1
|
Vieira AA, Almada-Correia I, Inácio J, Costa-Reis P, da Rocha ST. Female-bias in systemic lupus erythematosus: How much is the X chromosome to blame? Biol Sex Differ 2024; 15:76. [PMID: 39375734 PMCID: PMC11460073 DOI: 10.1186/s13293-024-00650-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/30/2024] [Indexed: 10/09/2024] Open
Abstract
Systemic lupus erythematosus (SLE or lupus) is an immune-mediated disease associated with substantial medical burden. Notably, lupus exhibits a striking female bias, with women having significantly higher susceptibility compared to men, up to 14-fold higher in some ethnicities. Supernumerary X chromosome syndromes, like Klinefelter (XXY) and Triple X syndrome (XXX), also present higher SLE prevalence, whereas Turner syndrome (XO) displays lower prevalence. Taken together, SLE prevalence in different X chromosome dosage sceneries denotes a relationship between the number of X chromosomes and the risk of developing lupus. The dosage of X-linked genes, many of which play roles in the immune system, is compensated between males and females through the inactivation of one of the two X chromosomes in female cells. X-chromosome inactivation (XCI) initiates early in development with a random selection of which X chromosome to inactivate, a choice that is then epigenetically maintained in the daughter cells. This process is regulated by the X-Inactive-Specific Transcript (XIST), encoding for a long non-coding RNA, exclusively expressed from the inactive X chromosome (Xi). XIST interacts with various RNA binding proteins and chromatin modifiers to form a ribonucleoprotein (RNP) complex responsible for the transcriptional silencing and heterochromatinization of the Xi. This ensures stable silencing of most genes on the X chromosome, with only a few genes able to escape this process. Recent findings suggest that the molecular components involved in XCI, or their dysregulation, contribute to the pathogenesis of lupus. Indeed, nonrandom XCI, elevated gene escape from XCI, and the autoimmune potential of the XIST RNP complex have been suggested to contribute to auto-immune diseases, such as lupus. This review examines these current hypotheses concerning how this dosage compensation mechanism might impact the development of lupus, shedding light on potential mechanisms underlying the pathogenesis of the disease.
Collapse
Affiliation(s)
- Adriana A Vieira
- Rheumatology Research Unit, Instituto de Medicina Molecular João Lobo Antunes, Lisbon, Portugal
| | - Inês Almada-Correia
- Rheumatology Research Unit, Instituto de Medicina Molecular João Lobo Antunes, Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Joana Inácio
- Rheumatology Research Unit, Instituto de Medicina Molecular João Lobo Antunes, Lisbon, Portugal
- Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Patrícia Costa-Reis
- Rheumatology Research Unit, Instituto de Medicina Molecular João Lobo Antunes, Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Pediatric Rheumatology Unit, Pediatrics Department, Hospital de Santa Maria, Lisbon, Portugal
| | - S T da Rocha
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
2
|
Pitfalls of whole exome sequencing in undefined clinical conditions with a suspected genetic etiology. Genes Genomics 2022; 45:637-655. [PMID: 36454368 DOI: 10.1007/s13258-022-01341-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/26/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Whole-Exome Sequencing (WES) is a valuable tool for the molecular diagnosis of patients with a suspected genetic condition. In complex and heterogeneous diseases, the interpretation of WES variants is more challenging given the absence of diagnostic handles and other reported cases with overlapping clinical presentations. OBJECTIVE To describe candidate variants emerging from trio-WES and possibly associated with the clinical phenotype in clinically heterogeneous conditions. METHODS We performed WES in ten patients from eight families, selected because of the lack of a clear clinical diagnosis or suspicion, the presence of multiple clinical signs, and the negative results of traditional genetic tests. RESULTS Although we identified ten candidate variants, reaching the diagnosis of these cases is challenging, given the complexity and the rarity of these syndromes and because affected genes are already associated with known genetic diseases only partially recapitulating patients' phenotypes. However, the identification of these variants could shed light into the definition of new genotype-phenotype correlations. Here, we describe the clinical and molecular data of these cases with the aim of favoring the match with other similar cases and, hopefully, confirm our diagnostic hypotheses. CONCLUSION This study emphasizes the major limitations associated with WES data interpretation, but also highlights its clinical utility in unraveling novel genotype-phenotype correlations in complex and heterogeneous undefined clinical conditions with a suspected genetic etiology.
