1
|
Guerra E, Trerotola M, Relli V, Lattanzio R, Ceci M, Boujnah K, Pantalone L, Di Pietro R, Iezzi M, Tinari N, Alberti S. The 2EF Antibody Targets a Unique N-Terminal Epitope of Trop-2 and Enhances the In Vivo Activity of the Cancer-Selective 2G10 Antibody. Cancers (Basel) 2023; 15:3721. [PMID: 37509383 PMCID: PMC10378344 DOI: 10.3390/cancers15143721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Trop-2 proteolytic processing in cancer cells exposes epitopes that were specifically targeted by the 2G10 antibody. We sought additional recognition of Trop-2 within difficult-to-reach, densely packed tumor sites. Trop-2 deletion mutants were employed in immunization and screening procedures, and these led to the recognition of a novel epitope in the N-terminal region of Trop-2, by the 2EF antibody. The 2EF mAb was shown to bind Trop-2 at cell-cell junctions in MCF-7 breast cancer cells, and in deeply seated sites in prostate cancer, that were inaccessible to benchmark anti-Trop-2 antibodies. The 2EF antibody was shown to inhibit the growth of HT29 colon tumor cells in vitro, with the highest activity at high cell density. In vivo, 2EF showed anticancer activity against SKOv3 ovarian, Colo205, HT29, HCT116 colon and DU-145 prostate tumors, with the highest impact on densely packed tumor sites, whereby 2EF outcompeted benchmark anti-Trop-2 antibodies. Given the different recognition modes of Trop-2 by 2EF and 2G10, we hypothesized the effective interaction of the two mAb in vivo. The 2EF mAb was indeed demonstrated to enhance the activity of 2G10 against tumor xenotransplants, opening novel avenues for Trop-2-targeted therapy. We humanized 2EF by state-of-the-art CDR grafting/re-modeling, yielding the Hu2EF for therapy of Trop-2-expressing tumors in patients.
Collapse
Affiliation(s)
- Emanuela Guerra
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (E.G.); (M.T.); (V.R.); (R.L.); (M.C.); (L.P.)
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Marco Trerotola
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (E.G.); (M.T.); (V.R.); (R.L.); (M.C.); (L.P.)
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Valeria Relli
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (E.G.); (M.T.); (V.R.); (R.L.); (M.C.); (L.P.)
| | - Rossano Lattanzio
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (E.G.); (M.T.); (V.R.); (R.L.); (M.C.); (L.P.)
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Martina Ceci
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (E.G.); (M.T.); (V.R.); (R.L.); (M.C.); (L.P.)
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Khouloud Boujnah
- Unit of Medical Genetics, Department of Biomedical Sciences—BIOMORF, University of Messina, 98125 Messina, Italy;
| | - Ludovica Pantalone
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (E.G.); (M.T.); (V.R.); (R.L.); (M.C.); (L.P.)
| | - Roberta Di Pietro
- Department of Medicine and Aging Sciences, Section of Biomorphology, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy;
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Manuela Iezzi
- Department of Neurosciences, Imaging and Clinical Sciences, Center for Advanced Studies and Technnology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Nicola Tinari
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Saverio Alberti
- Unit of Medical Genetics, Department of Biomedical Sciences—BIOMORF, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
2
|
Trop-2 cleavage by ADAM10 is an activator switch for cancer growth and metastasis. Neoplasia 2021; 23:415-428. [PMID: 33839455 PMCID: PMC8042651 DOI: 10.1016/j.neo.2021.03.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/22/2022] Open
Abstract
Trop-2 is a transmembrane signal transducer that can induce cancer growth. Using antibody targeting and N-terminal Edman degradation, we show here that Trop-2 undergoes cleavage in the first thyroglobulin domain loop of its extracellular region, between residues R87 and T88. Molecular modeling indicated that this cleavage induces a profound rearrangement of the Trop-2 structure, which suggested a deep impact on its biological function. No Trop-2 cleavage was detected in normal human tissues, whereas most tumors showed Trop-2 cleavage, including skin, ovary, colon, and breast cancers. Coimmunoprecipitation and mass spectrometry analysis revealed that ADAM10 physically interacts with Trop-2. Immunofluorescence/confocal time-lapse microscopy revealed that the two molecules broadly colocalize at the cell membrane. We show that ADAM10 inhibitors, siRNAs and shRNAs abolish the processing of Trop-2, which indicates that ADAM10 is an effector protease. Proteolysis of Trop-2 at R87-T88 triggered cancer cell growth both in vitro and in vivo. A corresponding role was shown for metastatic spreading of colon cancer, as the R87A-T88A Trop-2 mutant abolished xenotransplant metastatic dissemination. Activatory proteolysis of Trop-2 was recapitulated in primary human breast cancers. Together with the prognostic impact of Trop-2 and ADAM10 on cancers of the skin, ovary, colon, lung, and pancreas, these data indicate a driving role of this activatory cleavage of Trop-2 on malignant progression of tumors.
