1
|
Peggion S, Najem S, Kolman JP, Reinshagen K, Pagerols Raluy L. Revisiting Neuroblastoma: Nrf2, NF-κB and Phox2B as a Promising Network in Neuroblastoma. Curr Issues Mol Biol 2024; 46:3193-3208. [PMID: 38666930 PMCID: PMC11048850 DOI: 10.3390/cimb46040200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Neuroblastoma is the most common solid extracranial tumor during childhood; it displays extraordinary heterogeneous clinical courses, from spontaneous regression to poor outcome in high-risk patients due to aggressive growth, metastasizing, and treatment resistance. Therefore, the identification and detailed analysis of promising tumorigenic molecular mechanisms are inevitable. This review highlights the abnormal regulation of NF-κB, Nrf2, and Phox2B as well as their interactions among each other in neuroblastoma. NF-κB and Nrf2 play a key role in antioxidant responses, anti-inflammatory regulation and tumor chemoresistance. Recent studies revealed a regulation of NF-κB by means of the Nrf2/antioxidant response element (ARE) system. On the other hand, Phox2B contributes to the differentiation of immature sympathetic nervous system stem cells: this transcription factor regulates the expression of RET, thereby facilitating cell survival and proliferation. As observed in other tumors, we presume striking interactions between NF-κB, Nrf2, and Phox2B, which might constitute an important crosstalk triangle, whose decompensation may trigger a more aggressive phenotype. Consequently, these transcription factors could be a promising target for novel therapeutic approaches and hence, further investigation on their regulation in neuroblastoma shall be reinforced.
Collapse
Affiliation(s)
| | | | | | | | - Laia Pagerols Raluy
- Department of Pediatric Surgery, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| |
Collapse
|
2
|
Aberrant high expression of the TET1 gene in Hirschsprung's disease. Pediatr Neonatol 2022; 63:348-354. [PMID: 35650007 DOI: 10.1016/j.pedneo.2022.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 02/17/2022] [Accepted: 03/10/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The pathogenesis of Hirschsprung's disease (HSCR) remains unclear but might involve genes participating in neural crest development. Gene methylation controls the expression of many genes and is involved in the development and migration of neural crest cells, but the involvement of demethylation in HSCR is unknown. This study aimed to investigate the expression of ten-eleven translocation methylcytosine dioxygenase 1 (TET1) (a demethylation protein) in patients with HSCR. METHODS This is a retrospective study of surgical specimens from paediatric patients with and without HSCR (e.g., intussusception and incarcerated hernia) obtained from 07/2015 to 08/2017. TET1 expression was determined by qRT-PCR, western blotting, and immunohistochemistry. The levels of 5-hydroxymethylcytosine were determined by the dot blot assay. RESULTS The specimens of 35 patients with HSCR and 25 controls were collected. The median TET1 mRNA expression values were 1.028 [HSCR-stenotic (S)], 0.908 [HSCR-dilated (D)], and 0.467 (control) (HSCR-S vs. control: P = 0.002; HSCR-D vs. control: P = 0.008; HSCR-S vs. HSCR-D: P = 0.44). TET1 protein levels followed a similar pattern. The intensity of immunostaining identified higher expression of TET1 in HSCR colon tissues compared with control tissues. The 5-hmC levels in HSCR stenotic segment samples were significantly higher than those in controls. CONCLUSION The expression of TET1 is higher in paediatric patients with HSCR than in controls. DNA demethylation initiated by TET1 may be related to HSCR, which demonstrates that TET1 may play a role in the development of HSCR.
Collapse
|
3
|
Villalba-Benito L, López-López D, Torroglosa A, Casimiro-Soriguer CS, Luzón-Toro B, Fernández RM, Moya-Jiménez MJ, Antiñolo G, Dopazo J, Borrego S. Genome-wide analysis of DNA methylation in Hirschsprung enteric precursor cells: unraveling the epigenetic landscape of enteric nervous system development. Clin Epigenetics 2021; 13:51. [PMID: 33750457 PMCID: PMC7942176 DOI: 10.1186/s13148-021-01040-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
Abstract
Background Hirschsprung disease (HSCR, OMIM 142623) is a rare congenital disorder that results from a failure to fully colonize the gut by enteric precursor cells (EPCs) derived from the neural crest. Such incomplete gut colonization is due to alterations in EPCs proliferation, survival, migration and/or differentiation during enteric nervous system (ENS) development. This complex process is regulated by a network of signaling pathways that is orchestrated by genetic and epigenetic factors, and therefore alterations at these levels can lead to the onset of neurocristopathies such as HSCR. The goal of this study is to broaden our knowledge of the role of epigenetic mechanisms in the disease context, specifically in DNA methylation. Therefore, with this aim, a Whole-Genome Bisulfite Sequencing assay has been performed using EPCs from HSCR patients and human controls.
