1
|
Abstract
PEGylation is the covalent conjugation of PEG to therapeutic molecules. Protein PEGylation is a clinically proven approach for extending the circulation half-life and reducing the immunogenicity of protein therapeutics. Most clinically used PEGylated proteins are heterogeneous mixtures of PEG positional isomers conjugated to different residues on the protein main chain. Current research is focused to reduce product heterogeneity and to preserve bioactivity. Recent advances and possible future directions in PEGylation are described in this review. So far protein PEGylation has yielded more than 10 marketed products and in view of the lack of equally successful alternatives to extend the circulation half-life of proteins, PEGylation will still play a major role in drug delivery for many years to come.
Collapse
|
2
|
Boonstra MC, Tolner B, Schaafsma BE, Boogerd LSF, Prevoo HAJM, Bhavsar G, Kuppen PJK, Sier CFM, Bonsing BA, Frangioni JV, van de Velde CJH, Chester KA, Vahrmeijer AL. Preclinical evaluation of a novel CEA-targeting near-infrared fluorescent tracer delineating colorectal and pancreatic tumors. Int J Cancer 2015; 137:1910-20. [PMID: 25895046 DOI: 10.1002/ijc.29571] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/25/2015] [Accepted: 04/02/2015] [Indexed: 12/28/2022]
Abstract
Surgery is the cornerstone of oncologic therapy with curative intent. However, identification of tumor cells in the resection margins is difficult, resulting in nonradical resections, increased cancer recurrence and subsequent decreased patient survival. Novel imaging techniques that aid in demarcating tumor margins during surgery are needed. Overexpression of carcinoembryonic antigen (CEA) is found in the majority of gastrointestinal carcinomas, including colorectal and pancreas. We developed ssSM3E/800CW, a novel CEA-targeted near-infrared fluorescent (NIRF) tracer, based on a disulfide-stabilized single-chain antibody fragment (ssScFv), to visualize colorectal and pancreatic tumors in a clinically translatable setting. The applicability of the tracer was tested for cell and tissue binding characteristics and dosing using immunohistochemistry, flow cytometry, cell-based plate assays and orthotopic colorectal (HT-29, well differentiated) and pancreatic (BXPC-3, poorly differentiated) xenogeneic human-mouse models. NIRF signals were visualized using the clinically compatible FLARE™ imaging system. Calculated clinically relevant doses of ssSM3E/800CW selectively accumulated in colorectal and pancreatic tumors/cells, with highest tumor-to-background ratios of 5.1 ± 0.6 at 72 hr postinjection, which proved suitable for intraoperative detection and delineation of tumor boarders and small (residual) tumor nodules in mice, between 8 and 96 hr postinjection. Ex vivo fluorescence imaging and pathologic examination confirmed tumor specificity and the distribution of the tracer. Our results indicate that ssSM3E/800CW shows promise as a diagnostic tool to recognize colorectal and pancreatic cancers for fluorescent-guided surgery applications. If successfully translated clinically, this tracer could help improve the completeness of surgery and thus survival.
