1
|
Chavan PR, Pandey R, Patil BM, Murti K, Kumar N. Unravelling key signaling pathways for the therapeutic targeting of non-small cell lung cancer. Eur J Pharmacol 2025; 998:177494. [PMID: 40090536 DOI: 10.1016/j.ejphar.2025.177494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/18/2025]
Abstract
Lung cancer (LC) remains the foremost cause of cancer-related mortality across the globe. Non-small cell lung cancer (NSCLC) is a type of LC that exhibits significant heterogeneity at histological and molecular levels. Genetic alterations in upstream signaling molecules activate cascades affecting apoptosis, proliferation, and differentiation. Disruption of these signaling pathways leads to the proliferation of cancer-promoting cells, progression of cancer, and resistance to its treatment. Recent insights into the function of signaling pathways and their fundamental mechanisms in the onset of various diseases could pave the way for new therapeutic approaches. Recently, numerous drug molecules have been created that target these cell signaling pathways and could be used alongside other standard therapies to achieve synergistic effects in mitigating the pathophysiology of NSCLC. Additionally, many researchers have identified several predictive biomarkers, and alterations in transcription factors and related pathways are employed to create new therapeutic strategies for NSCLC. Findings suggest using specific inhibitors to target cellular signaling pathways in tumor progression to treat NSCLC. This review investigates the role of signaling pathways in NSCLC development and explores novel therapeutic strategies to enhance clinical treatment options for NSCLC.
Collapse
Affiliation(s)
- Pavan Ramrao Chavan
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India
| | - Ruchi Pandey
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India
| | - Baswant Malesh Patil
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India
| | - Nitesh Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India.
| |
Collapse
|
2
|
Zhong Y, He JW, Huang CX, Lai HZ, Li XK, Zheng C, Fu X, You FM, Ma Q. The NcRNA/Wnt axis in lung cancer: oncogenic mechanisms, remarkable indicators and therapeutic targets. J Transl Med 2025; 23:326. [PMID: 40087753 PMCID: PMC11907837 DOI: 10.1186/s12967-025-06326-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/27/2025] [Indexed: 03/17/2025] Open
Abstract
Early diagnosis of lung cancer (LC) is challenging, treatment options are limited, and treatment resistance leads to poor prognosis and management in most patients. The Wnt/β-catenin signaling pathway plays a vital role in the occurrence, progression, and therapeutic response of LC. Recent studies indicate that non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) function as epigenetic regulators that can promote or inhibit Wnt/β-catenin signaling by interacting with Wnt proteins, receptors, signaling transducers, and transcriptional effectors, thereby affecting LC cell proliferation, metastasis, invasion, and treatment resistance. Deepening our understanding of the regulatory network between ncRNAs and the Wnt/β-catenin signaling pathway will help overcome the limitations of current LC diagnosis and treatment methods. This article comprehensively reviews the regulatory mechanisms related to the functions of ncRNAs and the Wnt/β-catenin pathway in LC, examining their potential as diagnostic and prognostic biomarkers and therapeutic targets, aiming to offer new promising perspectives for LC diagnosis and treatment.
Collapse
Affiliation(s)
- Yang Zhong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
| | - Jia-Wei He
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
| | - Chun-Xia Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
| | - Heng-Zhou Lai
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
| | - Xue-Ke Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
| | - Chuan Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
| | - Xi Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
| | - Feng-Ming You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
| | - Qiong Ma
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
| |
Collapse
|
3
|
Wang H, Zhang L, Hu C, Li H, Jiang M. Wnt signaling and tumors (Review). Mol Clin Oncol 2024; 21:45. [PMID: 38798312 PMCID: PMC11117032 DOI: 10.3892/mco.2024.2743] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Wnt signaling is a highly conserved evolutionary pathway that plays a key role in regulation of embryonic development, as well as tissue homeostasis and regeneration. Abnormalities in Wnt signaling are associated with tumorigenesis and development, leading to poor prognosis in patients with cancer. However, the pharmacological effects and mechanisms underlying Wnt signaling and its inhibition in cancer treatment remain unclear. In addition, potential side effects of inhibiting this process are not well understood. Therefore, the present review outlines the role of Wnt signaling in tumorigenesis, development, metastasis, cancer stem cells, radiotherapy resistance and tumor immunity. The present review further identifies inhibitors that target Wnt signaling to provide a potential novel direction for cancer treatment. This may facilitate early application of safe and effective drugs targeting Wnt signaling in clinical settings. An in-depth understanding of the mechanisms underlying inhibition of Wnt signaling may improve the prognosis of patients with cancer.
Collapse
Affiliation(s)
- Huaishi Wang
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Lihai Zhang
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Chao Hu
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Hui Li
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Mingyan Jiang
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| |
Collapse
|
4
|
Hong R, Tong Y, Liu H, Chen P, Liu R. Edge-based relative entropy as a sensitive indicator of critical transitions in biological systems. J Transl Med 2024; 22:333. [PMID: 38576021 PMCID: PMC10996174 DOI: 10.1186/s12967-024-05145-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/29/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Disease progression in biosystems is not always a steady process but is occasionally abrupt. It is important but challenging to signal critical transitions in complex biosystems. METHODS In this study, based on the theoretical framework of dynamic network biomarkers (DNBs), we propose a model-free method, edge-based relative entropy (ERE), to identify temporal key biomolecular associations/networks that may serve as DNBs and detect early-warning signals of the drastic state transition during disease progression in complex biological systems. Specifically, by combining gene‒gene interaction (edge) information with the relative entropy, the ERE method converts gene expression values into network entropy values, quantifying the dynamic change in a biomolecular network and indicating the qualitative shift in the system state. RESULTS The proposed method was validated using simulated data and real biological datasets of complex diseases. The applications show that for certain diseases, the ERE method helps to reveal so-called "dark genes" that are non-differentially expressed but with high ERE values and of essential importance in both gene regulation and prognosis. CONCLUSIONS The proposed method effectively identified the critical transition states of complex diseases at the network level. Our study not only identified the critical transition states of various cancers but also provided two types of new prognostic biomarkers, positive and negative edge biomarkers, for further practical application. The method in this study therefore has great potential in personalized disease diagnosis.
Collapse
Affiliation(s)
- Renhao Hong
- School of Mathematics, South China University of Technology, Guangzhou, 510640, China
| | - Yuyan Tong
- School of Mathematics, South China University of Technology, Guangzhou, 510640, China
| | - Huisheng Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Pei Chen
- School of Mathematics, South China University of Technology, Guangzhou, 510640, China.
| | - Rui Liu
- School of Mathematics, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
5
|
Shen X, Gao C, Li H, Liu C, Wang L, Li Y, Liu R, Sun C, Zhuang J. Natural compounds: Wnt pathway inhibitors with therapeutic potential in lung cancer. Front Pharmacol 2023; 14:1250893. [PMID: 37841927 PMCID: PMC10568034 DOI: 10.3389/fphar.2023.1250893] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023] Open
Abstract
The Wnt/β-catenin pathway is abnormally activated in most lung cancer tissues and considered to be an accelerator of carcinogenesis and lung cancer progression, which is closely related to increased morbidity rates, malignant progression, and treatment resistance. Although targeting the canonical Wnt/β-catenin pathway shows significant potential for lung cancer therapy, it still faces challenges owing to its complexity, tumor heterogeneity and wide physiological activity. Therefore, it is necessary to elucidate the role of the abnormal activation of the Wnt/β-catenin pathway in lung cancer progression. Moreover, Wnt inhibitors used in lung cancer clinical trials are expected to break existing therapeutic patterns, although their adverse effects limit the treatment window. This is the first study to summarize the research progress on various compounds, including natural products and derivatives, that target the canonical Wnt pathway in lung cancer to develop safer and more targeted drugs or alternatives. Various natural products have been found to inhibit Wnt/β-catenin in various ways, such as through upstream and downstream intervention pathways, and have shown encouraging preclinical anti-tumor efficacy. Their diversity and low toxicity make them a popular research topic, laying the foundation for further combination therapies and drug development.
Collapse
Affiliation(s)
- Xuetong Shen
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chundi Gao
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Huayao Li
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Longyun Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Ye Li
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Ruijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| |
Collapse
|
6
|
NOVA1 promotes NSCLC proliferation and invasion by activating Wnt/β-catenin signaling. BMC Cancer 2022; 22:1091. [PMID: 36284263 PMCID: PMC9594932 DOI: 10.1186/s12885-022-10164-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neuro-oncological ventral antigen 1 (NOVA1) is a neuron-specific RNA-binding protein which regulates alternative splicing in the developing nervous system. Recent research has found that NOVA1 plays a significant role in carcinogenesis. In this paper, we examine the role of NOVA1 in non-small cell lung cancer (NSCLC) and its underlying molecular mechanisms. METHODS The expression of NOVA1 in NSCLC was detected by immunohistochemistry and correlations between NOVA1 expression and clinicopathological factors were analyzed by chi-square tests. Kaplan-Meier survival analysis and the Cox regression model were used to evaluate the predictive effect of prognostic factors. Western blotting, Cell Counting Kit-8, colony formation, apoptosis, migration and invasion assays were used to detect the effects of silencing (si)NOVA1 RNA on Wnt/β-catenin signaling and biological behavior in NSCLC cell lines. RESULTS Our study showed that expression of NOVA1 was up-regulated and significantly correlated with poor differentiation (p = 0.020), advanced TNM stage (P = 0.001), T stage (P = 0.001) and lymph node metastasis (P = 0.000) as well as the expression of β-catenin (P = 0.012) in NSCLC. The down-regulation of NSCLC by siRNA significantly inhibited proliferation, migration and invasion and promoted apoptosis in NSCLC cells. Expression of Wnt signaling molecules, including β-catenin, activated β-catenin, cyclin D1, matrix metalloproteinase (MMP)-2 and MMP-7, was also significantly reduced by siNOVA1. The inhibition of Wnt/β-catenin signaling in A549 and H1299 cells by siNOVA1 was reversed after treatment with a β-catenin expression plasmid. CONCLUSION The present study suggests that NOVA1 may serve as a potential prognosis biomarker in NSCLC. High NOVA1 expression was associated with poor survival rate. Finally, in vitro experiments verified that NOVA1 promotes NSCLC cell proliferation and invasion by regulating Wnt/β-catenin signaling.
Collapse
|
7
|
Hao Y, Dong H, Li W, Lv X, Shi B, Gao P. The Molecular Role of IL-35 in Non-Small Cell Lung Cancer. Front Oncol 2022; 12:874823. [PMID: 35719927 PMCID: PMC9204334 DOI: 10.3389/fonc.2022.874823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and a common cause of cancer-related death. Better understanding of the molecular mechanisms, pathogenesis, and treatment of NSCLC can help improve patient outcomes. Significant progress has been made in the treatment of NSCLC, and immunotherapy can prolong patient survival. However, the overall cure and survival rates are low, especially in patients with advanced metastases. Interleukin-35 (IL-35), an immunosuppressive factor, is associated with the onset and prognosis of various cancers. Studies have shown that IL-35 expression is elevated in NSCLC, and it is closely related to the progression and prognosis of NSCLC. However, there are few studies on the mechanism of IL-35 in NSCLC. This study discusses the role of IL-35 and its downstream signaling pathways in the pathogenesis of NSCLC and provides new insights into its therapeutic potential.
Collapse
Affiliation(s)
- Yuqiu Hao
- Department of Respiratory Medicine, Second Hospital of Jilin University, Changchun, China
| | - Hongna Dong
- Department of Respiratory Medicine, Second Hospital of Jilin University, Changchun, China
| | - Wei Li
- Department of Respiratory Medicine, Second Hospital of Jilin University, Changchun, China
| | - Xuejiao Lv
- Department of Respiratory Medicine, Second Hospital of Jilin University, Changchun, China
| | - Bingqing Shi
- Department of Respiratory Medicine, Second Hospital of Jilin University, Changchun, China
| | - Peng Gao
- Department of Respiratory Medicine, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Wrona A, Sejda A, Dziadziuszko R, Jassem J. Prognostic Significance of Wnt1, Wnt2, E-Cadherin, and β-catenin Expression in Operable Non-small Cell Lung Cancer. J Histochem Cytochem 2021; 69:711-722. [PMID: 34666560 DOI: 10.1369/00221554211048550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role of Wnt family proteins, E-cadherin, and β-catenin in non-small cell lung cancer (NSCLC) is unclear. In this study, we assessed the expression of these proteins as well as their reciprocal interaction and clinical relevance in NSCLC. Immunohistochemical expression of Wnt1, Wnt2, E-cadherin, and β-catenin was assessed in 208 patients with NSCLC who underwent curative pulmonary resection. Expression of Wnt1, Wnt2, and E-cadherin was found in 49.5%, 22.3%, and 37.4% of the patients, respectively, whereas expression of membranous and cytoplasmic β-catenin was found in 23.7% and 34.8% of the patients, respectively. The expression of Wnt1 and E-cadherin was lower in squamous cell carcinoma than in adenocarcinoma and large cell carcinoma, and the expression of both Wnt proteins, E-cadherin, and membranous β-catenin was lower in poorly differentiated compared with well-differentiated tumors. None of the analyzed proteins was associated with relapse-free or overall survival. Expression of Wnt1, Wnt2, E-cadherin, and β-catenin is a common occurrence in NSCLC and is related to tumor histology and grade. However, these proteins have no prognostic role in operable NSCLC.