Results This is the first study to present a whole genome DNA methylation profile in HSCR and reveal a decrease of global DNA methylation in CpG context in HSCR patients compared with controls, which correlates with a greater hypomethylation of the differentially methylated regions (DMRs) identified. These results agree with the de novo Methyltransferase 3b downregulation in EPCs from HSCR patients compared to controls, and with the decrease in the global DNA methylation level previously described by our group. Through the comparative analysis of DMRs between HSCR patients and controls, a set of new genes has been identified as potential susceptibility genes for HSCR at an epigenetic level. Moreover, previous differentially methylated genes related to HSCR have been found, which validates our approach.
Conclusions This study highlights the relevance of an adequate methylation pattern for a proper ENS development. This is a research area that provides a novel approach to deepen our understanding of the etiopathogenesis of HSCR. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01040-6.
Collapse
Affiliation(s)
- Leticia Villalba-Benito
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013, Seville, Spain
| | - Daniel López-López
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), CDCA, University Hospital Virgen del Rocío, 41013, Sevilla, Spain.,Computational Systems Medicine, IBIS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013, Seville, Spain
| | - Ana Torroglosa
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013, Seville, Spain
| | - Carlos S Casimiro-Soriguer
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), CDCA, University Hospital Virgen del Rocío, 41013, Sevilla, Spain.,Computational Systems Medicine, IBIS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013, Seville, Spain
| | - Berta Luzón-Toro
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013, Seville, Spain
| | - Raquel María Fernández
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013, Seville, Spain
| | - María José Moya-Jiménez
- Department of Pediatric Surgery, University Hospital Virgen del Rocío, 41013, Seville, Spain
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013, Seville, Spain
| | - Joaquín Dopazo
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013, Seville, Spain.,Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), CDCA, University Hospital Virgen del Rocío, 41013, Sevilla, Spain.,Computational Systems Medicine, IBIS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013, Seville, Spain
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013, Seville, Spain. .,Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013, Seville, Spain.
| |
Collapse
|
4
|
Wang H, Krishnan C, Charville GW. INSM1 Expression in Peripheral Neuroblastic Tumors and Other Embryonal Neoplasms. Pediatr Dev Pathol 2019; 22:440-448. [PMID: 30975032 DOI: 10.1177/1093526619843725] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Insulinoma-associated protein 1 (INSM1) is a transcription factor that functions in neuroepithelial tissue development and shows expression in neuroendocrine neoplasms. Given the role of INSM1 in controlling differentiation of the sympatho-adrenal lineage, we hypothesized that INSM1 expression would define a subset of neuroblastic tumors. This study aimed to characterize the immunohistochemical profile of INSM1 in a cohort of peripheral neuroblastic tumors and compare INSM1 expression in these tumors to that seen in other embryonal neoplasms, using both tissue microarrays and whole-slide histologic sections. INSM1 showed nuclear expression in 39/50 (78%) peripheral neuroblastic tumors, including 27/32 (84%) neuroblastomas, 9/9 (100%) ganglioneuroblastomas, and 3/9 (33%) ganglioneuromas. Altogether, 70% of peripheral neuroblastic tumors showed anti-INSM1 immunoreactivity in more than 20% of tumor nuclei. Although no non-neuroblastic tumors in this study exhibited INSM1 expression in more than 20% of nuclei, focal or patchy staining was identified in 7/14 (50%) rhabdomyosarcomas, 7/22 (32%) nephroblastomas, and 4/20 (20%) Ewing sarcomas. The absence of INSM1 expression in peripheral neuroblastic tumors was restricted to undifferentiated and poorly differentiated neuroblastomas, as well as mature ganglioneuromas, mimicking the transient INSM1 expression seen in sympatho-adrenal differentiation during normal development. No significant association between MYCN amplification status and INSM1 expression was observed. We found that all 3 INSM1-negative neuroblastoma patients with available follow-up were alive at a median of 15 years, in comparison to 9 of 13 INSM1-positive neuroblastoma patients living at a median of 5 years. Additional studies are needed to determine whether INSM1 expression is indicative of a clinically significant differentiation state in neuroblastoma.