Collapse
|
3
|
Cuenca-Micó O, Aceves C. Micronutrients and Breast Cancer Progression: A Systematic Review. Nutrients 2020; 12:nu12123613. [PMID: 33255538 PMCID: PMC7759972 DOI: 10.3390/nu12123613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Epidemiological studies on micronutrient consumption have reported protective associations in the incidence and/or progression of various cancer types. Supplementation with some of these micronutrients has been analyzed, showing chemoprotection, low toxicity, antiproliferation, and the ability to modify epigenetic signatures in various cancer models. This review investigates the reported effects of micronutrient intake or supplementation in breast cancer progression. A PubMed search was conducted with the keywords "micronutrients breast cancer progression", and the results were analyzed. The selected micronutrients were vitamins (C, D, and E), folic acid, metals (Cu, Fe, Se, and Zn), fatty acids, polyphenols, and iodine. The majority of in vitro models showed antiproliferative, cell-cycle arrest, and antimetastatic effects for almost all the micronutrients analyzed, but these effects do not reflect animal or human studies. Only one clinical trial with vitamin D and one pilot study with molecular iodine showed favorable overall survival and disease-free interval.
Collapse
|
4
|
Schmidt-Durán A, Alvarado-Ulloa C, Chacón-Cerdas R, Alvarado-Marchena LF, Flores-Mora D. Callogenesis and cell suspension establishment of tropical highland blackberry ( Rubus adenotrichos Schltdl.) and its microscopic analysis. SPRINGERPLUS 2016; 5:1717. [PMID: 27777853 PMCID: PMC5052243 DOI: 10.1186/s40064-016-3381-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/25/2016] [Indexed: 01/26/2023]
Abstract
Blackberries are fruits produced worldwide, with 25 % of their production centered in Mexico, Central and South America. Tropical highland blackberry is a fruit that can potentially enhance human health, due to their high content in phenolic compounds, which include anthocyanins, phenolic acids, tannins (gallotannins and elagitannins) and flavonoids. Therefore, the overall aim of this study is the development of a callus induction protocol, the establishment of blackberry cell suspensions (Rubus adenotrichos Schltdl.) and their cell analysis through optical microscopy and TEM, for the potential production of phenolic compounds. In order to produce callogenesis, segments of blackberry leaves were disinfected and placed in different concentrations of 2,4-D and the control media (0; 0.5; 1.0; 1.5; 2.0; 2.5 and 3.0 mg/l of 2,4-D); obtaining the higher size of calli in the medium with 1.5 mg/l of 2,4-D. After this determination, and for this specific treatment, a growth curve was performed through the use of fresh and dry weight parameters, in order to identify each of the growth stages. Furthermore, the calli obtained from the 1.5 mg/l of 2,4-D treatment were placed in two different culture media (MS and MS supplemented with 1.5 mg/l of 2,4-D) in order to establish the cell suspensions and the growth curve. To the best treatment, the total polyphenols were also quantified. It was determined that the MS medium is ideal for the growth and disintegration of the cell suspensions, obtaining 0.0256 mg of gallic acid/g of fresh sample. Finally, a cell callus and cell suspension analysis was performed through OM and TEM, evidencing a higher hystological differentiation in the calli, as well as the observation of antioxidant storage in the plastids.