Collapse
|
3
|
Roberts AL, Morea A, Amar A, Zito A, El-Sayed Moustafa JS, Tomlinson M, Bowyer RCE, Zhang X, Christiansen C, Costeira R, Steves CJ, Mangino M, Bell JT, Wong CCY, Vyse TJ, Small KS. Age acquired skewed X chromosome inactivation is associated with adverse health outcomes in humans. eLife 2022; 11:e78263. [PMID: 36412098 PMCID: PMC9681199 DOI: 10.7554/elife.78263] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022] Open
Abstract
Background Ageing is a heterogenous process characterised by cellular and molecular hallmarks, including changes to haematopoietic stem cells and is a primary risk factor for chronic diseases. X chromosome inactivation (XCI) randomly transcriptionally silences either the maternal or paternal X in each cell of 46, XX females to balance the gene expression with 46, XY males. Age acquired XCI-skew describes the preferential selection of cells across a tissue resulting in an imbalance of XCI, which is particularly prevalent in blood tissues of ageing females, and yet its clinical consequences are unknown. Methods We assayed XCI in 1575 females from the TwinsUK population cohort using DNA extracted from whole blood. We employed prospective, cross-sectional, and intra-twin study designs to characterise the relationship of XCI-skew with molecular and cellular measures of ageing, cardiovascular disease risk, and cancer diagnosis. Results We demonstrate that XCI-skew is independent of traditional markers of biological ageing and is associated with a haematopoietic bias towards the myeloid lineage. Using an atherosclerotic cardiovascular disease risk score, which captures traditional risk factors, XCI-skew is associated with an increased cardiovascular disease risk both cross-sectionally and within XCI-skew discordant twin pairs. In a prospective 10 year follow-up study, XCI-skew is predictive of future cancer incidence. Conclusions Our study demonstrates that age acquired XCI-skew captures changes to the haematopoietic stem cell population and has clinical potential as a unique biomarker of chronic disease risk. Funding KSS acknowledges funding from the Medical Research Council [MR/M004422/1 and MR/R023131/1]. JTB acknowledges funding from the ESRC [ES/N000404/1]. MM acknowledges funding from the National Institute for Health Research (NIHR)-funded BioResource, Clinical Research Facility and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London. TwinsUK is funded by the Wellcome Trust, Medical Research Council, European Union, Chronic Disease Research Foundation (CDRF), Zoe Global Ltd and the National Institute for Health Research (NIHR)-funded BioResource, Clinical Research Facility and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London.
Collapse
Affiliation(s)
- Amy L Roberts
- Department of Twin Research & Genetic Epidemiology, King’s College LondonLondonUnited Kingdom
| | - Alessandro Morea
- Department of Twin Research & Genetic Epidemiology, King’s College LondonLondonUnited Kingdom
- Department of Medical and Molecular Genetics, King’s College LondonLondonUnited Kingdom
| | - Ariella Amar
- Department of Medical and Molecular Genetics, King’s College LondonLondonUnited Kingdom
| | - Antonino Zito
- Department of Twin Research & Genetic Epidemiology, King’s College LondonLondonUnited Kingdom
| | | | - Max Tomlinson
- Department of Twin Research & Genetic Epidemiology, King’s College LondonLondonUnited Kingdom
- Department of Medical and Molecular Genetics, King’s College LondonLondonUnited Kingdom
| | - Ruth CE Bowyer
- Department of Twin Research & Genetic Epidemiology, King’s College LondonLondonUnited Kingdom
| | - Xinyuan Zhang
- Department of Twin Research & Genetic Epidemiology, King’s College LondonLondonUnited Kingdom
| | - Colette Christiansen
- Department of Twin Research & Genetic Epidemiology, King’s College LondonLondonUnited Kingdom
| | - Ricardo Costeira
- Department of Twin Research & Genetic Epidemiology, King’s College LondonLondonUnited Kingdom
| | - Claire J Steves
- Department of Twin Research & Genetic Epidemiology, King’s College LondonLondonUnited Kingdom
| | - Massimo Mangino
- Department of Twin Research & Genetic Epidemiology, King’s College LondonLondonUnited Kingdom