Collapse
Affiliation(s)
- Hannah Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, California.,Stanford Hospital and Clinics, Stanford, California
| | - Chandra Krishnan
- Department of Pathology, Dell Children's Medical Center, Austin, Texas
| | - Gregory W Charville
- Department of Pathology, Stanford University School of Medicine, Stanford, California.,Stanford Hospital and Clinics, Stanford, California
| |
Collapse
|
5
|
Torroglosa A, Villalba-Benito L, Luzón-Toro B, Fernández RM, Antiñolo G, Borrego S. Epigenetic Mechanisms in Hirschsprung Disease. Int J Mol Sci 2019; 20:ijms20133123. [PMID: 31247956 PMCID: PMC6650840 DOI: 10.3390/ijms20133123] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 02/07/2023] Open
Abstract
Hirschsprung disease (HSCR, OMIM 142623) is due to a failure of enteric precursor cells derived from neural crest (EPCs) to proliferate, migrate, survive or differentiate during Enteric Nervous System (ENS) formation. This is a complex process which requires a strict regulation that results in an ENS specific gene expression pattern. Alterations at this level lead to the onset of neurocristopathies such as HSCR. Gene expression is regulated by different mechanisms, such as DNA modifications (at the epigenetic level), transcriptional mechanisms (transcription factors, silencers, enhancers and repressors), postranscriptional mechanisms (3′UTR and ncRNA) and regulation of translation. All these mechanisms are finally implicated in cell signaling to determine the migration, proliferation, differentiation and survival processes for correct ENS development. In this review, we have performed an overview on the role of epigenetic mechanisms at transcriptional and posttranscriptional levels on these cellular events in neural crest cells (NCCs), ENS development, as well as in HSCR.
Collapse
Affiliation(s)
- Ana Torroglosa
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain.
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain.
| | - Leticia Villalba-Benito
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain.
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain.
| | - Berta Luzón-Toro
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain.
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain.
| | - Raquel María Fernández
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain.
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain.
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain.
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain.
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain.
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain.
| |
Collapse
|
6
|
Analysis of sporadic neuroblastic tumors reveals a novel PHOX2B mutation in neuroblastoma. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Ram Kumar RM, Schor NF. Methylation of DNA and chromatin as a mechanism of oncogenesis and therapeutic target in neuroblastoma. Oncotarget 2018; 9:22184-22193. [PMID: 29774131 PMCID: PMC5955135 DOI: 10.18632/oncotarget.25084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/21/2018] [Indexed: 12/17/2022] Open
Abstract
Neuroblastoma (NB), a developmental cancer, is often fatal, emphasizing the need to understand its pathogenesis and identify new therapeutic targets. The heterogeneous pathological and clinical phenotype of NB underscores the cryptic biological and genetic features of this tumor that result in outcomes ranging from rapid progression to spontaneous regression. Despite recent genome-wide mutation analyses, most primary NBs do not harbor driver mutations, implicating epigenetically-mediated gene regulatory mechanisms in the initiation and maintenance of NB. Aberrant epigenomic mechanisms, as demonstrated by global changes in DNA methylation signatures, acetylation, re-distribution of histone marks, and change in the chromatin architecture, are hypothesized to play a role in NB oncogenesis. This paper reviews the evidence for, putative mechanisms underlying, and prospects for therapeutic targeting of NB oncogenesis related to DNA methylation.