Collapse
Affiliation(s)
- Anna Wrona
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, Gdańsk, Poland
| | - Aleksandra Sejda
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, Gdańsk, Poland
| | - Rafał Dziadziuszko
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, Gdańsk, Poland
| | - Jacek Jassem
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
9
|
Liao Y, Feng J, Sun W, Wu C, Li J, Jing T, Liang Y, Qian Y, Liu W, Wang H. CIRP promotes the progression of non-small cell lung cancer through activation of Wnt/β-catenin signaling via CTNNB1. J Exp Clin Cancer Res 2021; 40:275. [PMID: 34465343 PMCID: PMC8406911 DOI: 10.1186/s13046-021-02080-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/21/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cold-inducible RNA binding protein (CIRP) is a newly discovered proto-oncogene. In this study, we investigated the role of CIRP in the progression of non-small cell lung cancer (NSCLC) using patient tissue samples, cultured cell lines and animal lung cancer models. METHODS Tissue arrays, IHC and HE staining, immunoblotting, and qRT-PCR were used to detect the indicated gene expression; plasmid and siRNA transfections as well as viral infection were used to manipulate gene expression; cell proliferation assay, cell cycle analysis, cell migration and invasion analysis, soft agar colony formation assay, tail intravenous injection and subcutaneous inoculation of animal models were performed to study the role of CIRP in NSCLC cells; Gene expression microarray was used to select the underlying pathways; and RNA immunoprecipitation assay, biotin pull-down assay, immunopurification assay, mRNA decay analyses and luciferase reporter assay were performed to elucidate the mechanisms. The log-rank (Mantel-Cox) test, independent sample T-test, nonparametric Mann-Whitney test, Spearman rank test and two-tailed independent sample T-test were used accordingly in our study. RESULTS Our data showed that CIRP was highly expressed in NSCLC tissue, and its level was negatively correlated with the prognosis of NSCLC patients. By manipulating CIRP expression in A549, H460, H1299, and H1650 cell lines, we demonstrated that CIRP overexpression promoted the transition of G1/G0 phase to S phase and the formation of an enhanced malignant phenotype of NSCLC, reflected by increased proliferation, enhanced invasion/metastasis and greater tumorigenic capabilities both in vitro and in vivo. Transcriptome sequencing further demonstrated that CIRP acted on the cell cycle, DNA replication and Wnt signaling pathway to exert its pro-oncogenic action. Mechanistically, CIRP directly bound to the 3'- and 5'-UTRs of CTNNB1 mRNA, leading to enhanced stability and translation of CTNNB1 mRNA and promoting IRES-mediated protein synthesis, respectively. Eventually, the increased CTNNB1 protein levels mediated excessive activation of the Wnt/β-catenin signaling pathway and its downstream targets C-myc, COX-2, CCND1, MMP7, VEGFA and CD44. CONCLUSION Our results support CIRP as a candidate oncogene in NSCLC and a potential target for NSCLC therapy.
Collapse
Affiliation(s)
- Yi Liao
- The Central Laboratory, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, 518035, P. R. China
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, P. R. China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Province, Luzhou, 646099, Sichuan, China
| | - Weichao Sun
- The Central Laboratory, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, 518035, P. R. China
| | - Chao Wu
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, P. R. China
| | - Jingyao Li
- The Central Laboratory, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, 518035, P. R. China
| | - Tao Jing
- Department of Cardiology, Southwest Hospital, Army Medical University, Chongqing, 400038, P. R. China
| | - Yuteng Liang
- Department of Thoracic Surgery, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, 518035, P. R. China
| | - Yonghui Qian
- Department of Thoracic Surgery, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, 518035, P. R. China
| | - Wenlan Liu
- The Central Laboratory, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, 518035, P. R. China.
- Department of Thoracic Surgery, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, 518035, P. R. China.
| | - Haidong Wang
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, P. R. China.
| |
Collapse
|
10
|
Sun D, Yang S, Zhang X, Li S, Wang L, Chen J, Qiu C, Xu K. Forkhead box protein O3a promotes glioma cell resistance to temozolomide by regulating matrix metallopeptidase and β-catenin. Oncol Lett 2021; 21:328. [PMID: 33692860 PMCID: PMC7933757 DOI: 10.3892/ol.2021.12580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 12/18/2020] [Indexed: 11/05/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common type of malignant brain tumor. GBM is currently treated with temozolomide (TMZ), although patients often exhibit resistance to this agent. Although several mechanisms underlying the resistance of GBM to TMZ have been identified, the combination of these mechanisms is not sufficient to fully account for this phenomenon. Our previous study demonstrated that knocking down the Forkhead box protein O3a (FoxO3a) gene, a member of the FoxO subfamily of transcription factors, resulted in glioma cell sensitization to TMZ, accompanied by reduced levels of nuclear β-catenin. The aim of the present study was to specify how FoxO3a and β-catenin are implicated in glioma cell TMZ resistance. Using the U87 and U251 parental cell lines (also designated as sensitive cell lines) and corresponding resistant cell lines (U87-TR and U251-TR, generated by repeated TMZ treatments), coupled with a combined knockdown/overexpression strategy, it was revealed that FoxO3a or β-catenin overexpression in TMZ-treated U87 and U251 cells markedly increased cellular proliferation; co-expression of both FoxO3a and β-catenin resulted in the highest increase. Knockdown of either FoxO3a or β-catenin in U87-TR and U251-TR cells led to a significant decrease in cell viability, which was rescued by the re-expression of FoxO3a in FoxO3a-knockdown cells. Subsequent experiments demonstrated that, in U87-TR and U251-TR cells, FoxO3a knockdown significantly reduced the protein levels of matrix metallopeptidase (MMP)9, while overexpression of FoxO3a in U87 and U251 cells enhanced the nuclear accumulation of β-catenin, concomitantly with an increase in MMP9 levels. Furthermore, MMP9 knockdown markedly reduced the levels of nuclear β-catenin. Collectively, the findings of the present study suggest that FoxO3a may regulate the nuclear accumulation of β-catenin by modulating MMP9 expression, thereby rendering glioblastoma cells resistant to TMZ, and may provide unique molecular insights into the mechanisms underlying the development of TMZ resistance in GBM.
Collapse
Affiliation(s)
- Datong Sun
- Department of Oncology, Hainan Provincial People's Hospital, Haikou, Hainan 571101, P.R. China
| | - Shenghui Yang
- Department of Oncology, Hainan Provincial People's Hospital, Haikou, Hainan 571101, P.R. China
| | - Xufeng Zhang
- Department of Stomatology, First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Sai Li
- Department of Oncology, Hainan Provincial People's Hospital, Haikou, Hainan 571101, P.R. China
| | - Lin Wang
- Department of Oncology, Hainan Provincial People's Hospital, Haikou, Hainan 571101, P.R. China
| | - Junmin Chen
- Department of Oncology, Hainan Provincial People's Hospital, Haikou, Hainan 571101, P.R. China
| | - Chun Qiu
- Department of Oncology, Hainan Provincial People's Hospital, Haikou, Hainan 571101, P.R. China
| | - Ke Xu
- Clinical Immunology Section, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| |
Collapse
|
11
|
Chang YX, Lin YF, Chen CL, Huang MS, Hsiao M, Liang PH. Chaperonin-Containing TCP-1 Promotes Cancer Chemoresistance and Metastasis through the AKT-GSK3β-β-Catenin and XIAP-Survivin Pathways. Cancers (Basel) 2020; 12:cancers12123865. [PMID: 33371405 PMCID: PMC7767469 DOI: 10.3390/cancers12123865] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/27/2022] Open
Abstract
Simple Summary CCT is a chaperonin that participates in folding intracellular proteins. We found that endogenously high expression of the subunit CCT-β is associated with a poorer chemotherapy response in clinical cancer patients. Using two cancer cell lines with higher CCT-β levels, a triple-negative breast cancer cell line MDA-MB-231 and a highly metastatic non-small-cell lung cancer cell line CL1-5, we demonstrated that upregulation of CCT-β expression correlated with chemoresistance and metastasis of these cancer cells in vitro and in vivo. Mechanistic studies allowed us to identify the AKT-GSK3β-β-catenin and XIAP-Survivin pathways promoted by CCT-β to account for the observations. The results provided by our studies are important for developing diagnostic and therapeutic strategies for combating CCT-β-overexpressed cancers. Abstract Chaperonin-containing TCP-1 (CCT) is a chaperonin composed of eight subunits that participates in intracellular protein folding. Here, we showed that increased levels of subunits of CCT, particularly CCT-β, were significantly correlated with lower survival rates for cancer patients. Endogenously high expression of CCT-β was found in cancer cell lines, such as the triple-negative breast cancer cell line MDA-MB-231 and the highly metastatic non-small-cell lung cancer cell line CL1-5. Knocking down CCT-β in these cancer cells led to decreased levels of anti-apoptotic proteins, such as XIAP, as well as inhibited phosphorylation of Ser473-AKT and GSK3, resulting in decrease of the nucleus-entering form of β-catenin; these changes reduced the chemoresistance and migration/invasion of the cells. Conversely, overexpression of CCT-β recovered the chemoresistance and cell migration/invasion by promoting the AKT-GSK3β-β-catenin and XIAP-Survivin pathways. Coimmunoprecipitation data revealed that the CCT complex might directly bind and stabilize XIAP and β-catenin. This study not only elucidates the roles of CCT in chemoresistance and metastasis, which are two major obstacles for current cancer therapy, but also provides a possible therapeutic strategy against cancers with overexpressed CCT-β.
Collapse
Affiliation(s)
- Yun-Xun Chang
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan;
| | - Yuan-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Chi-Long Chen
- Department of Pathology, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Pathology, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Ming-Shyan Huang
- Department of Internal Medicine, E-Da Cancer Hospital, School of Medicine, I-Shou University, Kaohsiung 82445, Taiwan;
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan;
| | - Po-Huang Liang
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan;
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Taipei 11529, Taiwan
- Correspondence: ; Tel.: +886-2-3366-4069; Fax: +886-2-2363-5038
| |
Collapse
|
12
|
Liu YJ, Chang YJ, Kuo YT, Liang PH. Targeting β-tubulin/CCT-β complex induces apoptosis and suppresses migration and invasion of highly metastatic lung adenocarcinoma. Carcinogenesis 2020; 41:699-710. [PMID: 31400757 DOI: 10.1093/carcin/bgz137] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/03/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022] Open
Abstract
Metastasis, the movement of cancer cells from one site to another, is responsible for the highest number of cancer deaths, especially in lung cancer patients. In this study, we first identified a prognostic marker of lung adenocarcinoma, TCP-1 β subunit (chaperonin-containing TCP-1β; CCT-β). We showed a compound that disrupted the interaction of CCT-β with β-tubulin killed a highly metastatic non-small cell lung cancer cell line CL1-5 through inducing Endoplasmic reticulum stress and caspases activation. Moreover, at the dosage of EC20, the compound inhibited migration and invasion of the lung cancer cells by suppressing matrix metalloproteinase (MMP)-2/9 and epithelial-mesenchymal transition (EMT)-related proteins through downregulating mitogen-activated protein kinases (MAPKs), Akt/β-catenin and integrin-focal adhesion kinase signaling pathways. Unlike the anticancer drugs, such as Taxol, that target the adenosine triphosphate site of β-tubulin, this study reveals a therapeutic target, β-tubulin/CCT-β complex, for metastatic human lung adenocarcinoma. The study demonstrated CCT-β as a prognostic marker. Targeting β-tubulin/CCT-β complex caused apoptosis and inhibited invasion/migration of CCT-β overexpressed, highly metastatic lung adenocarcinoma.
Collapse
Affiliation(s)
- Yan-Jin Liu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yu-Ju Chang
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Yu-Ting Kuo
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Po-Huang Liang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
13
|
Zhu L, Yang S, Zheng L, Zhang G, Cheng G. WNT/β-catenin pathway activation via Wnt1 overexpression and Axin1 downregulation correlates with cadherin-catenin complex disruption and increased lymph node involvement in micropapillary-predominant lung adenocarcinoma. J Thorac Dis 2020; 12:5906-5915. [PMID: 33209423 PMCID: PMC7656375 DOI: 10.21037/jtd-20-1495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Background Micropapillary-predominant adenocarcinoma (MPA) of the lung is associated with extensive lymph node involvement and rapid terminal metastasis. However, this subtype has been recognized for only a few years, and there have been few studies of the molecular mechanisms associated with its highly invasive behaviors. Methods The present study utilized immunohistochemical staining of surgically resected tissue blocks of MPA and lepidic-predominant lung adenocarcinoma to quantify the expression of specific biological markers in the WNT/β-catenin pathway and evaluate their influence on the lymph nodes invasion of these two types of lung adenocarcinomas. Results Our findings revealed that disruption of the cell membrane cadherin-catenin complex, which weakens the tumor cell adherence of MPA, was caused by the dissociation of β-catenin from the cadherin-catenin complex and the subsequent accumulation of β-catenin in the cytoplasm. This caused abnormal activation of the WNT/β-catenin pathway. We also found that Wnt-1-specific overexpression and Axin1 inhibition in MPA could explain the redistribution and cytoplasmic retention of β-catenin. Collectively, these findings suggest that an abnormality in the WNT/β-catenin pathway could enhance the invasiveness of MPA through the overexpression of Wnt-1 and downregulation of Axin1 molecules. Conclusions Our data support the need for further research regarding the WNT/β-catenin pathway and the need to develop novel targeted therapies for restoration of tumor cell adherence and improvement of the prognosis of MPA.