- NIHR Biomedical Research Centre, Guy's and St Thomas' Foundation TrustLondonUnited Kingdom
| | - Jordana T Bell
- Department of Twin Research & Genetic Epidemiology, King’s College LondonLondonUnited Kingdom
| | - Chloe CY Wong
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College LondonLondonUnited Kingdom
| | - Timothy J Vyse
- Department of Medical and Molecular Genetics, King’s College LondonLondonUnited Kingdom
| | - Kerrin S Small
- Department of Twin Research & Genetic Epidemiology, King’s College LondonLondonUnited Kingdom
| |
Collapse
|
4
|
Preferential X Chromosome Inactivation as a Mechanism to Explain Female Preponderance in Myasthenia Gravis. Genes (Basel) 2022; 13:genes13040696. [PMID: 35456502 PMCID: PMC9031138 DOI: 10.3390/genes13040696] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/04/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
Myasthenia gravis (MG) is a neuromuscular autoimmune disease characterized by prevalence in young women (3:1). Several mechanisms proposed as explanations for gender bias, including skewed X chromosome inactivation (XCI) and dosage or sex hormones, are often involved in the development of autoimmunity. The skewed XCI pattern can lead to an unbalanced expression of some X-linked genes, as observed in several autoimmune disorders characterized by female predominance. No data are yet available regarding XCI and MG. We hypothesize that the preferential XCI pattern may contribute to the female bias observed in the onset of MG, especially among younger women. XCI analysis was performed on blood samples of 284 women between the ages of 20 and 82. XCI was tested using the Human Androgen Receptor Assay (HUMARA). XCI patterns were classified as random (XCI < 75%) and preferential (XCI ≥ 75%). In 121 informative patients, the frequency of skewed XCI patterns was 47%, significantly higher than in healthy controls (17%; p ≤ 0.00001). Interestingly, the phenomenon was observed mainly in younger patients (<45 years; p ≤ 0.00001). Furthermore, considering the XCI pattern and the other clinical characteristics of patients, no significant differences were found. In conclusion, we observed preferential XCI in MG female patients, suggesting its potential role in the aetiology of MG, as observed in other autoimmune diseases in women.
Collapse
|
5
|
Fontana L, Bedeschi MF, Cagnoli GA, Costanza J, Persico N, Gangi S, Porro M, Ajmone PF, Colapietro P, Santaniello C, Crippa M, Sirchia SM, Miozzo M, Tabano S. (Epi)genetic profiling of extraembryonic and postnatal tissues from female monozygotic twins discordant for Beckwith-Wiedemann syndrome. Mol Genet Genomic Med 2020; 8:e1386. [PMID: 32627967 PMCID: PMC7507324 DOI: 10.1002/mgg3.1386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 12/19/2022] Open
Abstract
Background Beckwith–Wiedemann syndrome (BWS) is an overgrowth disorder caused by defects at the 11p15.5 imprinted region. Many cases of female monozygotic (MZ) twins discordant for BWS have been reported, but no definitive conclusions have been drawn regarding the link between epigenetic defects, twinning process, and gender. Here, we report a comprehensive characterization and follow‐up of female MZ twins discordant for BWS. Methods Methylation pattern at 11p15.5 and multilocus methylation disturbance (MLID) profiling were performed by pyrosequencing and MassARRAY in placental/umbilical cord samples and postnatal tissues. Whole‐exome sequencing was carried out to identify MLID causative mutations. X‐chromosome inactivation (XCI) was determined by HUMARA test. Results Both twins share KCNQ1OT1:TSS‐DMR loss of methylation (LOM) and MLID in blood and the epigenetic defect remained stable in the healthy twin over time. KCNQ1OT1:TSS‐DMRLOM was nonhomogeneously distributed in placental samples and the twins showed the same severely skewed XCI pattern. No MLID‐causative mutations were identified. Conclusion This is the first report on BWS‐discordant twins with methylation analyses extended to extraembryonic tissues. The results suggest that caution is required when attempting prenatal diagnosis in similar cases. Although the causative mechanism underlying LOM remains undiscovered, the XCI pattern and mosaic LOM suggest that both twinning and LOM/MLID occurred after XCI commitment.