Collapse
Affiliation(s)
- Martin C Boonstra
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Berend Tolner
- Department of Oncology, Royal Free & University College Medical School, London, United Kingdom
| | | | - Leonora S F Boogerd
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Guarav Bhavsar
- Department of Oncology, Royal Free & University College Medical School, London, United Kingdom
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Cornelis F M Sier
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Bert A Bonsing
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - John V Frangioni
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA.,Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA.,Curadel, LLC, Worcester, MA
| | | | - Kerry A Chester
- Department of Oncology, Royal Free & University College Medical School, London, United Kingdom
| | | |
Collapse
|
3
|
Gasser B, Prielhofer R, Marx H, Maurer M, Nocon J, Steiger M, Puxbaum V, Sauer M, Mattanovich D. Pichia pastoris: protein production host and model organism for biomedical research. Future Microbiol 2013; 8:191-208. [DOI: 10.2217/fmb.12.133] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pichia pastoris is the most frequently used yeast system for heterologous protein production today. The last few years have seen several products based on this platform reach approval as biopharmaceutical drugs. Successful glycoengineering to humanize N-glycans is further fuelling this development. However, detailed understanding of the yeast’s physiology, genetics and regulation has only developed rapidly in the last few years since published genome sequences have become available. An expanding toolbox of genetic elements and strains for the improvement of protein production is being generated, including promoters, gene copy-number enhancement, gene knockout and high-throughput methods. Protein folding and secretion have been identified as significant bottlenecks in yeast expression systems, pinpointing a major target for strain optimization. At the same time, it has become obvious that P. pastoris, as an evolutionarily more ‘ancient’ yeast, may in some cases be a better model for human cell biology and disease than Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Brigitte Gasser
- University of Natural Resources & Life Sciences (BOKU), Department of Biotechnology, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), 1190 Vienna, Austria
| | - Roland Prielhofer
- University of Natural Resources & Life Sciences (BOKU), Department of Biotechnology, 1190 Vienna, Austria
| | - Hans Marx
- University of Natural Resources & Life Sciences (BOKU), Department of Biotechnology, 1190 Vienna, Austria
| | - Michael Maurer
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), 1190 Vienna, Austria
- University of Applied Sciences FH-Campus Vienna, School of Bioengineering, 1190 Vienna, Austria
| | - Justyna Nocon
- University of Natural Resources & Life Sciences (BOKU), Department of Biotechnology, 1190 Vienna, Austria
| | - Matthias Steiger
- University of Natural Resources & Life Sciences (BOKU), Department of Biotechnology, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), 1190 Vienna, Austria
| | - Verena Puxbaum
- University of Natural Resources & Life Sciences (BOKU), Department of Biotechnology, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), 1190 Vienna, Austria
| | - Michael Sauer
- University of Natural Resources & Life Sciences (BOKU), Department of Biotechnology, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), 1190 Vienna, Austria
| | - Diethard Mattanovich
- University of Natural Resources & Life Sciences (BOKU), Department of Biotechnology, 1190 Vienna, Austria
| |
Collapse
|
4
|
Corchero JL, Gasser B, Resina D, Smith W, Parrilli E, Vázquez F, Abasolo I, Giuliani M, Jäntti J, Ferrer P, Saloheimo M, Mattanovich D, Schwartz S, Tutino ML, Villaverde A. Unconventional microbial systems for the cost-efficient production of high-quality protein therapeutics. Biotechnol Adv 2012; 31:140-53. [PMID: 22985698 DOI: 10.1016/j.biotechadv.2012.09.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 09/04/2012] [Accepted: 09/07/2012] [Indexed: 12/18/2022]
Abstract
Both conventional and innovative biomedical approaches require cost-effective protein drugs with high therapeutic potency, improved bioavailability, biocompatibility, stability and pharmacokinetics. The growing longevity of the human population, the increasing incidence and prevalence of age-related diseases and the better comprehension of genetic-linked disorders prompt to develop natural and engineered drugs addressed to fulfill emerging therapeutic demands. Conventional microbial systems have been for long time exploited to produce biotherapeutics, competing with animal cells due to easier operation and lower process costs. However, both biological platforms exhibit important drawbacks (mainly associated to intracellular retention of the product, lack of post-translational modifications and conformational stresses), that cannot be overcome through further strain optimization merely due to physiological constraints. The metabolic diversity among microorganisms offers a spectrum of unconventional hosts, that, being able to bypass some of these weaknesses, are under progressive incorporation into production pipelines. In this review we describe the main biological traits and potentials of emerging bacterial, yeast, fungal and microalgae systems, by comparing selected leading species with well established conventional organisms with a long run in protein drug production.