Collapse
Affiliation(s)
- Liang Zhu
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China.,Department of Pathology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China.,Department of Pathology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Shifeng Yang
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China.,Department of Pathology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China.,Department of Pathology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Linfeng Zheng
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China.,Department of Pathology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China.,Department of Pathology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Gu Zhang
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China.,Department of Pathology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China.,Department of Pathology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Guoping Cheng
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China.,Department of Pathology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China.,Department of Pathology, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
14
|
Xu T, Zeng Y, Shi L, Yang Q, Chen Y, Wu G, Li G, Xu S. Targeting NEK2 impairs oncogenesis and radioresistance via inhibiting the Wnt1/β-catenin signaling pathway in cervical cancer. J Exp Clin Cancer Res 2020; 39:183. [PMID: 32907622 PMCID: PMC7488040 DOI: 10.1186/s13046-020-01659-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND NEK2, a serine/threonine kinase involved in mitosis, has been found to function in chromosome instability, tumor progression and metastasis, but its role in cervical cancer radioresistance remains unknown. METHODS We detected the protein levels of NEK2 in cervical carcinoma tissues and paired paracarcinoma tissues by immunohistochemistry. The roles of NEK2 in oncogenesis were examined using cell growth and colony formation assays, EdU assay, apoptosis assay as well as in vivo mouse model. γ-H2AX and Rad51 foci formation, neutral comet assay and clonogenic cell survival assay were applied to determine the radiosensitivity of cervical cancer cells. RNA-seq was performed to identify the downstream effector of NEK2. The gene expression levels were measured by Real-time PCR. RESULTS We report that NEK2 protein level is overexpressed and correlated with the tumor stage and lymph node metastasis in cervical cancer tissues. Furthermore, we provided evidence that depletion of NEK2 impairs oncogenesis and enhances radiosensitivity in cervical cancer. Using RNA sequencing, we identify Wnt1 as a key downstream effector of NEK2. Knockdown of NEK2 downregulates the mRNA and protein levels of Wnt1, thereby inhibiting the activation of the Wnt/β-catenin signaling pathway. More importantly, the observed consequences induced by NEK2 depletion in cervical cancer cells can be partially rescued by Wnt1 overexpression. CONCLUSIONS Our results demonstrate that NEK2 activates the Wnt/β-catenin signaling pathway via Wnt1 to drive oncogenesis and radioresistance in cervical cancer, indicating that NEK2 may be a promising target for the radiosensitization of cervical cancer.
Collapse
Affiliation(s)
- Tie Xu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yulan Zeng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Linli Shi
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qin Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yeshan Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guiling Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Shuangbing Xu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
15
|
Kang HS, Kwon HY, Kim IK, Ban WH, Kim SW, Kang HH, Yeo CD, Lee SH. Intermittent hypoxia exacerbates tumor progression in a mouse model of lung cancer. Sci Rep 2020; 10:1854. [PMID: 32024881 PMCID: PMC7002457 DOI: 10.1038/s41598-020-58906-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
The purpose of this study was to evaluate whether obstructive sleep apnea (OSA)-related chronic intermittent hypoxia (CIH) influences lung cancer progression and to elucidate the associated mechanisms in a mouse model of lung cancer. C57/BL6 mice in a CIH group were exposed to intermittent hypoxia for two weeks after tumor induction and compared with control mice (room air). Hypoxia inducible factor 1α (HIF-1α), vascular endothelial growth factor (VEGF) and metastasis-related matrix metalloproteinases (MMP) were measured. The expression levels of several hypoxia-related pathway proteins including HIF-1α, Wnt/ß-catenin, the nuclear factor erythroid 2-related factor 2 (Nrf2) and mammalian target of rapamycin-ERK were measured by western blot. The number (P < 0.01) and volume (P < 0.05) of tumors were increased in the CIH group. The activity of MMP-2 was enhanced after CIH treatment. The level of VEGF was increased significantly in the CIH group (p < 0.05). ß-catenin and Nrf2 were translocated to the nucleus and the levels of downstream effectors of Wnt/ß-catenin signaling increased after IH exposure. CIH enhanced proliferative and migratory properties of tumors in a mouse model of lung cancer. ß-catenin and Nrf2 appeared to be crucial mediators of tumor growth.
Collapse
Affiliation(s)
- Hye Seon Kang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hee Young Kwon
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - In Kyoung Kim
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Woo Ho Ban
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sei Won Kim
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyeon Hui Kang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chang Dong Yeo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang Haak Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. .,Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Yuan S, Lin LS, Gan RH, Huang L, Wu XT, Zhao Y, Su BH, Zheng D, Lu YG. Elevated matrix metalloproteinase 7 expression promotes the proliferation, motility and metastasis of tongue squamous cell carcinoma. BMC Cancer 2020; 20:33. [PMID: 31937294 PMCID: PMC6958600 DOI: 10.1186/s12885-020-6521-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 01/07/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Matrix metalloproteinase 7 (MMP7), as the smallest member of the matrix metalloproteinase family, has been verified to be implicated in cancer progression, especially metastasis. However, its expression pattern and function in tongue cancer is not clear. METHODS The expression of MMP7 in human tongue squamous cell carcinoma (TSCC) specimens compared with their respective paired nontumour tissues by real-time PCR and immunohistochemical staining. The effect of MMP7 on the proliferation, apoptosis, migration, invasion of tongue cancer cells was tested in appropriate ways after MMP7 siRNA knockdown or overexpression. The effect of MMP7 on lymph node metastasis in vivo was analyzed using a high-metastasis orthotopic nude mouse tongue transplanted tumour model. RESULTS We found markedly elevated expression of MMP7 in human TSCC specimens compared with their respective paired nontumour tissues, and this high expression was correlated with the patients' lymph node metastasis. Furthermore, the results of molecular functional assays confirmed that MMP7 promotes cell proliferation, migration and invasion of TSCC cells. Knockdown of MMP7 inhibited lymph nodes metastasis in vivo. CONCLUSIONS MMP7 plays an oncogenic role in carcinogenesis and metastasis of tongue cancer, and may serve as a potential therapeutic target for tongue cancer.
Collapse
Affiliation(s)
- Shuo Yuan
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, 246 Yang Qiao Middle Road, Fuzhou, 350000, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xue Yuan Road, University Town, Fuzhou, 350122, China
| | - Li-Song Lin
- Department of Oral and Maxillofacial Surgery, Affiliated First Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, 350005, China
| | - Rui-Huan Gan
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, 246 Yang Qiao Middle Road, Fuzhou, 350000, China.,Key laboratory of Stomatology of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Rd, Fuzhou, 350004, China
| | - Li Huang
- Department of Oral and Maxillofacial Surgery, Affiliated First Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, 350005, China.,Key laboratory of Stomatology of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Rd, Fuzhou, 350004, China
| | - Xiao-Ting Wu
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, 246 Yang Qiao Middle Road, Fuzhou, 350000, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xue Yuan Road, University Town, Fuzhou, 350122, China.,Key laboratory of Stomatology of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Rd, Fuzhou, 350004, China
| | - Yong Zhao
- Key laboratory of Stomatology of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Rd, Fuzhou, 350004, China
| | - Bo-Hua Su
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, 246 Yang Qiao Middle Road, Fuzhou, 350000, China
| | - Dali Zheng
- Key laboratory of Stomatology of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Rd, Fuzhou, 350004, China.
| | - You-Guang Lu
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, 246 Yang Qiao Middle Road, Fuzhou, 350000, China.,Key laboratory of Stomatology of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Rd, Fuzhou, 350004, China
| |
Collapse
|
17
|
Gu B, Wang J, Song Y, Wang Q, Wu Q. microRNA-383 regulates cell viability and apoptosis by mediating Wnt/β-catenin signaling pathway in non-small cell lung cancer. J Cell Biochem 2019; 120:7918-7926. [PMID: 30426539 DOI: 10.1002/jcb.28069] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/22/2018] [Indexed: 01/24/2023]
Abstract
The aim of this study was to investigate the roles of microRNA-383 (miRNA-383) in progression of non-small cell lung cancer (NSCLC) and the potential mechanism. The expressions of miR-383 and Wnt1 protein were detected in lung cancer tissues and cells by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analysis. After the transfection of miR-383 mimics, si-Wnt1 or miR-383+Wnt1, the viability and apoptosis of NSCLC cells were detected by cell counting kit-8 and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling, respectively. The interaction between miR-383 and Wnt1 was investigated by luciferase activity and Western blot analysis. Cells stably transfected with miR-383 mimics were inoculated into the right axillary of nude mice by subcutaneous injection. The tumor volume and weight were measured, and the expressions of miR-383, Wnt1, β-catenin, and cyclin D1 were detected by qRT-PCR and Western blot analysis. The expression of miR-383 was significantly decreased, and the level of Wnt1 was significantly increased (P < 0.05) in lung cancer tissues and cells. Upregulation of miR-383 or inhibition of Wnt1 expression inhibited the cell viability and induce apoptosis in NSCLC cells. Moreover, Wnt1 was the target gene of miR-383, and its overexpression weakened the regulatory effect of miR-383 on cell viability and apoptosis in NSCLC cells. Besides, the addition of miR-383 decreased the tumor volume and size and inhibited the expressions of Wnt1, β-catenin, and cyclin D1 at the protein level in nude mice. Collectively, miR-383 induced apoptosis and inhibited cell viability as well as tumorigenic capacity in nude mice via regulating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Biao Gu
- Department of Thoracic Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Jipeng Wang
- Department of Respiratory Medicine, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Yaqi Song
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Qi Wang
- Department of Thoracic Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Qingquan Wu
- Department of Thoracic Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| |
Collapse
|
18
|
Kerdidani D, Chouvardas P, Arjo AR, Giopanou I, Ntaliarda G, Guo YA, Tsikitis M, Kazamias G, Potaris K, Stathopoulos GT, Zakynthinos S, Kalomenidis I, Soumelis V, Kollias G, Tsoumakidou M. Wnt1 silences chemokine genes in dendritic cells and induces adaptive immune resistance in lung adenocarcinoma. Nat Commun 2019; 10:1405. [PMID: 30926812 PMCID: PMC6441097 DOI: 10.1038/s41467-019-09370-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 03/05/2019] [Indexed: 12/13/2022] Open
Abstract
Lung adenocarcinoma (LUAD)-derived Wnts increase cancer cell proliferative/stemness potential, but whether they impact the immune microenvironment is unknown. Here we show that LUAD cells use paracrine Wnt1 signaling to induce immune resistance. In TCGA, Wnt1 correlates strongly with tolerogenic genes. In another LUAD cohort, Wnt1 inversely associates with T cell abundance. Altering Wnt1 expression profoundly affects growth of murine lung adenocarcinomas and this is dependent on conventional dendritic cells (cDCs) and T cells. Mechanistically, Wnt1 leads to transcriptional silencing of CC/CXC chemokines in cDCs, T cell exclusion and cross-tolerance. Wnt-target genes are up-regulated in human intratumoral cDCs and decrease upon silencing Wnt1, accompanied by enhanced T cell cytotoxicity. siWnt1-nanoparticles given as single therapy or part of combinatorial immunotherapies act at both arms of the cancer-immune ecosystem to halt tumor growth. Collectively, our studies show that Wnt1 induces immunologically cold tumors through cDCs and highlight its immunotherapeutic targeting.