Collapse
Affiliation(s)
- Laura Fontana
- Medical Genetics, Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milano, Italy.,Research Laboratories Coordination Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Maria F Bedeschi
- Medical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Giulia A Cagnoli
- Medical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Jole Costanza
- Research Laboratories Coordination Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Nicola Persico
- Obstetrics and Gynecology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.,Department of ClinicalSciences and Community Health, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Silvana Gangi
- NICU, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Matteo Porro
- Pediatric Physical Medicine & Rehabilitation Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Paola F Ajmone
- Child and AdolescentNeuropsychiatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Patrizia Colapietro
- Medical Genetics, Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milano, Italy.,Research Laboratories Coordination Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Carlo Santaniello
- Research Laboratories Coordination Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Milena Crippa
- Medical Cytogenetics& Human Molecular Genetics, Istituto Auxologico Italiano-IRCCS, Milano, Italy
| | - Silvia M Sirchia
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| | - Monica Miozzo
- Medical Genetics, Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milano, Italy.,Research Laboratories Coordination Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Silvia Tabano
- Medical Genetics, Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milano, Italy.,Laboratory of Medical Genetics, Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
6
|
Transmission of X-linked Ovarian Cancer: Characterization and Implications. Diagnostics (Basel) 2020; 10:diagnostics10020090. [PMID: 32046210 PMCID: PMC7167857 DOI: 10.3390/diagnostics10020090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 11/17/2022] Open
Abstract
We recently reported evidence that a strong, BRCA-independent locus on the X-chromosome may contribute to ovarian cancer predisposition in families ascertained from the Familial Ovarian Cancer Registry (Buffalo, NY, USA). While it has been estimated that approximately 20% of all ovarian cancer cases are hereditary, it is possible that a significant proportion of cases previously believed to be sporadic may, in fact, be X-linked. Such X-linked disease has a distinct pattern; it implies that a father will necessarily pass a risk allele to each of his daughters, increasing the prevalence of cancers clustered within a family. X-chromosome inactivation further influences the expression of X-linked alleles and may represent a novel target for screening and therapy. Herein, we review the current literature regarding X-linked ovarian cancer and interpret allele transmission-based models to characterize X-linked ovarian cancer and develop a framework for clinical and epidemiological familial ascertainment to inform the design of future studies.
Collapse
|
7
|
Winham SJ, Larson NB, Armasu SM, Fogarty ZC, Larson MC, McCauley BM, Wang C, Lawrenson K, Gayther S, Cunningham JM, Fridley BL, Goode EL. Molecular signatures of X chromosome inactivation and associations with clinical outcomes in epithelial ovarian cancer. Hum Mol Genet 2019; 28:1331-1342. [PMID: 30576442 DOI: 10.1093/hmg/ddy444] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 10/12/2018] [Accepted: 12/14/2018] [Indexed: 12/19/2022] Open
Abstract
X chromosome inactivation (XCI) is a key epigenetic gene expression regulatory process, which may play a role in women's cancer. In particular tissues, some genes are known to escape XCI, yet patterns of XCI in ovarian cancer (OC) and their clinical associations are largely unknown. To examine XCI in OC, we integrated germline genotype with tumor copy number, gene expression and DNA methylation information from 99 OC patients. Approximately 10% of genes showed different XCI status (either escaping or being subject to XCI) compared with the studies of other tissues. Many of these genes are known oncogenes or tumor suppressors (e.g. DDX3X, TRAPPC2 and TCEANC). We also observed strong association between cis promoter DNA methylation and allele-specific expression imbalance (P = 2.0 × 10-10). Cluster analyses of the integrated data identified two molecular subgroups of OC patients representing those with regulated (N = 47) and dysregulated (N = 52) XCI. This XCI cluster membership was associated with expression of X inactive specific transcript (P = 0.002), a known driver of XCI, as well as age, grade, stage, tumor histology and extent of residual disease following surgical debulking. Patients with dysregulated XCI (N = 52) had shorter time to recurrence (HR = 2.34, P = 0.001) and overall survival time (HR = 1.87, P = 0.02) than those with regulated XCI, although results were attenuated after covariate adjustment. Similar findings were observed when restricted to high-grade serous tumors. We found evidence of a unique OC XCI profile, suggesting that XCI may play an important role in OC biology. Additional studies to examine somatic changes with paired tumor-normal tissue are needed.