Collapse
Affiliation(s)
- Ram Mohan Ram Kumar
- Department of Pediatrics and Wilmot Cancer Center, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Nina Felice Schor
- Department of Pediatrics and Wilmot Cancer Center, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Current affiliation: National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Warren M, Matsuno R, Tran H, Shimada H. Utility of Phox2b immunohistochemical stain in neural crest tumours and non-neural crest tumours in paediatric patients. Histopathology 2017; 72:685-696. [DOI: 10.1111/his.13412] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/04/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Mikako Warren
- Department of Pathology and Laboratory Medicine; Children's Hospital Los Angeles; Keck School of Medicine; University of Southern California; Los Angeles CA USA
| | - Ryosuke Matsuno
- Department of Pathology and Laboratory Medicine; Children's Hospital Los Angeles; Keck School of Medicine; University of Southern California; Los Angeles CA USA
| | - Henry Tran
- Department of Pathology and Laboratory Medicine; Children's Hospital Los Angeles; Keck School of Medicine; University of Southern California; Los Angeles CA USA
| | - Hiroyuki Shimada
- Department of Pathology and Laboratory Medicine; Children's Hospital Los Angeles; Keck School of Medicine; University of Southern California; Los Angeles CA USA
| |
Collapse
|
9
|
Hung YP, Lee JP, Bellizzi AM, Hornick JL. PHOX2B reliably distinguishes neuroblastoma among small round blue cell tumours. Histopathology 2017. [DOI: 10.1111/his.13288] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yin P Hung
- Department of Pathology; Brigham and Women's Hospital and Harvard Medical School; Boston MA USA
| | - John P Lee
- Department of Pathology; University of Iowa Hospitals and Clinics; Iowa City IA USA
| | - Andrew M Bellizzi
- Department of Pathology; University of Iowa Hospitals and Clinics; Iowa City IA USA
| | - Jason L Hornick
- Department of Pathology; Brigham and Women's Hospital and Harvard Medical School; Boston MA USA
| |
Collapse
|
10
|
Naftali O, Maman S, Meshel T, Sagi-Assif O, Ginat R, Witz IP. PHOX2B is a suppressor of neuroblastoma metastasis. Oncotarget 2016; 7:10627-37. [PMID: 26840262 PMCID: PMC4891146 DOI: 10.18632/oncotarget.7056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/23/2016] [Indexed: 12/27/2022] Open
Abstract
Paired like homeobox 2B (PHOX2B) is a minimal residual disease (MRD) marker of neuroblastoma. The presence of MRD, also referred to as micro-metastases, is a powerful marker of poor prognosis in neuroblastoma. Lung metastasis is considered a terminal event in neuroblastoma. Lung micro-metastatic neuroblastoma (MicroNB) cells show high expression levels of PHOX2B and possess a less malignant and metastatic phenotype than lung macro metastatic neuroblastoma (MacroNB) cells, which hardly express PHOX2B. In vitro assays showed that PHOX2B knockdown in MicroNB cells did not affect cell viability; however it decreased the migratory capacity of the MicroNB-shPHOX2B cells. An orthotopic inoculation of MicroNB-shPHOX2B cells into the adrenal gland of nude mice resulted in significantly larger primary tumors and a heavier micro-metastatic load in the lungs and bone-marrow, than when control cells were inoculated. PHOX2B expression was found to be regulated by methylation. The PHOX2B promoter in MacroNB cells is significantly more methylated than in MicroNB cells. Demethylation assays using 5-azacytidine demonstrated that methylation can indeed inhibit PHOX2B transcription in MacroNB cells. These pre-clinical data strongly suggest that PHOX2B functions as a suppressor of neuroblastoma progression.
Collapse
Affiliation(s)
- Osnat Naftali
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 69978
| | - Shelly Maman
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 69978
| | - Tsipi Meshel
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 69978
| | - Orit Sagi-Assif
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 69978
| | - Ravit Ginat
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 69978
| | - Isaac P Witz
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 69978
| |
Collapse
|
11
|
Torroglosa A, Alves MM, Fernández RM, Antiñolo G, Hofstra RM, Borrego S. Epigenetics in ENS development and Hirschsprung disease. Dev Biol 2016; 417:209-16. [PMID: 27321561 DOI: 10.1016/j.ydbio.2016.06.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 06/10/2016] [Accepted: 06/13/2016] [Indexed: 12/18/2022]
Abstract
Hirschsprung disease (HSCR, OMIM 142623) is a neurocristopathy caused by a failure of the enteric nervous system (ENS) progenitors derived from neural crest cells (NCCs), to migrate, proliferate, differentiate or survive to and within the gastrointestinal tract, resulting in aganglionosis in the distal colon. The formation of the ENS is a complex process, which is regulated by a large range of molecules and signalling pathways involving both the NCCs and the intestinal environment. This tightly regulated process needs correct regulation of the expression of ENS specific genes. Alterations in the expression of these genes can have dramatic consequences. Several mechanisms that control the expression of genes have been described, such as DNA modification (epigenetic mechanisms), regulation of transcription (transcription factor, enhancers, repressors and silencers), post-transcriptional regulation (3'UTR and miRNAs) and regulation of translation. In this review, we focus on the epigenetic DNA modifications that have been described so far in the context of the ENS development. Moreover we describe the changes that are found in relation to the onset of HSCR.