Collapse
Affiliation(s)
- Dimitra Kerdidani
- Division of Immunology, Biomedical Sciences Research Center Alexander Fleming, Vari-Athens, 16672, Greece.,1st Department of Critical Care and Pulmonary Medicine, Medical School, National and Kapodistrian University of Athens, Athens, 10676, Greece
| | - Panagiotis Chouvardas
- Division of Immunology, Biomedical Sciences Research Center Alexander Fleming, Vari-Athens, 16672, Greece.,Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3012, Switzerland.,Department for BioMedical Research, University of Bern, Bern, 3012, Switzerland
| | - Ares Rocanin Arjo
- Integrative Biology of Human Dendritic Cells and T Cells, Institute Curie, Paris, 75005, France
| | - Ioanna Giopanou
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, 26504, Greece
| | - Giannoula Ntaliarda
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, 26504, Greece
| | - Yu Amanda Guo
- Computational and Systems Biology, Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, 138672, Singapore
| | - Mary Tsikitis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
| | - Georgios Kazamias
- Department of Histopathology, Evangelismos General Hospital, Athens, 10676, Greece
| | | | - Georgios T Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, 26504, Greece.,Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), Ludwig-Maximilians University and Helmholtz Center Munich, Member of the German Center for Lung Research (DZL), Munich, Bavaria, 81377, Germany
| | - Spyros Zakynthinos
- 1st Department of Critical Care and Pulmonary Medicine, Medical School, National and Kapodistrian University of Athens, Athens, 10676, Greece
| | - Ioannis Kalomenidis
- 1st Department of Critical Care and Pulmonary Medicine, Medical School, National and Kapodistrian University of Athens, Athens, 10676, Greece
| | - Vassili Soumelis
- Integrative Biology of Human Dendritic Cells and T Cells, Institute Curie, Paris, 75005, France
| | - George Kollias
- Division of Immunology, Biomedical Sciences Research Center Alexander Fleming, Vari-Athens, 16672, Greece.,Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Maria Tsoumakidou
- Division of Immunology, Biomedical Sciences Research Center Alexander Fleming, Vari-Athens, 16672, Greece.
| |
Collapse
|
19
|
Yin GW, Xia XX, Song FJ, Huang YH. Expression of Wnt-1 and TSLC1 in condyloma acuminatum. Clin Exp Dermatol 2019; 44:620-624. [PMID: 30793382 DOI: 10.1111/ced.13862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND Despite its high contagiousness, high recurrence rate and potential for malignant transformation, effective treatments for condyloma acuminatum (CA) have not yet been developed. Accordingly, it is necessary to clarify the mechanisms underlying CA development. AIM To investigate the expression and significance of the proteins Wnt-1 and TSLC1 in patients with CA and in normal foreskin controls. METHODS Wnt-1 and TSLC1 were assessed by immunohistochemistry in 45 patients with CA. RESULTS Positive expression rates of Wnt-1 and TSLC1 were 82.22% (37/45) and 37.78% (17/45), respectively, in CA tissues, and 29.17% (7/24) and 91.67% (22/24), respectively, in normal foreskin controls. Wnt-1 expression intensity in CA was markedly higher (positive to strongly positive) than that in normal controls (negative to weakly positive), whereas TSLC1 expression intensity ranged from weakly positive to positive in CA, and nearly strongly positive in the normal control group. The differences in the positive expression rate and expression intensity of Wnt-1 and TSLC1 between the two groups were statistically significant (P < 0.05). In addition, Wnt-1 and TSLC1 were negatively correlated. (r = -0.336, P < 0.05). CONCLUSIONS Overexpression of Wnt-1 and low expression of TSLC1 may be associated with the growth of CA. These findings may provide a basis for the development of therapies to prevent recurrence or malignant transformation of CA.
Collapse
Affiliation(s)
- G W Yin
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - X X Xia
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - F J Song
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Y H Huang
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
20
|
Dong JJ, Ying L, Shi KQ. Expression of the Wnt ligands gene family and its relationship to prognosis in hepatocellular carcinoma. Cancer Cell Int 2019; 19:34. [PMID: 30814912 PMCID: PMC6376661 DOI: 10.1186/s12935-019-0743-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/31/2019] [Indexed: 12/14/2022] Open
Abstract
Background The Wnt gene family members are known to participate regulating various normal and pathological processes including tumorigenesis. However, the association between Wnt ligands gene family and prognosis in hepatocellular carcinoma has not been systematically studied. Therefore, we evaluated the role of Wnt ligands gene family in hepatocellular carcinoma using publicly available data from The Cancer Genome Atlas (TCGA). Methods Clinical information and RNA-Seq mRNA expression data were derived from TCGA hepatocellular carcinoma cohort. Differences in overall survival (OS) and disease-free survival (DFS) between increased and decreased expression groups (defined by X-tile analyses) of Wnt ligands gene family were compared using Kaplan-Meier method and Cox regression model, with p-values calculated via log-rank test. Gene Set Enrichment Analysis (GSEA) was performed. Results Multivariate analysis adjusted for patient age, sex, BMI, tumor grade, and TMN stage revealed that Wnt1, Wnt3 and Wnt5B expressions were independent prognostic factors for OS and DFS (OS: HR = 0.58, P = 0.006; HR = 0.65, P = 0.03; HR = 0.56, P = 0.023, respectively; DFS: HR = 0.52, P < 0.001; HR = 1.93, P = 0.003; HR = 0.59, P = 0.011, respectively). Furthermore, expression of Wnt1 and Wnt5B was significantly associated with TMN stage (P = 0.02 and P = 0.03 for OS; P = 0.02 and P = 0.02 for DFS). GSEA showed that nucleotide excision repair was differentially enriched in Wnt1 low expression phenotype and aminoacyl trna biosynthesis and basal transcription factors were differentially enriched in Wnt5B low expression phenotype. Conclusions Our results identified associations of several Wnt ligands with prognosis of HCC patients, indicating that these genes could serve as prognostic biomarkers of HCC.
Collapse
Affiliation(s)
- Jia-Jia Dong
- 1Department of Ultrasonography, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang China
| | - Li Ying
- 1Department of Ultrasonography, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang China
| | - Ke-Qing Shi
- 2Precision Medical Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Wenzhou, China
| |
Collapse
|
21
|
Chen MJ, Wang YC, Wu DW, Chen CY, Lee H. Association of nuclear localization of SHP2 and YAP1 with unfavorable prognosis in non-small cell lung cancer. Pathol Res Pract 2019; 215:801-806. [PMID: 30685130 DOI: 10.1016/j.prp.2019.01.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/02/2019] [Accepted: 01/17/2019] [Indexed: 01/07/2023]
Abstract
Src homology region 2 (SH2)-containing protein tyrosine phosphatase 2 (SHP2) is ubiquitously expressed in cytoplasmic localization, which in turn confers tumor malignancy and poor prognosis in various human cancers. YAP1 interacts with SHP2 to promote translocation of SHP2 to nucleus, which consequently promotes Wnt target activation. However, the oncogenic role of the nuclear localization of SHP2 in human cancers remains unclear. We hypothesized that nuclear SHP2 localization, in combination with nuclear YAP1 expression, could be associated with poor overall survival (OS) and relapse free survival (RFS) due to an increase in cyclin D1 and c-Myc mRNA expression following activation of Wnt/ß-catenin signaling. Immunohistochemical analysis of SHP2 and YAP1 protein expression in 102 tumors resected from patients with NSCLC revealed that nuclear SHP2 expression was well correlated with nuclear YAP1 expression (P < 0.001). Evaluation of cyclin D1 and c-Myc mRNA levels by the real-time reverse-phase polymerase chain reaction (RT-PCR) revealed that patients with high cyclin D1 and high c-Myc mRNA expressing tumors more commonly showed high nuclear YAP1 and high nuclear SHP2 (high/high) rather than the high/low, low/high, or low/low combinations (P < 0.001 for cyclin D1 and c-Myc). Kaplan-Meier and Cox-regression models showed OS and RFS to be poorer in patients in the high/high subgroup than in the low/low subgroup (OS: HR = 2.85, 95% CI, 1.52-5.35, P = 0.001; RFS: HR = 2.55, 95% CI, 1.37-4.72, P = 0.003). No prognostic significance was observed for the other two subgroups (low/high and high/low) when compared to the low/low subgroup in this study population. Therefore, we suggest that the prognostic value of SHP2 could reflect the nuclear localization of SHP2 and its interaction with nuclear YAP1, which led to subsequent upregulation of cyclin D1 and c-Myc mRNA expression via activation of the Wnt/ß-catenin signaling pathway.
Collapse
Affiliation(s)
- Ming-Jenn Chen
- Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan; Department of Sports Management, College of Leisure and Recreation Management, Chia Nan University of Pharmacy and Science, Tainan, Taiwan.
| | - Yao-Chen Wang
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - De-Wei Wu
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Chi-Yi Chen
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Huei Lee
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
22
|
Filipova A, Seifrtova M, Mokry J, Dvorak J, Rezacova M, Filip S, Diaz-Garcia D. Breast Cancer and Cancer Stem Cells: A Mini-Review. TUMORI JOURNAL 2018. [DOI: 10.1177/1636.17886] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Alzbeta Filipova
- Department of Medical Biochemistry, Charles University in Prague, Faculty of Medicine, Hradec Králové
| | - Martina Seifrtova
- Department of Medical Biochemistry, Charles University in Prague, Faculty of Medicine, Hradec Králové
| | - Jaroslav Mokry
- Department of Histology and Embryology, Charles University in Prague, Faculty of Medicine, Hradec Králové
| | - Josef Dvorak
- Department of Oncology and Radiotherapy, Charles University in Prague, Faculty of Medicine and Teaching Hospital, Hradec Králové, Czech Republic
| | - Martina Rezacova
- Department of Medical Biochemistry, Charles University in Prague, Faculty of Medicine, Hradec Králové
| | - Stanislav Filip
- Department of Oncology and Radiotherapy, Charles University in Prague, Faculty of Medicine and Teaching Hospital, Hradec Králové, Czech Republic
| | - Daniel Diaz-Garcia
- Department of Histology and Embryology, Charles University in Prague, Faculty of Medicine, Hradec Králové
| |
Collapse
|
23
|
Liu L, Zhi Q, Shen M, Gong FR, Zhou BP, Lian L, Shen B, Chen K, Duan W, Wu MY, Tao M, Li W. FH535, a β-catenin pathway inhibitor, represses pancreatic cancer xenograft growth and angiogenesis. Oncotarget 2018; 7:47145-47162. [PMID: 27323403 PMCID: PMC5216931 DOI: 10.18632/oncotarget.9975] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/17/2016] [Indexed: 12/30/2022] Open
Abstract
The WNT/β-catenin pathway plays an important role in pancreatic cancer carcinogenesis. We evaluated the correlation between aberrant β-catenin pathway activation and the prognosis pancreatic cancer, and the potential of applying the β-catenin pathway inhibitor FH535 to pancreatic cancer treatment. Meta-analysis and immunohistochemistry showed that abnormal β-catenin pathway activation was associated with unfavorable outcome. FH535 repressed pancreatic cancer xenograft growth in vivo. Gene Ontology (GO) analysis of microarray data indicated that target genes responding to FH535 participated in stemness maintenance. Real-time PCR and flow cytometry confirmed that FH535 downregulated CD24 and CD44, pancreatic cancer stem cell (CSC) markers, suggesting FH535 impairs pancreatic CSC stemness. GO analysis of β-catenin chromatin immunoprecipitation sequencing data identified angiogenesis-related gene regulation. Immunohistochemistry showed that higher microvessel density correlated with elevated nuclear β-catenin expression and unfavorable outcome. FH535 repressed the secretion of the proangiogenic cytokines vascular endothelial growth factor (VEGF), interleukin (IL)-6, IL-8, and tumor necrosis factor-α, and also inhibited angiogenesis in vitro and in vivo. Protein and mRNA microarrays revealed that FH535 downregulated the proangiogenic genes ANGPT2, VEGFR3, IFN-γ, PLAUR, THPO, TIMP1, and VEGF. FH535 not only represses pancreatic CSC stemness in vitro, but also remodels the tumor microenvironment by repressing angiogenesis, warranting further clinical investigation.
Collapse
Affiliation(s)
- Lu Liu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qiaoming Zhi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Meng Shen
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fei-Ran Gong
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Binhua P Zhou
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA.,Departments of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Lian Lian
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Oncology, Suzhou Xiangcheng People's Hospital, Suzhou, China.,Department of Pathology, Suzhou Xiangcheng People's Hospital, Suzhou, China
| | - Bairong Shen
- Center for Systems Biology, Soochow University, Suzhou, China
| | - Kai Chen
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Weiming Duan
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Meng-Yao Wu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Min Tao
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China.,PREMED Key Laboratory for Precision Medicine, Soochow University, Suzhou, China.,Jiangsu Institute of Clinical Immunology, Suzhou, China.,Institute of Medical Biotechnology, Soochow University, Suzhou, China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA.,Center for Systems Biology, Soochow University, Suzhou, China.,PREMED Key Laboratory for Precision Medicine, Soochow University, Suzhou, China.,Jiangsu Institute of Clinical Immunology, Suzhou, China
| |
Collapse
|
24
|
Docosahexaenoic acid inhibits 12-O-tetradecanoylphorbol-13- acetate-induced fascin-1-dependent breast cancer cell migration by suppressing the PKCδ- and Wnt-1/β-catenin-mediated pathways. Oncotarget 2018; 7:25162-79. [PMID: 27036017 PMCID: PMC5041895 DOI: 10.18632/oncotarget.7301] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 01/27/2016] [Indexed: 11/25/2022] Open
Abstract
Fascin-1, an actin-bundling protein, plays an important role in cancer cell migration and invasion; however, the underlying mechanism remains unclear. On the basis of a 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced cell migration model, it was shown that TPA increased fascin-1 mRNA and protein expression and fascin-1-dependent cell migration. TPA dose- and time-dependently increased PKCδ and STAT3α activation and GSK3β phosphorylation; up-regulated Wnt-1, β-catenin, and STAT3α expression; and increased the nuclear translocation of β-catenin and STAT3α. Rottlerin, a PKCδ inhibitor, abrogated the increases in STAT3α activation and β-catenin and fascin-1 expression. WP1066, a STAT3 inhibitor, suppressed TPA-induced STAT3α DNA binding activity and β-catenin expression. Knockdown of β-catenin attenuated TPA-induced fascin-1 and STAT3α expression as well as cell migration. In addition to MCF-7, migration of Hs578T breast cancer cells was inhibited by silencing fascin-1, β-catenin, and STAT3α expression as well. TPA also induced Wnt-1 expression and secretion, and blocking Wnt-1 signaling abrogated β-catenin induction. DHA pretreatment attenuated TPA-induced cell migration, PKCδ and STAT3α activation, GSK3β phosphorylation, and Wnt-1, β-catenin, STAT3α, and fascin-1 expression. Our results demonstrated that TPA-induced migration is likely associated with the PKCδ and Wnt-1 pathways, which lead to STAT3α activation, GSK3β inactivation, and β-catenin increase and up-regulation of fascin-1 expression. Moreover, the anti-metastatic potential of DHA is partly attributed to its suppression of TPA-activated PKCδ and Wnt-1 signaling.