Collapse
Affiliation(s)
- Stacey J Winham
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Nicholas B Larson
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Sebastian M Armasu
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Zachary C Fogarty
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Melissa C Larson
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Brian M McCauley
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Chen Wang
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Kate Lawrenson
- Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Center for Bioinformatics and Functional Genomics, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Simon Gayther
- Center for Bioinformatics and Functional Genomics, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Julie M Cunningham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Brooke L Fridley
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Ellen L Goode
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
8
|
Lin XQ, Huang ZM, Chen X, Wu F, Wu W. XIST Induced by JPX Suppresses Hepatocellular Carcinoma by Sponging miR-155-5p. Yonsei Med J 2018; 59:816-826. [PMID: 30091314 PMCID: PMC6082978 DOI: 10.3349/ymj.2018.59.7.816] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/15/2018] [Accepted: 06/28/2018] [Indexed: 02/06/2023] Open
Abstract
PURPOSE The influence of X-inactive specific transcript (XIST) and X-chromosome inactivation associated long non-coding RNAs (lncRNAs) just proximal to XIST (JPX) on hepatocellular carcinoma (HCC) remains controversial in light of previous reports, which the present study aimed to verify. MATERIALS AND METHODS The DIANA lncRNA-microRNA (miRNA) interaction database was used to explore miRNA interactions with JPX or XIST. JPX, XIST, and miR-155-5p expression levels in paired HCC specimens and adjacent normal tissue were analyzed by RT-qPCR. Interaction between XIST and miR-155-5p was verified by dual luciferase reporter assay. Expression levels of miR-155-5p and its known target genes, SOX6 and PTEN, were verified by RT-qPCR and Western blot in HepG2 cells with or without XIST knock-in. The potential suppressive role of XIST and JPX on HCC was verified by cell functional assays and tumor formation assay using a xenograft model. RESULTS JPX and XIST expression was significantly decreased in HCC pathologic specimens, compared to adjacent tissue, which correlated with HCC progression and increased miR-155-5p expression. Dual luciferase reporter assay revealed XIST as a direct target of miR-155-5p. XIST knock-in significantly reduced miR-155-5p expression level and increased that of SOX6 and PTEN, while significantly inhibiting HepG2 cell growth in vitro, which was partially reversed by miR-155-5p mimic transfection. JPX knock-in significantly increased XIST expression and inhibited HepG2 cell growth in vitro or tumor formation in vivo in a XIST dependent manner. CONCLUSION JPX and XIST play a suppressive role in HCC. JPX increases expression levels of XIST in HCC cells, which suppresses HCC development by sponging the cancer promoting miR-155-5p.
Collapse
Affiliation(s)
- Xiu Qing Lin
- Department of Gastroenterology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhi Ming Huang
- Department of Gastroenterology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xin Chen
- Department of Gastroenterology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fang Wu
- Department of Gastroenterology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Wu
- Department of Gastroenterology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
9
|
Larson NB, Fogarty ZC, Larson MC, Kalli KR, Lawrenson K, Gayther S, Fridley BL, Goode EL, Winham SJ. An integrative approach to assess X-chromosome inactivation using allele-specific expression with applications to epithelial ovarian cancer. Genet Epidemiol 2017; 41:898-914. [PMID: 29119601 PMCID: PMC5726546 DOI: 10.1002/gepi.22091] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/06/2017] [Accepted: 09/27/2017] [Indexed: 01/05/2023]
Abstract
X-chromosome inactivation (XCI) epigenetically silences transcription of an X chromosome in females; patterns of XCI are thought to be aberrant in women's cancers, but are understudied due to statistical challenges. We develop a two-stage statistical framework to assess skewed XCI and evaluate gene-level patterns of XCI for an individual sample by integration of RNA sequence, copy number alteration, and genotype data. Our method relies on allele-specific expression (ASE) to directly measure XCI and does not rely on male samples or paired normal tissue for comparison. We model ASE using a two-component mixture of beta distributions, allowing estimation for a given sample of the degree of skewness (based on a composite likelihood ratio test) and the posterior probability that a given gene escapes XCI (using a Bayesian beta-binomial mixture model). To illustrate the utility of our approach, we applied these methods to data from tumors of ovarian cancer patients. Among 99 patients, 45 tumors were informative for analysis and showed evidence of XCI skewed toward a particular parental chromosome. For 397 X-linked genes, we observed tumor XCI patterns largely consistent with previously identified consensus states based on multiple normal tissue types. However, 37 genes differed in XCI state between ovarian tumors and the consensus state; 17 genes aberrantly escaped XCI in ovarian tumors (including many oncogenes), whereas 20 genes were unexpectedly inactivated in ovarian tumors (including many tumor suppressor genes). These results provide evidence of the importance of XCI in ovarian cancer and demonstrate the utility of our two-stage analysis.