Collapse
|
5
|
Hurt JK, Fitzpatrick BJ, Norris-Drouin J, Zylka MJ. Secretion and N-linked glycosylation are required for prostatic acid phosphatase catalytic and antinociceptive activity. PLoS One 2012; 7:e32741. [PMID: 22389722 PMCID: PMC3289678 DOI: 10.1371/journal.pone.0032741] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 01/30/2012] [Indexed: 11/19/2022] Open
Abstract
Secretory human prostatic acid phosphatase (hPAP) is glycosylated at three asparagine residues (N62, N188, N301) and has potent antinociceptive effects when administered to mice. Currently, it is unknown if these N-linked residues are required for hPAP protein stability and activity in vitro or in animal models of chronic pain. Here, we expressed wild-type hPAP and a series of Asn to Gln point mutations in the yeast Pichia pastoris X33 then analyzed protein levels and enzyme activity in cell lysates and in conditioned media. Pichia secreted wild-type recombinant (r)-hPAP into the media (6-7 mg protein/L). This protein was as active as native hPAP in biochemical assays and in mouse models of inflammatory pain and neuropathic pain. In contrast, the N62Q and N188Q single mutants and the N62Q, N188Q double mutant were expressed at lower levels and were less active than wild-type r-hPAP. The purified N62Q, N188Q double mutant protein was also 1.9 fold less active in vivo. The N301Q mutant was not expressed, suggesting a critical role for this residue in protein stability. To explicitly test the importance of secretion, a construct lacking the signal peptide of hPAP was expressed in Pichia and assayed. This "cellular" construct was not expressed at levels detectable by western blotting. Taken together, these data indicate that secretion and post-translational carbohydrate modifications are required for PAP protein stability and catalytic activity. Moreover, our findings indicate that recombinant hPAP can be produced in Pichia--a yeast strain that is used to generate biologics for therapeutic purposes.
Collapse
Affiliation(s)
- Julie K. Hurt
- Department of Cell and Molecular Physiology, Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Brendan J. Fitzpatrick
- Department of Cell and Molecular Physiology, Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jacqueline Norris-Drouin
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Mark J. Zylka
- Department of Cell and Molecular Physiology, Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
6
|
Cong Y, Pawlisz E, Bryant P, Balan S, Laurine E, Tommasi R, Singh R, Dubey S, Peciak K, Bird M, Sivasankar A, Swierkosz J, Muroni M, Heidelberger S, Farys M, Khayrzad F, Edwards J, Badescu G, Hodgson I, Heise C, Somavarapu S, Liddell J, Powell K, Zloh M, Choi JW, Godwin A, Brocchini S. Site-specific PEGylation at histidine tags. Bioconjug Chem 2012; 23:248-63. [PMID: 22243664 DOI: 10.1021/bc200530x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The efficacy of protein-based medicines can be compromised by their rapid clearance from the blood circulatory system. Achieving optimal pharmacokinetics is a key requirement for the successful development of safe protein-based medicines. Protein PEGylation is a clinically proven strategy to increase the circulation half-life of protein-based medicines. One limitation of PEGylation is that there are few strategies that achieve site-specific conjugation of PEG to the protein. Here, we describe the covalent conjugation of PEG site-specifically to a polyhistidine tag (His-tag) on a protein. His-tag site-specific PEGylation was achieved with a domain antibody (dAb) that had a 6-histidine His-tag on the C-terminus (dAb-His(6)) and interferon α-2a (IFN) that had an 8-histidine His-tag on the N-terminus (His(8)-IFN). The site of PEGylation at the His-tag for both dAb-His(6)-PEG and PEG-His(8)-IFN was confirmed by digestion, chromatographic, and mass-spectral studies. A methionine was also inserted directly after the N-terminal His-tag in IFN to give His(8)Met-IFN. Cyanogen bromide digestion studies of PEG-His(8)Met-IFN were also consistent with PEGylation at the His-tag. By using increased stoichiometries of the PEGylation reagent, it was possible to conjugate two separate PEG molecules to the His-tag of both the dAb and IFN proteins. Stability studies followed by in vitro evaluation confirmed that these PEGylated proteins retained their biological activity. In vivo PK studies showed that all of the His-tag PEGylated samples displayed extended circulation half-lives. Together, our results indicate that site-specific, covalent PEG conjugation at a His-tag can be achieved and biological activity maintained with therapeutically relevant proteins.