Collapse
|
25
|
Wu N, Zhang YL, Wang HT, Li DW, Dai HJ, Zhang QQ, Zhang J, Ma Y, Xia Q, Bian JM, Hang HL. Overexpression of hepatocyte nuclear factor 4α in human mesenchymal stem cells suppresses hepatocellular carcinoma development through Wnt/β-catenin signaling pathway downregulation. Cancer Biol Ther 2017; 17:558-65. [PMID: 27124543 DOI: 10.1080/15384047.2016.1177675] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) hold promise as cellular vehicles for the delivery of therapeutic gene products because they can be isolated, expanded, and genetically modified in vitro and possess tumor-oriented homing capacity in vivo. (1) Hepatocyte nuclear factor 4α (HNF4α) is a dominant transcriptional regulator of hepatocyte differentiation and hepatocellular carcinogenesis (HCC). (2,3) We have previously demonstrated that overexpression of HNF4α activates various hepatic-specific genes and enhances MSC differentiation. (4) However, the extent that overexpression of HNF4α in MSCs influences HCC progression has yet to be examined. Here we sought to investigate what effect MSCs overexpressing HNF4α (MSC-HNF4α) have on human hepatoma cells in vitro and in vivo. Conditioned medium collected from in vitro MSC-HNF4α cultures significantly inhibited hepatoma cell growth and metastasis compared with controls. Additionally, nude mice administered MSC-HNF4α exhibited significantly smaller tumors compared with controls in vivo. Immunoblot analysis of HCC cells treated with MSC-HNF4α displayed downregulated β-catenin, cyclinD1, c-Myc, MMP2 and MMP9. Taken together, our results demonstrate that MSC-HNF4α inhibits HCC progression by reducing hepatoma cell growth and metastasis through downregulation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Ning Wu
- a Department of Liver Surgery , RenJi Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , China.,b Department of General Surgery , Nanjing Hospital Affiliated to Nanjing Medical University , Nanjing , China
| | | | - Hai-Tian Wang
- b Department of General Surgery , Nanjing Hospital Affiliated to Nanjing Medical University , Nanjing , China
| | - Da-Wei Li
- a Department of Liver Surgery , RenJi Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| | - Hui-Juan Dai
- a Department of Liver Surgery , RenJi Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| | - Qi-Qi Zhang
- a Department of Liver Surgery , RenJi Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| | - Jiang Zhang
- a Department of Liver Surgery , RenJi Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| | - Yong Ma
- b Department of General Surgery , Nanjing Hospital Affiliated to Nanjing Medical University , Nanjing , China
| | - Qiang Xia
- a Department of Liver Surgery , RenJi Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| | - Jian-Min Bian
- b Department of General Surgery , Nanjing Hospital Affiliated to Nanjing Medical University , Nanjing , China
| | - Hua-Lian Hang
- a Department of Liver Surgery , RenJi Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| |
Collapse
|
26
|
Merchant N, Nagaraju GP, Rajitha B, Lammata S, Jella KK, Buchwald ZS, Lakka SS, Ali AN. Matrix metalloproteinases: their functional role in lung cancer. Carcinogenesis 2017. [DOI: 10.1093/carcin/bgx063] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
27
|
Xu K, Zhang Z, Pei H, Wang H, Li L, Xia Q. FoxO3a induces temozolomide resistance in glioblastoma cells via the regulation of β-catenin nuclear accumulation. Oncol Rep 2017; 37:2391-2397. [PMID: 28260024 DOI: 10.3892/or.2017.5459] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/30/2017] [Indexed: 11/05/2022] Open
Abstract
Glioblastoma multiforme (GBM), the most common malignant brain tumor, is currently treated with temozolomide (TMZ), but GBM often exhibits resistance to TMZ. Although several mechanisms underlying GBM resistance to TMZ have been identified, these mechanisms are yet to fully explain how GBM gains resistance to TMZ. Our previous work has shown that FoxO3a, a member of the FoxO subfamily of transcription factors, promotes glioma cell proliferation and invasion. In this study, we sought to determine whether FoxO3a participates in TMZ resistance in GBM cells. Parental cell lines (also designated as sensitive cell lines) U87-MG and U251-MG, as well as the corresponding resistant cell lines U87-TR and U251-TR (generated by repeated TMZ treatments), were subjected to western blot analysis. Our results showed that the resistant cells (both U87-TRand U251-TR) exhibited higher levels of FoxO3a and β-catenin relative to their corresponding sensitive counterparts. Depletion of FoxO3a in the resistant cells enhanced the cytotoxic effect of TMZ. Further investigation showed that FoxO3a depletion did not affect the total protein level of β-catenin, but otherwise markedly reduced the nuclear β-catenin level. Taken together, these findings strongly support that FoxO3a renders GBM cells resistant to TMZ treatment, at least in part, through the regulation of β-catenin nuclear accumulation.
Collapse
Affiliation(s)
- Ke Xu
- Department of Immunology, School of Tropical and Laboratory Medicine, Hainan Medical University, Haikou, Hainan 571101, P.R. China
| | - Zhenhao Zhang
- Medical Technology Institute of Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Hua Pei
- Department of Immunology, School of Tropical and Laboratory Medicine, Hainan Medical University, Haikou, Hainan 571101, P.R. China
| | - Huamin Wang
- Department of Immunology, School of Tropical and Laboratory Medicine, Hainan Medical University, Haikou, Hainan 571101, P.R. China
| | - Liang Li
- Department of Immunology, School of Tropical and Laboratory Medicine, Hainan Medical University, Haikou, Hainan 571101, P.R. China
| | - Qianfeng Xia
- Key Laboratory of Tropical Biomedicine, and Faculty of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan 571101, P.R. China
| |
Collapse
|
28
|
Jin J, Zhan P, Qian H, Wang X, Katoh M, Phan K, Chung JH, Lv T, Song Y. Prognostic value of wingless-type proteins in non-small cell lung cancer patients: a meta-analysis. Transl Lung Cancer Res 2016; 5:436-42. [PMID: 27652206 DOI: 10.21037/tlcr.2016.08.08] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Wingless-type protein (Wnt) signaling pathway plays a crucial role in the development of human malignancies, such as epithelial-to-mesenchymal transition (EMT) and the maintenance of cancer stem cells (CSCs). Several studies have shown that the expression levels of Wnt proteins, ligands of Wnt signaling pathway, are related to clinical outcomes of non-small cell lung cancer (NSCLC) patients. This meta-analysis aimed to assess the prognostic value of Wnts proteins in patients with NSCLC. METHODS A multiple electronic literature search was conducted to identify all articles referring to the prognostic value of Wnt proteins in patients of NSCLC up to July 2016. Eligible studies were included in a meta-analysis in order to summarize the extracted data in terms of pooled hazard ratios (HRs) and their 95% confidence intervals (95% CIs). RESULTS Ten studies published between 2005 and 2015 were eligible for this meta-analysis. The total number of patients included was 1,805. The combined HR for all eligible studies evaluating the overall survival (OS) of NSCLC patients with positive Wnt expression was 1.60 (95% CI: 1.39-1.84). The subgroup analysis showed both Wnt1 and Wnt5a are associated with clinical outcome of NSCLC patients. CONCLUSIONS Overexpression of Wnt proteins, as well as Wnt1 or Wnt5a alone, was markedly associated with adverse OS in lung cancer patients, suggesting that Wnts may act as a prognostic marker among NSCLCs.
Collapse
Affiliation(s)
- Jiajia Jin
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China;; Medical School of Southeast University, Nanjing 210009, China
| | - Ping Zhan
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Hong Qian
- Medical School of Southeast University, Nanjing 210009, China
| | - Xiaoxia Wang
- Intensive Care Unit, Inner Mongolia People's Hospital, Hohhot 010017, Inner Mongolia Autonomous region, China
| | - Masaru Katoh
- Department of Omics Network, National Cancer Center, Tokyo, Japan
| | - Kevin Phan
- The Collaborative Research (CORE) Group, Macquarie University, Sydney, Australia
| | - Jin-Haeng Chung
- Department of Pathology and Respiratory Center, Seoul National University Bundang Hospital, Seongnam City, Republic of Korea
| | - Tangfeng Lv
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | | |
Collapse
|
29
|
Hwang SJ, Lee HW, Kim HR, Lee H, Shin CH, Yun SI, Lee DH, Kim DH, Kim KK, Joo KM, Kim HH. Ubiquitin-specific protease 4 controls metastatic potential through β-catenin stabilization in brain metastatic lung adenocarcinoma. Sci Rep 2016; 6:21596. [PMID: 26883469 PMCID: PMC4756316 DOI: 10.1038/srep21596] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/27/2016] [Indexed: 01/01/2023] Open
Abstract
Brain metastasis is the most common type of intracranial cancer and is the main cause of cancer-associated mortality. Brain metastasis mainly originates from lung cancer. Using a previously established in vitro brain metastatic model, we found that brain metastatic PC14PE6/LvBr4 cells exhibited higher expression of β-catenin and increased migratory activity than parental PC14PE6 cells. Knockdown of β-catenin dramatically suppressed the motility and invasiveness of PC14PE6/LvBr4 cells, indicating β-catenin is involved in controlling metastatic potential. Since β-catenin protein was increased without a significant change in its mRNA levels, the mechanism underlying increased β-catenin stability was investigated. We found that ubiquitin-specific protease 4 (USP4), recently identified as a β-catenin-specific deubiquitinylating enzyme, was highly expressed in PC14PE6/LvBr4 cells and involved in the increased stability of β-catenin protein. Similar to β-catenin knockdown, USP4-silenced PC14PE6/LvBr4 cells showed decreased migratory and invasive abilities. Moreover, knockdown of both USP4 and β-catenin inhibited clonogenicity and induced mesenchymal-epithelial transition by downregulating ZEB1 in PC14PE6/LvBr4 cells. Using bioluminescence imaging, we found that knockdown of USP4 suppressed brain metastasis in vivo and significantly increased overall survival and brain metastasis-free survival. Taken together, our results indicate that USP4 is a promising therapeutic target for brain metastasis in patients with lung adenocarcinoma.