Collapse
Affiliation(s)
- Alexander Schmidt-Durán
- Centro de Investigación en Biotecnología of the Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica
| | - Carlos Alvarado-Ulloa
- Centro de Investigación en Biotecnología of the Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica
| | - Randall Chacón-Cerdas
- Centro de Investigación en Biotecnología of the Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica
| | - Luis Fernando Alvarado-Marchena
- Centro de Investigación en Biotecnología of the Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica ; Laboratorio Institucional de Microscopía, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica
| | - Dora Flores-Mora
- Centro de Investigación en Biotecnología of the Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica
| |
Collapse
|
5
|
Guerra E, Piantelli M, Alberti S. Comment on “Cancer chemoprevention: Evidence of a nonlinear dose response for the protective effects of resveratrol in humans and mice”. Sci Transl Med 2016; 8:350le2. [DOI: 10.1126/scitranslmed.aaf4379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/30/2016] [Indexed: 11/02/2022]
Affiliation(s)
- Emanuela Guerra
- Unit of Cancer Pathology, CeSI-MeT, University “G. d’Annunzio,” 66100 Chieti, Italy
| | - Mauro Piantelli
- Unit of Cancer Pathology, CeSI-MeT, University “G. d’Annunzio,” 66100 Chieti, Italy
- Department of Medical, Oral, and Biotechnological Sciences, University “G. d’Annunzio,” 66100 Chieti, Italy
| | - Saverio Alberti
- Unit of Cancer Pathology, CeSI-MeT, University “G. d’Annunzio,” 66100 Chieti, Italy
- Department of Neuroscience, Imaging, and Clinical Sciences, Unit of Physiology and Physiopathology, University “G. d’Annunzio,” 66100 Chieti, Italy
| |
Collapse
|
6
|
Guerra E, Trerotola M, Tripaldi R, Aloisi AL, Simeone P, Sacchetti A, Relli V, D'Amore A, La Sorda R, Lattanzio R, Piantelli M, Alberti S. Trop-2 Induces Tumor Growth Through AKT and Determines Sensitivity to AKT Inhibitors. Clin Cancer Res 2016; 22:4197-205. [PMID: 27022065 DOI: 10.1158/1078-0432.ccr-15-1701] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 02/29/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Inhibition of AKT is a key target area for personalized cancer medicine. However, predictive markers of response to AKT inhibitors are lacking. Correspondingly, the AKT-dependent chain of command for tumor growth, which will mediate AKT-dependent therapeutic responses, remains unclear. EXPERIMENTAL DESIGN Proteomic profiling was utilized to identify nodal hubs of the Trop-2 cancer growth-driving network. Kinase-specific inhibitors were used to dissect Trop-2-dependent from Trop-2-independent pathways. In vitro assays, in vivo preclinical models, and case series of primary human breast cancers were utilized to define the mechanisms of Trop-2-driven growth and the mode of action of Trop-2-predicted AKT inhibitors. RESULTS Trop-2 and AKT expression was shown to be tightly coordinated in human breast cancers, with virtual overlap with AKT activation profiles at T308 and S473, consistent with functional interaction in vivo AKT allosteric inhibitors were shown to only block the growth of Trop-2-expressing tumor cells, both in vitro and in preclinical models, being ineffective on Trop-2-null cells. Consistently, AKT-targeted siRNA only impacted on Trop-2-expressing cells. Lentiviral downregulation of endogenous Trop-2 abolished tumor response to AKT blockade, indicating Trop-2 as a mandatory activator of AKT. CONCLUSIONS Our findings indicate that the expression of Trop-2 is a stringent predictor of tumor response to AKT inhibitors. They also support the identification of target-activatory pathways, as efficient predictors of response in precision cancer therapy. Clin Cancer Res; 22(16); 4197-205. ©2016 AACR.
Collapse
Affiliation(s)
- Emanuela Guerra
- Unit of Cancer Pathology, CeSI-MeT, University 'G. d'Annunzio,' Chieti, Italy
| | - Marco Trerotola
- Unit of Cancer Pathology, CeSI-MeT, University 'G. d'Annunzio,' Chieti, Italy
| | - Romina Tripaldi
- Unit of Cancer Pathology, CeSI-MeT, University 'G. d'Annunzio,' Chieti, Italy
| | - Anna Laura Aloisi
- Unit of Cancer Pathology, CeSI-MeT, University 'G. d'Annunzio,' Chieti, Italy
| | - Pasquale Simeone
- Unit of Cancer Pathology, CeSI-MeT, University 'G. d'Annunzio,' Chieti, Italy
| | - Andrea Sacchetti
- Unit of Cancer Pathology, CeSI-MeT, University 'G. d'Annunzio,' Chieti, Italy
| | - Valeria Relli
- Unit of Cancer Pathology, CeSI-MeT, University 'G. d'Annunzio,' Chieti, Italy
| | - Antonella D'Amore
- Unit of Cancer Pathology, CeSI-MeT, University 'G. d'Annunzio,' Chieti, Italy
| | - Rossana La Sorda
- Unit of Cancer Pathology, CeSI-MeT, University 'G. d'Annunzio,' Chieti, Italy
| | - Rossano Lattanzio
- Unit of Cancer Pathology, CeSI-MeT, University 'G. d'Annunzio,' Chieti, Italy. Department of Medical, Oral and Biotechnological Sciences, University 'G. d'Annunzio,' Chieti, Italy
| | - Mauro Piantelli
- Unit of Cancer Pathology, CeSI-MeT, University 'G. d'Annunzio,' Chieti, Italy. Department of Medical, Oral and Biotechnological Sciences, University 'G. d'Annunzio,' Chieti, Italy
| | - Saverio Alberti
- Unit of Cancer Pathology, CeSI-MeT, University 'G. d'Annunzio,' Chieti, Italy. Department of Neuroscience, Imaging and Clinical Sciences, Unit of Physiology and Physiopathology, University 'G. d'Annunzio,' Chieti, Italy.