Collapse
Affiliation(s)
- A Torroglosa
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - M M Alves
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - R M Fernández
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - G Antiñolo
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - R M Hofstra
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands; Stem Cells and Regenerative Medicine, Birth Defects Research Centre UCL Institute of Child Health, London, UK
| | - S Borrego
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain.
| |
Collapse
|
12
|
Lehalle D, Sanlaville D, Guimier A, Plouvier E, Leblanc T, Galmiche L, Radford I, Romana S, Colleaux L, de Pontual L, Lyonnet S, Amiel J. Multiple congenital anomalies-intellectual disability (MCA-ID) and neuroblastoma in a patient harboring a de novo 14q23.1q23.3 deletion. Am J Med Genet A 2014; 164A:1310-7. [DOI: 10.1002/ajmg.a.36452] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 12/15/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Daphné Lehalle
- Département de Génétique Histologie-Embryologie-Cytogénétique; Hôpital Necker-Enfants Malades; Paris France
- INSERM U781; Université Sorbonne Paris Cité, Institut IMAGINE; Paris France
| | - Damien Sanlaville
- Hospices Civils de Lyon; Service de Génétique and CRNL; CNRS UMR 5292; INSERM U1028, Université Claude Bernard Lyon I; Lyon France
| | - Anne Guimier
- Département de Génétique Histologie-Embryologie-Cytogénétique; Hôpital Necker-Enfants Malades; Paris France
- INSERM U781; Université Sorbonne Paris Cité, Institut IMAGINE; Paris France
| | - Emmanuel Plouvier
- Service d'Onco-Hématologie Pédiatrique; Centre Hospitalo-Universitaire de Besançon; Paris France
| | - Thierry Leblanc
- Département d'Hématologie Pédiatrique; Hôpitaux Robert Debré et Université Paris Diderot; Paris France
| | - Louise Galmiche
- Département d'Anatomo-Pathologie; Hôpital Necker-Enfants Malades; Paris France
| | - Isabelle Radford
- Département de Génétique Histologie-Embryologie-Cytogénétique; Hôpital Necker-Enfants Malades; Paris France
| | - Serge Romana
- Département de Génétique Histologie-Embryologie-Cytogénétique; Hôpital Necker-Enfants Malades; Paris France
| | - Laurence Colleaux
- INSERM U781; Université Sorbonne Paris Cité, Institut IMAGINE; Paris France
| | - Loïc de Pontual
- INSERM U781; Université Sorbonne Paris Cité, Institut IMAGINE; Paris France
| | - Stanislas Lyonnet
- Département de Génétique Histologie-Embryologie-Cytogénétique; Hôpital Necker-Enfants Malades; Paris France
- INSERM U781; Université Sorbonne Paris Cité, Institut IMAGINE; Paris France
| | - Jeanne Amiel
- Département de Génétique Histologie-Embryologie-Cytogénétique; Hôpital Necker-Enfants Malades; Paris France
- INSERM U781; Université Sorbonne Paris Cité, Institut IMAGINE; Paris France
| |
Collapse
|
13
|
PHOX2B immunolabeling: a novel tool for the diagnosis of undifferentiated neuroblastomas among childhood small round blue-cell tumors. Am J Surg Pathol 2012; 36:1141-9. [PMID: 22790854 DOI: 10.1097/pas.0b013e31825a6895] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Peripheral neuroblastic tumors are the most commonly occurring extracranial tumors in children. Although a reliable diagnosis is achievable in the majority of cases, diagnosis of a minority of peripheral neuroblastic tumor cases (especially undifferentiated neuroblastoma) poses a challenge compared with that of other pediatric small round blue-cell tumors. A panel of immunohistochemical markers and fusion transcripts is available for the diagnosis of such tumors, but the markers for neuroblastoma lack specificity and sensitivity. As the transcription factor PHOX2B is highly specific for the peripheral autonomic nervous system from which peripheral neuroblastic tumors are derived, we have assessed PHOX2B immunolabeling as a diagnostic tool in pediatric small round blue-cell tumors. We observed PHOX2B expression in all peripheral neuroblastic tumors, paragangliomas, and pheochromocytomas tested but in no other pediatric tumors among the 388 cases studied by expression microarray and the 109 cases studied by immunohistochemical analysis. We then assessed the results of PHOX2B immunohistochemistry in 12 cases of undifferentiated pediatric neoplasms: PHOX2B was expressed in 6/6 undifferentiated neuroblastomas and in no other small round blue-cell tumors. Finally, we showed that PHOX2B immunohistochemical analysis improves the diagnosis of undifferentiated neuroblastoma with high specificity and sensitivity.