Collapse
Affiliation(s)
- Su Jin Hwang
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
| | - Hye Won Lee
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye Ree Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
| | - Hong Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
| | - Chang Hoon Shin
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
| | - Sun-Il Yun
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Dong Heon Lee
- Department of Neurosurgery, Institute for Refractory Cancer Research, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Duk-Hwan Kim
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea.,Center for Genome Research, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyeong Kyu Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Kyeung Min Joo
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea.,Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Hyeon Ho Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
30
|
Shi JY, Yang LX, Wang ZC, Wang LY, Zhou J, Wang XY, Shi GM, Ding ZB, Ke AW, Dai Z, Qiu SJ, Tang QQ, Gao Q, Fan J. CC chemokine receptor-like 1 functions as a tumour suppressor by impairing CCR7-related chemotaxis in hepatocellular carcinoma. J Pathol 2015; 235:546-558. [PMID: 25255875 DOI: 10.1002/path.4450] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/19/2014] [Accepted: 09/21/2014] [Indexed: 12/21/2022]
Abstract
Atypical chemokine receptors (ACRs) have been discovered to participate in the regulation of tumour behaviour. Here we report a tumour-suppressive role of a novel ACR member, CC chemokine receptor like 1 (CCRL1), in human hepatocellular carcinoma (HCC). Both mRNA and protein expressions of CCRL1 correlated with the malignant phenotype of HCC cells and were significantly down-regulated in tumour tissue compared with paired normal liver tissue. In both the initial and validation cohorts (n = 240 and n = 384, respectively), CCRL1 deficiency was associated with advanced tumour stage and was an independent index for worse survival and increased recurrence. Furthermore, knock-down or forced expression of CCRL1 revealed that CCRL1 suppressed the proliferation and invasion of HCC cells in vitro and reduced tumour growth and lung metastasis in vivo, with depressed levels of CCL19 and CCL21. By sequestrating CCL19 and CCL21, CCRL1 reduced their binding to CCR7 and consequently mitigated the detrimental impact of CCR7, including Akt-GSK3β pathway activation and nuclear accumulation of β-catenin in tumour cells. Clinically, the prognostic value of the CCR7 expression in HCC depended on the expression level of CCRL1, suggesting that CCRL1 may serve as an upstream switch for the CCR7 signalling cascade. Together, our findings suggest that CCRL1 impairs chemotactic events associated with CCR7 in the progression and metastasis of HCC. Our results also show a potential interplay between typical and atypical chemokine receptors in human cancer. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/secondary
- Carcinoma, Hepatocellular/therapy
- Cell Line, Tumor
- Cell Proliferation
- Chemotaxis
- Female
- Gene Knockdown Techniques
- Glycogen Synthase Kinase 3/metabolism
- Glycogen Synthase Kinase 3 beta
- Humans
- Kaplan-Meier Estimate
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/mortality
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/secondary
- Male
- Mice, Inbred BALB C
- Mice, Nude
- Middle Aged
- Neoplasm Invasiveness
- Neoplasm Staging
- Phenotype
- Proportional Hazards Models
- Proto-Oncogene Proteins c-akt/metabolism
- RNA Interference
- RNA, Messenger/metabolism
- Receptors, CCR/genetics
- Receptors, CCR/metabolism
- Receptors, CCR7/genetics
- Receptors, CCR7/metabolism
- Signal Transduction
- Time Factors
- Transfection
- Treatment Outcome
- Tumor Microenvironment
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Jie-Yi Shi
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lindskog C, Edlund K, Mattsson JSM, Micke P. Immunohistochemistry-based prognostic biomarkers in NSCLC: novel findings on the road to clinical use? Expert Rev Mol Diagn 2015; 15:471-90. [DOI: 10.1586/14737159.2015.1002772] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Zhao S, Wang J, Qin C. Blockade of CXCL12/CXCR4 signaling inhibits intrahepatic cholangiocarcinoma progression and metastasis via inactivation of canonical Wnt pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:103. [PMID: 25471741 PMCID: PMC4265318 DOI: 10.1186/s13046-014-0103-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/21/2014] [Indexed: 12/25/2022]
Abstract
Background Intrahepatic cholangiocarcinoma (IHCC) is the second most frequent primary malignant liver tumor following hepatocellular carcinoma. It is a highly fatal disease and has few therapeutics. The CXC chemokine ligand-12 (CXCL12)/CXC chemokine receptor type 4 (CXCR4) axis has been shown to be involved in tumorgenesis, proliferation, and angiogenesis in a variety of cancers including IHCC. However, its prognostic significance in IHCC is unclear. The purpose of this study was to examine the functional role of CXCR4 in the progression and metastasis of IHCC and explore the underlying mechanism. Methods The CXCR4 expression, overall survival, and the clinical characteristics including age, sex, differentiation degree, tumor size, vascular invasion, lymph node metastasis, TNM stage, and T stage were analyzed for 122 IHCC patients. Short hairpin RNA (shRNA) against CXCR4 was used to disrupt the CXCL12/CXCR4 signal transduction pathways in IHCC cell lines. In vitro assays, including CCK-8 assay, flow cytometry, and colony formation assay, and in vivo tumor formation assay were utilized to detect the cell phenotype of CXCR4 knockdown cells. Transwell and wound healing assays were used to examine the IHCC cell invasion and migration ability. The Wnt pathway was assessed by Western blot and β-Catenin/Tcf transcription reporter assay. Results We demonstrated that CXCR4 expression was closely correlated with IHCC progression and metastasis characteristics. The overall survival of patients with high CXCR4 expression was significantly lower than that of patients with low CXCR4 expression. Furthermore, we showed that the abrogation of CXCR4 had significantly negative influence on the IHCC cell phenotype, including in vitro cell proliferation, cell cycle, colony formation, cell invasion, and in vivo tumorigenicity. In addition, CXCR4 knockdown downregulated Wnt target genes and mesenchymal markers such as Vimentin and Slug. Conclusions In conclusion, our result shows that high CXCR4 expression is associated with IHCC progression and metastasis via the canonical Wnt pathway, suggesting that CXCR4 may serve as a promising therapeutic target for IHCC.
Collapse
Affiliation(s)
- Shengqiang Zhao
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, China.
| | - Jing Wang
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, China.
| | - Chengyong Qin
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, China.
| |
Collapse
|
33
|
Moura RS, Carvalho-Correia E, daMota P, Correia-Pinto J. Canonical Wnt signaling activity in early stages of chick lung development. PLoS One 2014; 9:e112388. [PMID: 25460002 PMCID: PMC4251901 DOI: 10.1371/journal.pone.0112388] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/15/2014] [Indexed: 01/08/2023] Open
Abstract
Wnt signaling pathway is an essential player during vertebrate embryonic development which has been associated with several developmental processes such as gastrulation, body axis formation and morphogenesis of numerous organs, namely the lung. Wnt proteins act through specific transmembrane receptors, which activate intracellular pathways that regulate cellular processes such as cell proliferation, differentiation and death. Morphogenesis of the fetal lung depends on epithelial-mesenchymal interactions that are governed by several growth and transcription factors that regulate cell proliferation, fate, migration and differentiation. This process is controlled by different signaling pathways such as FGF, Shh and Wnt among others. Wnt signaling is recognized as a key molecular player in mammalian pulmonary development but little is known about its function in avian lung development. The present work characterizes, for the first time, the expression pattern of several Wnt signaling members, such as wnt-1, wnt-2b, wnt-3a, wnt-5a, wnt-7b, wnt-8b, wnt-9a, lrp5, lrp6, sfrp1, dkk1, β-catenin and axin2 at early stages of chick lung development. In general, their expression is similar to their mammalian counterparts. By assessing protein expression levels of active/total β-catenin and phospho-LRP6/LRP6 it is revealed that canonical Wnt signaling is active in this embryonic tissue. In vitro inhibition studies were performed in order to evaluate the function of Wnt signaling pathway in lung branching. Lung explants treated with canonical Wnt signaling inhibitors (FH535 and PK115-584) presented an impairment of secondary branch formation after 48 h of culture along with a decrease in axin2 expression levels. Branching analysis confirmed this inhibition. Wnt-FGF crosstalk assessment revealed that this interaction is preserved in the chick lung. This study demonstrates that Wnt signaling is crucial for precise chick lung branching and further supports the avian lung as a good model for branching studies since it recapitulates early mammalian pulmonary development.
Collapse
Affiliation(s)
- Rute Silva Moura
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Biology Department, School of Sciences, University of Minho, Braga, Portugal
| | - Eduarda Carvalho-Correia
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Paulo daMota
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Urology, Hospital de Braga, Braga, Portugal
| | - Jorge Correia-Pinto
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Pediatric Surgery, Hospital de Braga, Braga, Portugal
| |
Collapse
|
34
|
Xu X, Kim JE, Sun PL, Yoo SB, Kim H, Jin Y, Chung JH. Immunohistochemical demonstration of alteration of β-catenin during tumor metastasis by different mechanisms according to histology in lung cancer. Exp Ther Med 2014; 9:311-318. [PMID: 25574191 PMCID: PMC4280991 DOI: 10.3892/etm.2014.2095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 07/31/2014] [Indexed: 12/27/2022] Open
Abstract
The protein β-catenin exhibits a dual function in cells, by acting as a major structural component of cell-cell adherens junctions and as a central signaling molecule in the Wnt signaling pathway. However, how the regulation of β-catenin expression during tumor metastasis in non-small cell lung cancer (NSCLC) varies according to histological type remains unclear. To investigate the regulatory mechanism of β-catenin on tumor metastasis, the present study compared the expression of Wnt1, β-catenin and E-cadherin in 41 primary NSCLC tumors and their corresponding metastatic lesions by immunohistochemistry. Altered expression of β-catenin was more frequent in the metastatic tumors (34/41, 82.9%) than in the corresponding primary tumors (24/41, 58.5%; P<0.05). There were 12 cases [nine of adenocarcinoma (ADC) and three of squamous cell carcinoma (SqCC)] that revealed discordant β-catenin expression between the primary tumors and the corresponding metastatic lesions. Of these, 11 cases (11/12, 91.7%; nine ADCs and two SqCCs) demonstrated acquired β-catenin alterations in the metastatic lesions. Subgroup analysis of these nine ADCs revealed that six cases (6/9, 66.7%) were accompanied by E-cadherin loss but no Wnt1 overexpression. Subgroup analysis of the three SqCCs revealed discordant β-catenin expression. Two cases (2/3, 66.7%) demonstrated acquired β-catenin expression during metastatic progression with Wnt1 overexpression but no change in E-cadherin expression. One case of SqCC revealed normal β-catenin expression in the metastasis although the expression was aberrant in the primary tumor. The results of the present study revealed that the changes in β-catenin expression occurred during tumor metastasis by different mechanisms, depending on histological type. The alterations in β-catenin expression may be regulated by a cadherin-catenin system in ADCs with reduced membranous expression of E-cadherin, but mediated by Wnt1 overexpression in SqCCs with cytoplasmic or nuclear transition types.
Collapse
Affiliation(s)
- Xianhua Xu
- Department of Pathology, Jilin Cancer Hospital, Changchun, Jilin 130012, P.R. China
| | - Ji Eun Kim
- Department of Pathology, Seoul National University Boramae Hospital, Seoul 156-707, Republic of Korea
| | - Ping-Li Sun
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 463-707, Republic of Korea
| | - Seol Bong Yoo
- Department of Pathology, Presbyterian Medical Center, Jeonju 560-750, Republic of Korea
| | - Hyojin Kim
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 463-707, Republic of Korea
| | - Yan Jin
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 463-707, Republic of Korea
| | - Jin-Haeng Chung
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 463-707, Republic of Korea
| |
Collapse
|
35
|
Lin Z, Wan X, Jiang R, Deng L, Gao Y, Tang J, Yang Y, Zhao W, Yan X, Yao K, Sun B, Chen Y. Epstein-Barr virus-encoded latent membrane protein 2A promotes the epithelial-mesenchymal transition in nasopharyngeal carcinoma via metastatic tumor antigen 1 and mechanistic target of rapamycin signaling induction. J Virol 2014; 88:11872-85. [PMID: 25100829 PMCID: PMC4178752 DOI: 10.1128/jvi.01867-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 07/14/2014] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus-encoded latent membrane protein 2A (LMP2A) promotes the epithelial-mesenchymal transition (EMT) of nasopharyngeal carcinoma (NPC), thereby increasing tumor invasion. Recently, the dysregulation of metastatic tumor antigen 1 (MTA1) was found to enhance tumor metastasis in a variety of cancers. A molecular connection between these two proteins has been proposed but not firmly established. In this study, we reported the overexpression of MTA1 in 29/60 (48.3%) NPC patients, and the overexpression of MTA1 significantly correlated with tumor metastasis. The overexpression of MTA1 promoted EMT via the Wnt1 pathway and β-catenin activation. We demonstrated that LMP2A reinforces the expression of MTA1 via the mechanistic target of rapamycin (mTOR) pathway to promote EMT in NPC. Furthermore, by knocking down 4EBP1 in combination with the new mTOR inhibitor INK-128 treatment, we discovered that LMP2A expression activates the 4EBP1-eIF4E axis and increases the expression of MTA1 at the translational level partially independent of c-myc. These findings provided novel insights into the correlation between the LMP2A and MTA1 proteins and reveal a novel function of the 4EBP1-eIF4E axis in EMT of nasopharyngeal carcinoma. Importance: Prevention of the recurrence and metastasis of NPC is critical to achieving a successful NPC treatment. As we all know, EMT has a vital role in metastasis of malignancies. LMP2A, an oncoprotein of Epstein-Barr virus, a well-known NPC activator, induces EMT and has been proved to exert a promoting effect in tumor metastasis. Our study demonstrated that LMP2A could induce EMT by activating MTA1 at the translational level via activating mTOR signaling and the 4EBP1-eIF4E axis. Taken together, our findings bridge the gap between the NPC-specific cell surface molecule and the final phenotype of the NPC cells. Additionally, our findings indicate that LMP2A and mTOR will serve as targets for NPC therapy in the future.
Collapse
Affiliation(s)
- Zhe Lin
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xin Wan
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Runqiu Jiang
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lei Deng
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yun Gao
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Junwei Tang
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yu Yang
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Wei Zhao
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xin Yan
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Kun Yao
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Beicheng Sun
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yun Chen
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
36
|
Xi Y, Chen Y. Wnt signaling pathway: implications for therapy in lung cancer and bone metastasis. Cancer Lett 2014; 353:8-16. [PMID: 25042867 DOI: 10.1016/j.canlet.2014.07.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/12/2014] [Accepted: 07/04/2014] [Indexed: 12/31/2022]
Abstract
Lung cancer remains a major worldwide health problem and patients have high rate of metastasis including bone. Although pathologic characteristics of this disease are clear and well established, much remains to be understood about this tumor, particularly at the molecular signaling level. Secreted signaling molecules of the Wnt family have been widely investigated and found to play a prominent role to induce human malignant diseases, such as breast and prostate cancer. A variety of studies have also demonstrated that the Wnt signaling pathway is closely associated with bone malignancies including osteosarcoma, multiple myeloma, and breast or prostate cancer induced bone metastasis. The aim of this review is to provide a summary regarding the role of the Wnt signaling pathway in lung cancer and bone metastasis, highlighting the aberrant activation of Wnt in this malignancy. We also discuss the potential therapeutic applications for the treatment of lung cancer and cancer induced bone metastasis targeting the Wnt pathway.