Collapse
MESH Headings
- Adult
- Alleles
- Bayes Theorem
- Carcinoma, Ovarian Epithelial
- Chromosomes, Human, X
- Female
- Genes, X-Linked
- Genotype
- Humans
- Models, Genetic
- Neoplasms, Glandular and Epithelial/genetics
- Neoplasms, Glandular and Epithelial/pathology
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/pathology
- Polymorphism, Single Nucleotide
- RNA, Neoplasm/chemistry
- RNA, Neoplasm/isolation & purification
- RNA, Neoplasm/metabolism
- Sequence Analysis, RNA
- X Chromosome Inactivation
Collapse
Affiliation(s)
- Nicholas B. Larson
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Zachary C. Fogarty
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Melissa C. Larson
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | - Kate Lawrenson
- Women’s Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Center for Bioinformatics and Functional Genomics, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Simon Gayther
- Center for Bioinformatics and Functional Genomics, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Brooke L. Fridley
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Ellen L. Goode
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Stacey J. Winham
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
10
|
Schouten PC, Vollebergh MA, Opdam M, Jonkers M, Loden M, Wesseling J, Hauptmann M, Linn SC. High XIST and Low 53BP1 Expression Predict Poor Outcome after High-Dose Alkylating Chemotherapy in Patients with a BRCA1-like Breast Cancer. Mol Cancer Ther 2015; 15:190-8. [DOI: 10.1158/1535-7163.mct-15-0470] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 11/06/2015] [Indexed: 11/16/2022]
|
11
|
Kang J, Lee HJ, Kim J, Lee JJ, Maeng LS. Dysregulation of X chromosome inactivation in high grade ovarian serous adenocarcinoma. PLoS One 2015; 10:e0118927. [PMID: 25742136 PMCID: PMC4351149 DOI: 10.1371/journal.pone.0118927] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 01/07/2015] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND One of the two copies of the X chromosome is randomly inactivated in females as a means of dosage compensation. Loss of X chromosome inactivation (XCI) is observed in breast and ovarian cancers, and is frequent in basal-like subtype and BRCA1 mutation-associated breast cancers. We investigated the clinical implications of the loss of XCI in ovarian cancer and the association between the loss of XCI and BRCA1 dysfunction. MATERIALS AND METHODS We used open source data generated by The Cancer Genome Atlas (TCGA) Genome Data Analysis Centers. Ward's hierarchical clustering method was used to classify the methylation status of the X chromosome. RESULTS We grouped 584 high grade serous ovarian adenocarcinomas (HG-SOA) according to methylation status, loss of heterozygosity and deletion or gain of X chromosome into the following five groups: preserved inactivated X chromosome (Xi) group (n = 175), partial reactivation of Xi group (n = 100), p arm deletion of Xi group (n = 35), q arm deletion of Xi group (n = 44), and two copies of active X group (n = 230). We found four genes (XAGE3, ZNF711, MAGEA4, and ZDHHC15) that were up-regulated by loss of XCI. HG-SOA with loss of XCI showed aggressive behavior (overall survival of partial reactivation of Xi group: HR 1.7, 95% CI 1.1-2.5, two copies of active X group: HR 1.4, 95% CI 1.0-1.9). Mutation and hypermethylation of BRCA1 were not frequent in HG-SOA with loss of XCI. CONCLUSIONS Loss of XCI is common in HG-SOA and is associated with poor clinical outcome. The role of BRCA1 in loss of XCI might be limited. XCI induced aberrant expression of cancer-testis antigens, which may have a role in tumor aggressiveness.
Collapse
Affiliation(s)
- Jun Kang
- Department of Hospital Pathology, Inchun St. Mary’s hospital, College of Medicine, The Catholic University of Korea, Inchun, Republic of Korea
- * E-mail:
| | - Hee Jin Lee
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Jiyoung Kim
- Department of Hospital Pathology, Inchun St. Mary’s hospital, College of Medicine, The Catholic University of Korea, Inchun, Republic of Korea
| | - Jae Jun Lee
- Department of Hospital Pathology, Inchun St. Mary’s hospital, College of Medicine, The Catholic University of Korea, Inchun, Republic of Korea
| | - Lee-so Maeng
- Department of Hospital Pathology, Inchun St. Mary’s hospital, College of Medicine, The Catholic University of Korea, Inchun, Republic of Korea
| |
Collapse
|