Collapse
|
14
|
Wrzeszczynski KO, Varadan V, Byrnes J, Lum E, Kamalakaran S, Levine DA, Dimitrova N, Zhang MQ, Lucito R. Identification of tumor suppressors and oncogenes from genomic and epigenetic features in ovarian cancer. PLoS One 2011; 6:e28503. [PMID: 22174824 PMCID: PMC3234280 DOI: 10.1371/journal.pone.0028503] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 11/09/2011] [Indexed: 12/26/2022] Open
Abstract
The identification of genetic and epigenetic alterations from primary tumor cells has become a common method to identify genes critical to the development and progression of cancer. We seek to identify those genetic and epigenetic aberrations that have the most impact on gene function within the tumor. First, we perform a bioinformatic analysis of copy number variation (CNV) and DNA methylation covering the genetic landscape of ovarian cancer tumor cells. We separately examined CNV and DNA methylation for 42 primary serous ovarian cancer samples using MOMA-ROMA assays and 379 tumor samples analyzed by The Cancer Genome Atlas. We have identified 346 genes with significant deletions or amplifications among the tumor samples. Utilizing associated gene expression data we predict 156 genes with altered copy number and correlated changes in expression. Among these genes CCNE1, POP4, UQCRB, PHF20L1 and C19orf2 were identified within both data sets. We were specifically interested in copy number variation as our base genomic property in the prediction of tumor suppressors and oncogenes in the altered ovarian tumor. We therefore identify changes in DNA methylation and expression for all amplified and deleted genes. We statistically define tumor suppressor and oncogenic features for these modalities and perform a correlation analysis with expression. We predicted 611 potential oncogenes and tumor suppressors candidates by integrating these data types. Genes with a strong correlation for methylation dependent expression changes exhibited at varying copy number aberrations include CDCA8, ATAD2, CDKN2A, RAB25, AURKA, BOP1 and EIF2C3. We provide copy number variation and DNA methylation analysis for over 11,500 individual genes covering the genetic landscape of ovarian cancer tumors. We show the extent of genomic and epigenetic alterations for known tumor suppressors and oncogenes and also use these defined features to identify potential ovarian cancer gene candidates.
Collapse
Affiliation(s)
- Kazimierz O Wrzeszczynski
- Bioinformatics and Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhang Z, Tang H, Wang Z, Zhang B, Liu W, Lu H, Xiao L, Liu X, Wang R, Li X, Wu M, Li G. MiR-185 targets the DNA methyltransferases 1 and regulates global DNA methylation in human glioma. Mol Cancer 2011; 10:124. [PMID: 21962230 PMCID: PMC3193026 DOI: 10.1186/1476-4598-10-124] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 09/30/2011] [Indexed: 01/21/2023] Open
Abstract
Background Perturbation of DNA methylation is frequent in cancers and has emerged as an important mechanism involved in tumorigenesis. To determine how DNA methylation is modified in the genome of primary glioma, we used Methyl-DNA immunoprecipitation (MeDIP) and Nimblegen CpG promoter microarrays to identify differentially DNA methylation sequences between primary glioma and normal brain tissue samples. Methods MeDIP-chip technology was used to investigate the whole-genome differential methylation patterns in glioma and normal brain tissues. Subsequently, the promoter methylation status of eight candidate genes was validated in 40 glioma samples and 4 cell lines by Sequenom's MassARRAY system. Then, the epigenetically regulated expression of these genes and the potential mechanisms were examined by chromatin immunoprecipitation and quantitative real-time PCR. Results A total of 524 hypermethylated and 104 hypomethylated regions were identified in glioma. Among them, 216 hypermethylated and 60 hypomethylated regions were mapped to the promoters of known genes related to a variety of important cellular processes. Eight promoter-hypermethylated genes (ANKDD1A, GAD1, HIST1H3E, PCDHA8, PCDHA13, PHOX2B, SIX3, and SST) were confirmed in primary glioma and cell lines. Aberrant promoter methylation and changed histone modifications were associated with their reduced expression in glioma. In addition, we found loss of heterozygosity (LOH) at the miR-185 locus located in the 22q11.2 in glioma and induction of miR-185 over-expression reduced global DNA methylation and induced the expression of the promoter-hypermethylated genes in glioma cells by directly targeting the DNA methyltransferases 1. Conclusion These comprehensive data may provide new insights into the epigenetic pathogenesis of human gliomas.
Collapse
Affiliation(s)
- Zuping Zhang
- Cancer Research Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education Central South University, Hunan, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|