| |
Collapse
|
7
|
Guerra E, Lattanzio R, La Sorda R, Dini F, Tiboni GM, Piantelli M, Alberti S. mTrop1/Epcam knockout mice develop congenital tufting enteropathy through dysregulation of intestinal E-cadherin/β-catenin. PLoS One 2012; 7:e49302. [PMID: 23209569 PMCID: PMC3509129 DOI: 10.1371/journal.pone.0049302] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 10/08/2012] [Indexed: 01/27/2023] Open
Abstract
Congenital tufting enteropathy (CTE) is a life-threatening hereditary disease that is characterized by enteric mucosa tufting degeneration and early onset, severe diarrhea. Loss-of-function mutations of the human EPCAM gene (TROP1, TACSTD1) have been indicated as the cause of CTE. However, loss of mTrop1/Epcam in mice appeared to lead to death in utero, due to placental malformation. This and indications of residual Trop-1/EpCAM expression in cases of CTE cast doubt on the role of mTrop1/Epcam in this disease. The aim of this study was to determine the role of TROP1/EPCAM in CTE and to generate an animal model of this disease for molecular investigation and therapy development. Using a rigorous gene-trapping approach, we obtained mTrop1/Epcam -null (knockout) mice. These were born alive, but failed to thrive, and died soon after birth because of hemorrhagic diarrhea. The intestine from the mTrop1/Epcam knockout mice showed intestinal tufts, villous atrophy and colon crypt hyperplasia, as in human CTE. No structural defects were detected in other organs. These results are consistent with TROP1/EPCAM loss being the cause of CTE, thus providing a viable animal model for this disease, and a benchmark for its pathogenetic course. In the affected enteric mucosa, E-cadherin and β-catenin were shown to be dysregulated, leading to disorganized transition from crypts to villi, with progressive loss of membrane localization and increasing intracellular accumulation, thus unraveling an essential role for Trop-1/EpCAM in the maintenance of intestinal architecture and functionality. Supporting information is available for this article.
Collapse
Affiliation(s)
- Emanuela Guerra
- Unit of Cancer Pathology, CeSI, University G. d'Annunzio Foundation, Chieti, Italy.
| | | | | | | | | | | | | |
Collapse
|
8
|
Breast cancer proteome takes more than two to tango on TRAIL: beat them at their own game. J Membr Biol 2012; 245:763-77. [PMID: 22899350 DOI: 10.1007/s00232-012-9490-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 07/16/2012] [Indexed: 12/21/2022]
Abstract
Breast carcinogenesis is a multidimensional disease that has resisted drug-related solutions to date because of heterogeneity, disorganized spatiotemporal behavior of signal transduction cascades, cell cycle checkpoints, cell transition, plasticity, and impaired pro-apoptotic response. These synchronized oncogenic events, including protein-protein interaction, transcriptional-regulatory, and signaling networks, trigger genomic and transcriptional disturbances in TRAIL-mediated signaling network neighborhoods. Therefore, tumor cells often acquire the ability to escape death by suppressing cell death pathways that normally function to eliminate damaged and harmful cells. This review describes the TRAIL-mediated cell death signaling pathways, the interactions between these pathways, and the ways in which these pathways are deregulated in breast cancer.