Collapse
Affiliation(s)
- Yongming Xi
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, China
| | - Yan Chen
- Division in Signaling Biology, Ontario Cancer Institute, University Health Network, Toronto, Canada.
| |
Collapse
|
37
|
Coscio A, Chang DW, Roth JA, Ye Y, Gu J, Yang P, Wu X. Genetic variants of the Wnt signaling pathway as predictors of recurrence and survival in early-stage non-small cell lung cancer patients. Carcinogenesis 2014; 35:1284-91. [PMID: 24517998 PMCID: PMC4043238 DOI: 10.1093/carcin/bgu034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 01/06/2014] [Accepted: 01/25/2014] [Indexed: 12/31/2022] Open
Abstract
Early-stage non-small cell lung cancer (NSCLC) is potentially curative. Nevertheless, many patients will show disease recurrence after curative treatment. The Wnt signaling pathway is a developmental and stem cell pathway that plays an important role in tumorigenesis and may affect cancer progression. We hypothesize that genetic variants of the Wnt pathway may influence clinical outcome in early-stage NSCLC patients. We genotyped 441 functional and tagging single nucleotide polymorphisms (SNPs) from 54 genes of the Wnt pathway in 535 early-stage NSCLC patients treated with curative intent therapy including surgery and chemotherapy. For validation, 4 top SNPs were genotyped in 301 early-stage NSCLC patients from the Mayo Clinic. Cox proportional hazard model and combined SNP analyses were performed to identify significant SNPs correlated with recurrence-free and overall survival. Results from discovery group showed a total of 40 SNPs in 20 genes correlated with disease recurrence (P < 0.05). After correction for multiple comparisons, rs2536182 near Wnt16 remained significant (q < 0.1), which was validated in the replication population. Thirty-nine SNPs in 16 genes correlated with overall survival (P < 0.05) in the discovery group, and seven remained significant after multiple comparisons were considered (q < 0.1). In patients receiving surgery-only treatment, rs10898563 of FZD4 gene was associated with both recurrence-free and overall survival. Joint SNP analyses identified predictive markers for recurrence stratified by treatment. Our findings suggest inherited genetic variation in the Wnt signaling pathway may contribute to variable clinical outcomes for patients with early-stage NSCLC.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/mortality
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/therapy
- Female
- Genetic Variation
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/mortality
- Lung Neoplasms/pathology
- Lung Neoplasms/therapy
- Male
- Middle Aged
- Neoplasm Recurrence, Local
- Neoplasm Staging
- Polymorphism, Single Nucleotide
- Prognosis
- Reproducibility of Results
- Risk Factors
- Wnt Signaling Pathway
Collapse
Affiliation(s)
- Angela Coscio
- Departments of General Oncology, Epidemiology and Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA and Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | - Jack A Roth
- Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA and
| | | | | | - Ping Yang
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | |
Collapse
|
38
|
Loilome W, Bungkanjana P, Techasen A, Namwat N, Yongvanit P, Puapairoj A, Khuntikeo N, Riggins GJ. Activated macrophages promote Wnt/β-catenin signaling in cholangiocarcinoma cells. Tumour Biol 2014; 35:5357-67. [PMID: 24549785 DOI: 10.1007/s13277-014-1698-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/26/2014] [Indexed: 12/13/2022] Open
Abstract
The Wnt/β-catenin signaling pathway is pathologically activated in cholangiocarcinoma (CCA). Here, we determined the expression profile as well as biological role of activated Wnt/β-catenin signaling in CCA. The quantitative reverse transcription polymerase chain reaction demonstrated that Wnt3a, Wnt5a, and Wnt7b mRNA were significantly higher in CCA tissues than adjacent non-tumor tissues and normal liver tissues. Immunohistochemical staining revealed that Wnt3a, Wnt5a, and Wnt7b were positive in 92.1, 76.3, and 100 % of 38 CCA tissues studied. It was noted that Wnt3 had a low expression in tumor cells, whereas a high expression was mainly found in inflammatory cells. Interestingly, a high expression level of Wnt5a was significantly correlated to poor survival of CCA patients (P=0.009). Membrane localization of β-catenin was reduced in the tumors compared to normal bile duct epithelia, and we also found that 73.7 % of CCA cases showed the cytoplasmic localization. Inflammation is known to be a risk factor for CCA development, and we tested whether this might induce Wnt/β-catenin signaling. We found that lipopolysaccharides (LPS) elevated the expression of Wnt3 both mRNA and protein levels in the macrophage cell line. Additionally, the conditioned media taken from LPS-induced activated macrophage culture promoted β-catenin accumulation in CCA cells. Furthermore, transient suppression of β-catenin by siRNA significantly induced growth inhibition of CCA cells, concurrently with decreasing cyclin D1 protein level. In conclusion, the present study reports the abundant expression of Wnt protein family and β-catenin in CCA as well as the effect of inflammatory condition on Wnt/β-catenin activation in CCA cells. Importantly, abrogation of β-catenin expression caused significant CCA cell growth inhibition. Thus, the Wnt/β-catenin signaling pathway may contribute to CCA cell proliferation and hence may serve as a prognostic marker for CCA progression and provide a potential target for CCA therapy.
Collapse
Affiliation(s)
- Watcharin Loilome
- Department of Biochemistry and Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand,
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Prognostic value of matrix metalloproteinase-7 expression in patients with non-small cell lung cancer. Tumour Biol 2013; 35:3717-24. [PMID: 24338766 DOI: 10.1007/s13277-013-1491-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 11/28/2013] [Indexed: 02/08/2023] Open
Abstract
The prognostic value of matrix metalloproteinase-7 (MMP-7) for survival of patients with non-small cell lung cancer (NSCLC) remains controversial. We performed a meta-analysis of the literatures to clarify its impact. Trials were selected for meta-analysis if they provided an independent assessment of MMP-7 in NSCLC and reported the analysis of survival data based on MMP-7 status. Pooled hazard ratio (HR) with 95% confidence interval (95% CI) was used to evaluate the associations between MMP-7 expression and survival of NSCLC patients. Heterogeneity and publication bias were also assessed. Seven studies involving 1,446 patients were identified. The combined HR for all studies was 1.28 (95% CI 0.86-1.91; P = 0.22). Subgroup analysis revealed that MMP-7 overexpression had a favorable impact on survival in Caucasians (HR = 0.74; 95% CI 0.55-0.99; P = 0.043) but showed a poor survival prognosis in Asians (HR = 1.74; 95% CI 1.05-2.88, P = 0.031). Its effect also appeared significant when the analysis was restricted to Asian patients with squamous cell cancer (HR =3.42; 95% CI 1.92-6.11, P = 0.000) and adenocarcinoma (HR = 2.1; 95% CI 1.34-3.29, P = 0.001). Our meta-analysis suggests that there are ethnic differences in the clinical significance of MMP-7 expression for patients with NSCLC.
Collapse
|
40
|
|
41
|
Promoter methylation of WNT inhibitory factor-1 and expression pattern of WNT/β-catenin pathway in human astrocytoma: pathologic and prognostic correlations. Mod Pathol 2013; 26:626-39. [PMID: 23328978 DOI: 10.1038/modpathol.2012.215] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
WNT inhibitory factor-1 (WIF1) is an antagonist of the WNT signaling pathway. We investigated the relationship between WIF1 promoter methylation and regulation of the WNT/β-catenin signaling pathway, tumor grade, and survival in patients with astrocytoma. This study included 86 cases of astrocytoma, comprising 20 diffuse astrocytomas and 66 glioblastomas. In addition, 17 temporal lobectomy specimens from patients with epilepsy were included as controls. The ratio of methylated DNA to total methylated and unmethylated DNA (% methylation) was measured by methylation- and unmethylation-specific PCR. Representative tumor tissue was immunostained for WIF1, β-catenin, cyclin D1, c-myc, and isocitrate dehydrogenase 1. Levels of WIF1 promoter methylation, mRNA expression, and protein expression in a glioblastoma cell line were compared before and after demethylation treatment. The mean percent methylation of the WIF1 promoter in astrocytomas was higher than that in control brain tissue. WIF1 protein expression was lower in the tumor group with >5% methylation than in the group with <5% methylation. Cytoplasmic β-catenin staining was more frequently observed in tumors with a low WIF1 protein expression level. Demethylation treatment of a glioblastoma cell line increased WIF1 mRNA and protein expression. Increased WIF1 promoter methylation and decreased WIF1 protein expression were not related to patient survival. In conclusion, WIF1 expression is downregulated by promoter methylation and is an important mechanism of aberrant WNT/β-catenin pathway activation in astrocytoma pathogenesis.
Collapse
|
42
|
Wnt pathway activation predicts increased risk of tumor recurrence in patients with stage I nonsmall cell lung cancer. Ann Surg 2013; 257:548-54. [PMID: 23011390 DOI: 10.1097/sla.0b013e31826d81fd] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To determine the incidence of Wnt pathway activation in patients with stage I NSCLC and its influence on lung cancer recurrence. BACKGROUND Despite resection, the 5-year recurrence with localized stage I nonsmall cell lung cancer (NSCLC) is 18.4%-24%. Aberrant Wnt signaling activation plays an important role in a wide variety of tumor types. However, there is not much known about the role the Wnt pathway plays in patients with stage I lung cancer. METHODS Tumor and normal lung tissues from 55 patients following resection for stage I NSCLC were subjected to glutathione S-transferase (GST) E-cadherin pulldown and immunoblot analysis to assess levels of uncomplexed β-catenin, a reliable measure of Wnt signaling activation. The β-catenin gene was also screened for oncogenic mutations in tumors with activated Wnt signaling. Cancer recurrence rates were correlated in a blinded manner in patients with Wnt pathway-positive and -negative tumors. RESULTS Tumors in 20 patients (36.4%) scored as Wnt positive, with only 1 exhibiting a β-catenin oncogenic mutation. Patients with Wnt-positive tumors experienced a significantly higher rate of overall cancer recurrence than those with Wnt-negative tumors (30.0% vs. 5.7%, P = 0.02), with 25.0% exhibiting distal tumor recurrence compared with 2.9% in the Wnt-negative group (P = 0.02). CONCLUSIONS Wnt pathway activation occurred in a substantial fraction of Stage I NSCLCs, which was rarely due to mutations. Moreover, Wnt pathway activation was associated with a significantly higher rate of tumor recurrence. These findings suggest that Wnt pathway activation reflects a more aggressive tumor phenotype and identifies patients who may benefit from more aggressive therapy in addition to resection.
Collapse
|
43
|
Liu CZ, Zhang L, Chang XH, Cheng YX, Cheng HY, Ye X, Fu TY, Chen J, Cui H. Overexpression and immunosuppressive functions of transforming growth factor 1, vascular endothelial growth factor and interleukin-10 in epithelial ovarian cancer. Chin J Cancer Res 2013; 24:130-7. [PMID: 23359769 DOI: 10.1007/s11670-012-0130-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 02/10/2012] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVE Transforming growth factor-1 (TGF-β1), vascular endothelial growth factor (VEGF), and interleukin-10 (IL-10) may be critical cytokines in the microenvironment of a tumor, playing roles in immune suppression. This study was conducted to elucidate the roles and immunosuppressive functions of these cytokines in epithelial ovarian cancer (EOC). METHODS The expression levels of TGF-β1, VEGF and IL-10 in malignant tissue were evaluated by immune- histochemistry and compared with corresponding borderline, benign, and tumor-free tissues. Moreover, relationships among the levels of these cytokines and correlations between expression and the prognosis of EOC were analyzed by Pearson rank correlations and multi-factor Logistic regression. The roles of TGF-β1, VEGF, and IL-10 in the immunosuppressive microenvironment of ovarian cancer were studied through dendritic cell (DC) maturation and CD4+CD25+FoxP3+ Treg generation in vitro experiments. RESULTS TGF-β1, VEGF, and IL-10 were expressed in 100%, 74.69%, and 54.96% of EOC patients, respectively. TGF-β1 was an independent prognostic factor for EOC. IL-10 was significantly co-expressed with VEGF. In vitro, VEGF and TGF-β1 strongly interfered with DC maturation and consequently led to immature DCs, which secreted high levels of IL-10 that accumulated around the tumor site. TGF-β1 and IL-10 induced Treg generation without antigen presentation in DCs. CONCLUSIONS TGF-β1, VEGF and IL-10 play important roles in EOC and can lead to frequent immune evasion events.
Collapse
Affiliation(s)
- Chan-Zhen Liu
- Gynecology Oncology Center, Peking University People's Hospital, Beijing 100044, China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yang Y, Mallampati S, Sun B, Zhang J, Kim SB, Lee JS, Gong Y, Cai Z, Sun X. Wnt pathway contributes to the protection by bone marrow stromal cells of acute lymphoblastic leukemia cells and is a potential therapeutic target. Cancer Lett 2013; 333:9-17. [PMID: 23333798 DOI: 10.1016/j.canlet.2012.11.056] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 11/11/2012] [Accepted: 11/13/2012] [Indexed: 12/14/2022]
Abstract
Leukemia cells are protected by various components of their microenvironment, including marrow stromal cells (MSCs). To understand the molecular mechanisms underlying this protection, we cultured acute lymphoblastic leukemia (ALL) cells with MSCs and studied the effect of the latter on the molecular profiling of ALL cells at the mRNA and protein levels. Our results indicated that activated Wnt signaling in ALL cells is involved in MSC-mediated drug resistance. Blocking the Wnt pathway sensitized the leukemia cells to chemotherapy and improved overall survival in a mouse model. Targeting the Wnt pathway may be an innovative approach to the treatment of ALL.
