjugation of 4'-amino group with fatty acids through an amide bond reduced the anticancer activity in leukemia, breast, ovarian, and colon cancer cell lines, suggesting that the presence of free amino group is required for anticancer activity of doxorubicin. Dodecanoyl-doxorubicin derivative was consistently the most effective among the synthesized derivatives and inhibited the proliferation of colon (HT-29) and ovarian (SK-OV-3) cancer cells by 64% and 58%, respectively, at a concentration of 1 μM after 96 h incubation.
Collapse
Affiliation(s)
- Bhupender S Chhikara
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 41 Lower College Road, Kingston, RI 02881, USA
| | | | | | | | | |
Collapse
|
21
|
Raguz S, Yagüe E. Resistance to chemotherapy: new treatments and novel insights into an old problem. Br J Cancer 2008; 99:387-91. [PMID: 18665178 PMCID: PMC2527800 DOI: 10.1038/sj.bjc.6604510] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 04/16/2008] [Accepted: 06/17/2008] [Indexed: 11/29/2022] Open
Abstract
Resistance to cancer chemotherapeutic treatment is a common phenomenon, especially in progressive disease. The generation of cellular models of drug resistance has been pivotal in unravelling the main effectors of resistance to traditional chemotherapy at the molecular level (i.e. intracellular drug inactivation, detoxifying systems, defects in DNA repair, apoptosis evasion, membrane transporters and cell adhesion). The development of targeted therapies has also been followed by resistance, reminiscent of an evolutionary arms race, as exemplified by imatinib and other BCR-ABL inhibitors for the treatment of chronic myelogenous leukaemia. Although traditionally associated with the last stages of the disease, recent findings with minimally transformed pretumorigenic primary human cells indicate that the ability to generate drug resistance arises early during the tumorigenic process, before the full transformation. Novel technologies, such as genome profiling, have in certain cases predicted the outcome of chemotherapy and undoubtedly have tremendous potential for the future. In addition, the novel cancer stem cell paradigm raises the prospect of cell-targeted therapies instead of treatment directed against the whole tumour.
Collapse
Affiliation(s)
- S Raguz
- MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - E Yagüe
- Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Department of Oncology, Imperial College Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
22
|
Gilbert J, Cmelak A, Shyr Y, Netterville J, Burkey BB, Sinard RJ, Yarbrough WG, Chung CH, Aulino JM, Murphy BA. Phase II trial of irinotecan plus cisplatin in patients with recurrent or metastatic squamous carcinoma of the head and neck. Cancer 2008; 113:186-92. [PMID: 18484593 DOI: 10.1002/cncr.23545] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Patients with recurrent or metastatic HNC have a poor response and survival with currently available chemotherapy agents. Thus, new agents are needed. The authors report the results of a phase II trial of irinotecan and cisplatin in patients with metastatic or recurrent HNC. METHODS Patients were treated with irinotecan 65 mg/m2 IV over 90 minutes and cisplatin 30 mg/m2 were administered intravenously weekly for four weeks, followed by a two week rest. However, after 17 patients were treated with weekly irinotecan at a dose of 65 mg/m2, toxicity analysis demonstrated the poor tolerance of that dose in this patient population. Thus, the protocol was amended, and irinotecan was dose reduced to a starting dose of 50 mg/m2. Twenty-three additional patients were treated with this dose. RESULTS Forty patients were enrolled on study between February 2002 and April 2006, 17 patients at the first dose level and 23 patients at the amended dose level. Overall, 12 of 17 patients (71%) treated with irinotecan 65 mg/m2 experienced clinically significant grade 3 or 4 toxicity. Twelve patients required dose reductions. Toxicity was reduced but 17% of patients still experienced grade 3 or 4 toxicity on the lower irinotecan dose. The response rate was 35% for patients treated at irinotecan 65 mg/m2 and 22% for patients treated at 50 mg/m2. No complete responses were noted. CONCLUSIONS The combination of irinotecan and cisplatin is efficacious in a poor prognosis group of patients but toxicity is substantial.
Collapse
Affiliation(s)
- Jill Gilbert
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University School of Medicine, 2220 Pierce Avenue, 777 PRB, Nashville, TN 37232, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Michael M, Doherty MM. Drug metabolism by tumours: its nature, relevance and therapeutic implications. Expert Opin Drug Metab Toxicol 2008; 3:783-803. [PMID: 18028025 DOI: 10.1517/17425255.3.6.783] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Drug-metabolising enzymes (DMEs) are present in tumours and are capable of biotransforming a variety of antineoplastics. Tumoural drug metabolism is both a potential mechanism of resistance and a means of achieving optimal therapy. This review addresses the classes of DMEs, their cytotoxic substrates and distribution in specific malignancies. The limitations of preclinical and clinical studies are highlighted. Their role in predicting therapeutic response, the activation of prodrugs and the potential for their modulation for gain is also addressed. The contribution of tumoural DMEs to cancer therapy can only be ascertained through large prospective studies and supported by new technologies. Only then can efforts be concentrated in the design of better prodrugs or combination therapy to optimise individual therapy.
Collapse
Affiliation(s)
- Michael Michael
- Peter MacCallum Cancer Centre, Division of Haematology and Medical Oncology, Locked Bag 1, A'Beckett Street, Victoria, 8006, Australia.
| | | |
Collapse
|