Collapse
Affiliation(s)
- Yuehua Cong
- PolyTherics Ltd, The London Bioscience Innovation Centre, 2 Royal College Street, London NW1 0NH, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Andrady C, Sharma SK, Chester KA. Antibody-enzyme fusion proteins for cancer therapy. Immunotherapy 2011; 3:193-211. [PMID: 21322759 DOI: 10.2217/imt.10.90] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Advances in biomolecular technology have allowed the development of genetically fused antibody-enzymes. Antibody-enzyme fusion proteins have been used to target tumors for cancer therapy in two ways. In one system, an antibody-enzyme is pretargeted to the tumor followed by administration of an inactive prodrug that is converted to its active form by the pretargeted enzyme. This system has been described as antibody-directed enzyme prodrug therapy. The other system uses antibody-enzyme fusion proteins as direct therapeutics, where the enzyme is toxic in its own right. The key feature in this approach is that the antibody is used to internalize the toxic enzyme into the tumor cell, which activates cell-death processes. This antibody-enzyme system has been largely applied to deliver ribonucleases. This article addresses these two antibody-enzyme targeting strategies for cancer therapy from concept to (pre)clinical trials.
Collapse
Affiliation(s)
- Carima Andrady
- Cancer Research UK Targeting & Imaging Group, Department of Oncology, UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London WC1E6BT, UK.
| | | | | |
Collapse
|
8
|
Vigor KL, Kyrtatos PG, Minogue S, Al-Jamal KT, Kogelberg H, Tolner B, Kostarelos K, Begent RH, Pankhurst QA, Lythgoe MF, Chester KA. Nanoparticles functionalized with recombinant single chain Fv antibody fragments (scFv) for the magnetic resonance imaging of cancer cells. Biomaterials 2009; 31:1307-15. [PMID: 19889453 DOI: 10.1016/j.biomaterials.2009.10.036] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 10/14/2009] [Indexed: 11/18/2022]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) can substantially improve the sensitivity of magnetic resonance imaging (MRI). We propose that SPIONs could be used to target and image cancer cells if functionalized with recombinant single chain Fv antibody fragments (scFv). We tested our hypothesis by generating antibody-functionalized (abf) SPIONs using a scFv specific for carcinoembryonic antigen (CEA), an oncofoetal cell surface protein. SPIONs of different hydrodynamic diameter and surface chemistry were investigated and targeting was confirmed by ELISA, cellular iron uptake, confocal laser scanning microscopy (CLSM) and MRI. Results demonstrated that abf-SPIONs bound specifically to CEA-expressing human tumour cells, generating selective image contrast on MRI. In addition, we observed that the cellular interaction of the abf-SPIONs was influenced by hydrodynamic size and surface coating. The results indicate that abf-SPIONs have potential for cancer-specific MRI.
Collapse
Affiliation(s)
- Kim L Vigor
- UCL Cancer Institute, Paul O'Gorman Building, 72 Huntley Street London WC1E 6DD, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Scatton B. Le processus de découverte du médicament dans l'industrie pharmaceutique. ACTA ACUST UNITED AC 2009; 203:249-69. [DOI: 10.1051/jbio:2009030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
10
|
Bartee MY, Dai E, Liu L, Munuswamy-Ramanujam G, Macaulay C, McIvor D, McFadden G, Lucas AR. 10 M-T7: measuring chemokine-modulating activity. Methods Enzymol 2009; 460:209-28. [PMID: 19446727 DOI: 10.1016/s0076-6879(09)05210-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chemokines are important for activation of a host of cellular immune and inflammatory responses including cell signaling, activation, and communication. M-T7, a myxoma virus protein, inhibits the activity of chemokines by direct binding to chemokines and/or with glycosaminoglycans (GAGs). To study the effects of this chemokine-modulating protein (CMP), we use a variety of in vitro and in vivo techniques to evaluate M-T7 inhibition of inflammatory cells. To quickly analyze the effects of M-T7, changes in cell adhesion and membrane fluidity are measured as well as cell migration in mouse ascites. For more physiological analyses, an aortic transplant model in rodents is used to assess change in inflammatory cell infiltrates and vascular plaque growth (rejection). Utilization of the combination of these in vitro and in vivo techniques allows for a more complete study of the chemokine-modulating activity of M-T7, and can be used to study other immune and inflammation-modulating proteins.
Collapse
Affiliation(s)
- Mee Y Bartee
- Division of Cardiovascular Medicine, Department of Medicine, University of Florida, Gainesville, Florida, USA
| | | | | | | | | | | | | | | |
Collapse
|