Collapse
Affiliation(s)
- Yang Yang
- Department of Bone Marrow Transplant Center, First Affiliated Hospital, Medical School of Zhejiang University, Hangzhou, Zhejiang, China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Chen JC, Chang YW, Hong CC, Yu YH, Su JL. The role of the VEGF-C/VEGFRs axis in tumor progression and therapy. Int J Mol Sci 2012; 14:88-107. [PMID: 23344023 PMCID: PMC3565253 DOI: 10.3390/ijms14010088] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 11/30/2012] [Accepted: 12/14/2012] [Indexed: 01/06/2023] Open
Abstract
Vascular endothelial growth factor C (VEGF-C) has been identified as a multifaceted factor participating in the regulation of tumor angiogenesis and lymphangiogenesis. VEGF-C is not only expressed in endothelial cells, but also in tumor cells. VEGF-C signaling is important for progression of various cancer types through both VEGF receptor-2 (VEGFR-2) and VEGF receptor-3 (VEGFR-3). Likewise, both receptors are expressed mainly on endothelial cells, but also expressed in tumor cells. The dimeric VEGF-C undergoes a series of proteolytic cleavage steps that increase the protein binding affinity to VEGFR-3; however, only complete processing, removing both the N- and C-terminal propeptides, yields mature VEGF-C that can bind to VEGFR-2. The processed VEGF-C can bind and activate VEGFR-3 homodimers and VEGFR-2/VEGFR-3 heterodimers to elicit biological responses. High levels of VEGF-C expression and VEGF-C/VEGFRs signaling correlate significantly with poorer prognosis in a variety of malignancies. Therefore, the development of new drugs that selectively target the VEGF-C/VEGFRs axis seems to be an effective means to potentiate anti-tumor therapies in the future.
Collapse
Affiliation(s)
- Jui-Chieh Chen
- Graduate Institute of Cancer Biology, College of Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan; E-Mails: (J.-C.C.); (C.-C.H.)
| | - Yi-Wen Chang
- Graduate Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Beitou District, Taipei 11221, Taiwan; E-Mail:
| | - Chih-Chen Hong
- Graduate Institute of Cancer Biology, College of Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan; E-Mails: (J.-C.C.); (C.-C.H.)
| | - Yang-Hao Yu
- Department of Internal Medicine, Divisions of Pulmonary and Critical Care Medicine, China Medical University Hospital, No. 2, Yude Road, Taichung 40447, Taiwan
| | - Jen-Liang Su
- Graduate Institute of Cancer Biology, College of Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan; E-Mails: (J.-C.C.); (C.-C.H.)
- Department of Biotechnology, Asia University, No. 500, Lioufeng Road, Wufeng Shiang, Taichung 41354, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, No. 2, Yude Road, Taichung 40447, Taiwan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-4-2205-2121 (ext. 7932); Fax: +886-4-2233-3496
| |
Collapse
|
46
|
Wei L, Sun C, Lei M, Li G, Yi L, Luo F, Li Y, Ding L, Liu Z, Li S, Xu P. Activation of Wnt/β-catenin pathway by exogenous Wnt1 protects SH-SY5Y cells against 6-hydroxydopamine toxicity. J Mol Neurosci 2012; 49:105-15. [PMID: 23065334 DOI: 10.1007/s12031-012-9900-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 09/30/2012] [Indexed: 12/16/2022]
Abstract
Wnt1, initially described as a modulator of embryonic development, has recently been discovered to exert cytoprotective effects in cellular models of several diseases, including Parkinson's disease (PD). We, therefore, examined the neuroprotective effects of exogenous Wnt1 on dopaminergic SH-SY5Y cells treated with 6-hydroxydopamine (6-OHDA). Here, we show that 10-500 μM 6-OHDA treatment decreased cell viability and increased lactate dehydrogenase (LDH) leakage. SH-SY5Y cells treated with 100 μM 6-OHDA for 24 h showed reduced Wnt/β-catenin activity, decreased mitochondrial transmembrane potential, elevated levels of reactive oxidative species (ROS) and phosphatidylserine (PS) extraversion, increased levels of Chop and Bip/GRP78 and reduced level of p-Akt (Ser473). In contrast, exogenous Wnt1 attenuated 6-OHDA-induced changes. These results suggest that activation of the Wnt/β-catenin pathway by exogenous Wnt1 protects against 6-OHDA-induced changes by restoring mitochondria and endoplasmic reticulum (ER) function.
Collapse
Affiliation(s)
- Lei Wei
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Tsai HE, Liu LF, Dusting GJ, Weng WT, Chen SC, Kung ML, Tee R, Liu GS, Tai MH. Pro-opiomelanocortin gene delivery suppresses the growth of established Lewis lung carcinoma through a melanocortin-1 receptor-independent pathway. J Gene Med 2012; 14:44-53. [PMID: 22147647 DOI: 10.1002/jgm.1625] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Pro-opiomelanocortin (POMC) is the precursor of several neuropeptides, such as corticotropin, melanocyte-stimulating hormone and the endogenous opioid (β-endorphin). Our previous studies have indicated that POMC gene delivery inhibited the progression and metastasis of B16-F10 melanoma via the α- melanocyte-stimulating hormone/melanortin-1 receptor (MC-1R) pathway. METHODS In the present study, the therapeutic efficacy of POMC gene therapy was evaluated in mice bearing established Lewis lung carcinoma (LLC) models both in vitro and in vivo. We also investigated the MC-1R-independent mechanism underlying POMC gene therapy. RESULTS We found that POMC gene delivery significantly inhibited the growth and colony formation in MC-1R-deficient LLC cells. In addition, POMC gene transfer effectively suppressed the growth of established LLC in mice. The inhibitory mechanisms underlying POMC gene delivery were attibuted to be inhibition of proliferation and the induction of apoptosis. Moreover, POMC gene delivery attenuated tumor β-catenin signaling by reducing protein levels of β-catenin and its downstream proto-oncogenes, including cyclin D1 and c-myc. Lastly, POMC gene delivery induced a significant suppression of tumor vasculature. CONCLUSIONS These results support the existence of an MC-1R-independent pathway for POMC gene therapy, which further expands the therapeutic spectrum of POMC therapy for multiple types of cancer.
Collapse
Affiliation(s)
- Han-En Tsai
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
DNAJB6 governs a novel regulatory loop determining Wnt/β-catenin signalling activity. Biochem J 2012; 444:573-80. [PMID: 22455953 DOI: 10.1042/bj20120205] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
DKK1 (dickkopf 1 homologue) is a secreted inhibitor of the Wnt signalling pathway and a critical modulator of tumour promotion and the tumour microenvironment. However, mechanisms regulating DKK1 expression are understudied. DNAJB6 {DnaJ [HSP40 (heat-shock protein 40 kDa)] homologue, subfamily B, member 6} is an HSP40 family member whose expression is compromised during progression of breast cancer and melanoma. Inhibition of the Wnt/β-catenin signalling pathway by up-regulation of DKK1 is one of the key mechanisms by which DNAJB6 suppresses tumour metastasis and EMT (epithelial-mesenchymal transition). Analysis of the DKK1 promoter to define the cis-site responsible for its up-regulation by DNAJB6 revealed the presence of two binding sites for a transcriptional repressor, MSX1 (muscle segment homeobox 1). Our investigations showed that MSX1 binds the DKK1 promoter and inhibits DKK1 transcription. Interestingly, silencing DNAJB6 resulted in up-regulation of MSX1 concomitant with increased stabilization of β-catenin. ChIP (chromatin immunoprecipitation) studies revealed that β-catenin binds the MSX1 promoter and stabilization of β-catenin elevates MSX1 transcription, indicating that β-catenin works as a transcription co-activator for MSX1. Functionally, exogenous expression of MSX1 in DNAJB6-expressing cells promotes the mesenchymal phenotype by suppression of DKK1. Thus we have identified a novel regulatory mechanism of DNAJB6-mediated DKK1 transcriptional up-regulation that can influence EMT. DKK1 is a feedback regulator of β-catenin levels and thus our studies also define an additional negative control of this β-catenin/DKK1 feedback loop by MSX1, which may potentially contribute to excessive stabilization of β-catenin.
Collapse
|
49
|
Xu J, Zhu X, Wu L, Yang R, Yang Z, Wang Q, Wu F. MicroRNA-122 suppresses cell proliferation and induces cell apoptosis in hepatocellular carcinoma by directly targeting Wnt/β-catenin pathway. Liver Int 2012; 32:752-60. [PMID: 22276989 DOI: 10.1111/j.1478-3231.2011.02750.x] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 12/20/2011] [Indexed: 01/11/2023]
Abstract
AIMS To validate whether the anti-cancer effect of microRNA-122 (miR-122) on hepatocellular carcinoma (HCC) is mediated through regulating Wnt/β-catenin signalling pathways. METHODS The expression levels of miR-122 in HCC tissues and varied hepatoma cells were quantified by real-time PCR. MiR-122 agomir was transfected into HepG2, Hep3B cells to over-express miR-122. The effect of over-expression miR-122 on proliferation and apoptosis of HepG2 and Hep3B cells was evaluated using CCK-8 kit and flow cytometer respectively. The 3'-UTR segments of Wnt1 containing the miR-122 binding sites were amplified by PCR and the luciferase activity in the transfected cells was assayed. Wnt1 mRNA level was quantified using RT-PCR. Protein levels of Wnt1, β-catenin and TCF-4 were detected using Western blotting. RESULTS In comparison with the expression level of miR-122 in para-cancerous tissues or Chang liver cell, the expression level in HCC tissues or varied hepatoma cells was significantly decreased (P < 0.05). Over-expression of miR-122 significantly inhibited the proliferation (P < 0.05), and promoted the apoptosis of HepG2 and Hep3B cells. Over-expressed miR-122 down-regulated the protein levels of Wnt1, β-catenin and TCF-4 (P < 0.05). MiR-122 suppressed the luciferase activity of the pmiR-Wnt1-wt by approximately 50% compared with the negative control, while mutation or removal of the miR-122 binding site using siRNA or mir-122 inhibitor blocked the suppressive effect (P < 0.05). CONCLUSIONS MiR-122 expression is down-regulated in human HCC. Over-expression of miR-122 inhibits HCC cell growth and promotes the cell apoptosis by affecting Wnt/β-catenin-TCF signalling pathway.
Collapse
Affiliation(s)
- Jie Xu
- Department of Oncological Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Kobayashi M, Huang CL, Sonobe M, Kikuchi R, Ishikawa M, Kitamura J, Miyahara R, Menju T, Iwakiri S, Itoi K, Yasumizu R, Date H. Intratumoral Wnt2B expression affects tumor proliferation and survival in malignant pleural mesothelioma patients. Exp Ther Med 2012; 3:952-958. [PMID: 22969998 DOI: 10.3892/etm.2012.511] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 02/20/2012] [Indexed: 12/13/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive thoracic tumor with a poor prognosis. We performed a comprehensive clinical study on the intratumoral expression of Wnt1, Wnt2B and Wnt5A in MPM. One hundred and seven MPM patients were investigated. Immunohistochemistry was performed to evaluate the intratumoral expression of Wnt1, Wnt2B, Wnt5A, survivin and c-Myc, and the Ki-67 proliferation index. The apoptotic index was evaluated by the TUNEL method. Among the 107 MPMs, 23 MPMs (21.5%) were Wnt1-high tumors, 72 MPMs (67.3%) were Wnt2B-high tumors and 54 MPMs (50.5%) were Wnt5A-high tumors. There was no correlation among the levels of Wnt expression. The percentage of Wnt2B-positive tumors was significantly higher compared to that of the other Wnts (p<0.0001). Furthermore, intratumoral Wnt2B expression significantly correlated with the expression of survivin (p<0.001) and c-Myc (p<0.001). Regarding tumor biology, the Ki-67 proliferation index was significantly higher in the Wnt2B-high tumors than in the Wnt2B-low tumors (p=0.0438). In addition, the overall survival was significantly lower in patients with Wnt2B-high tumors than in those with Wnt2B-low tumors (p=0.0238). A Cox multivariate analysis also demonstrated the Wnt2B status to be a significant prognostic factor in MPM patients (p=0.0042). Intratumoral Wnt2B expression was associated with the expression of survivin and c-Myc, tumor proliferation and patient survival in MPM. Wnt2B is a potential molecular target for the treatment of Wnt2B-overexpressing MPMs.
Collapse
Affiliation(s)
- Masashi Kobayashi
- Department of Thoracic Surgery, Faculty of Medicine, Kyoto University, Shogoin, Sakyo-ku, Kyoto
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|