Collapse
|
9
|
Meeran SM, Patel SN, Li Y, Shukla S, Tollefsbol TO. Bioactive dietary supplements reactivate ER expression in ER-negative breast cancer cells by active chromatin modifications. PLoS One 2012; 7:e37748. [PMID: 22662208 PMCID: PMC3360625 DOI: 10.1371/journal.pone.0037748] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 04/24/2012] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is the most common cancer and the leading cause of cancer death in women. Although tamoxifen therapy is successful for some patients, it does not provide adequate benefit for those who have estrogen receptor (ER)-negative cancers. Therefore, we approached novel treatment strategies by combining two potential bioactive dietary supplements for the reactivation of ERα expression for effective treatment of ERα-negative breast cancer with tamoxifen. Bioactive dietary supplements such as green tea polyphenols (GTPs) and sulforaphane (SFN) inhibit DNA methyltransferases (DNMTs) and histone deacetylases (HDACs), respectively, which are of central importance to cancer prevention. In the present study, we have observed that treatment of ERα-negative breast cancer cells with GTPs and SFN alone or in combination leads to the reactivation of ERα expression. The combination of 20 µg/mL GTPs and 5 µM SFN was found to be the optimal dose of ERα-reactivation at 3 days in MDA-MB-231 cells. The reactivation of ERα expression was consistently correlated with ERα promoter hypomethylation and hyperacetylation. Chromatin immunoprecipitation (ChIP) analysis of the ERα promoter revealed that GTPs and SFN altered the binding of ERα-transcriptional co-repressor complex thereby contributing to ERα-reactivation. In addition, treatment with tamoxifen in combination with GTPs and SFN significantly increased both cell death and inhibition of cellular proliferation in MDA-MB-231 cells in comparison to treatment with tamoxifen alone. Collectively, our findings suggest that a novel combination of bioactive-HDAC inhibitors with bioactive-demethylating agents is a promising strategy for the effective treatment of hormonal refractory breast cancer with available anti-estrogens.
Collapse
Affiliation(s)
- Syed M Meeran
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India.
| | | | | | | | | |
Collapse
|
10
|
Trerotola M, Cantanelli P, Guerra E, Tripaldi R, Aloisi AL, Bonasera V, Lattanzio R, Lange RD, Weidle UH, Piantelli M, Alberti S. Upregulation of Trop-2 quantitatively stimulates human cancer growth. Oncogene 2012; 32:222-33. [DOI: 10.1038/onc.2012.36] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
11
|
Meeran SM, Patel SN, Chan TH, Tollefsbol TO. A novel prodrug of epigallocatechin-3-gallate: differential epigenetic hTERT repression in human breast cancer cells. Cancer Prev Res (Phila) 2011; 4:1243-54. [PMID: 21411498 DOI: 10.1158/1940-6207.capr-11-0009] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epigallocatechin-3-gallate (EGCG), a major component of green tea polyphenols (GTP), has been reported to downregulate telomerase activity in breast cancer cells thereby increasing cellular apoptosis and inhibiting cellular proliferation. However, the major concerns with GTPs are their bioavailability and stability under physiologic conditions. In the present study, we show that treatments with EGCG and a novel prodrug of EGCG (pro-EGCG or pEGCG) dose- and time-dependently inhibited the proliferation of human breast cancer MCF-7 and MDA-MB-231 cells but not normal control MCF10A cells. Furthermore, both EGCG and pro-EGCG inhibited the transcription of hTERT (human telomerase reverse transcriptase), the catalytic subunit of telomerase, through epigenetic mechanisms in estrogen receptor (ER)-positive MCF-7 and ER-negative MDA-MB-231 cells. The downregulation of hTERT expression was found to be because of hTERT promoter hypomethylation and histone deacetylations, mediated at least partially through inhibition of DNA methyltransferase and histone acetyltransferase activities, respectively. In addition, we also observed that EGCG and pEGCG can remodel chromatin structures of the hTERT promoter by decreasing the level of acetyl-H3, acetyl-H3K9, and acetyl-H4 to the hTERT promoter. EGCG and pEGCG induced chromatin alterations that facilitated the binding of many hTERT repressors such as MAD1 and E2F-1 to the hTERT regulatory region. Depletion of E2F-1 and MAD1 by using siRNA reversed the pEGCG downregulated hTERT expression and associated cellular apoptosis differently in ER-positive and ER-negative breast cancer cells. Collectively, our data provide new insights into breast cancer prevention through epigenetic modulation of telomerase by using pro-EGCG, a more stable form of EGCG, as a novel chemopreventive compound.
Collapse
Affiliation(s)
- Syed M Meeran
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Campbell Hall 175, Birmingham, AL 35294-1170, USA.
| | | | | | | |
Collapse
|
12
|
Lee HS, Na MH, Kim WK. α-Lipoic acid reduces matrix metalloproteinase activity in MDA-MB-231 human breast cancer cells. Nutr Res 2010; 30:403-9. [DOI: 10.1016/j.nutres.2010.06.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 06/07/2010] [Accepted: 06/11/2010] [Indexed: 10/19/2022]
|