1
|
Chen YG, Rieser E, Bhamra A, Surinova S, Kreuzaler P, Ho MH, Tsai WC, Peltzer N, de Miguel D, Walczak H. LUBAC enables tumor-promoting LTβ receptor signaling by activating canonical NF-κB. Cell Death Differ 2024; 31:1267-1284. [PMID: 39215104 PMCID: PMC11445442 DOI: 10.1038/s41418-024-01355-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Lymphotoxin β receptor (LTβR), a member of the TNF receptor superfamily (TNFR-SF), is essential for development and maturation of lymphoid organs. In addition, LTβR activation promotes carcinogenesis by inducing a proinflammatory secretome. Yet, we currently lack a detailed understanding of LTβR signaling. In this study we discovered the linear ubiquitin chain assembly complex (LUBAC) as a previously unrecognized and functionally crucial component of the native LTβR signaling complex (LTβR-SC). Mechanistically, LUBAC-generated linear ubiquitin chains enable recruitment of NEMO, OPTN and A20 to the LTβR-SC, where they act coordinately to regulate the balance between canonical and non-canonical NF-κB pathways. Thus, different from death receptor signaling, where LUBAC prevents inflammation through inhibition of cell death, in LTβR signaling LUBAC is required for inflammatory signaling by enabling canonical and interfering with non-canonical NF-κB activation. This results in a LUBAC-dependent LTβR-driven inflammatory, protumorigenic secretome. Intriguingly, in liver cancer patients with high LTβR expression, high expression of LUBAC correlates with poor prognosis, providing clinical relevance for LUBAC-mediated inflammatory LTβR signaling.
Collapse
Affiliation(s)
- Yu-Guang Chen
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
- Division of Hematology/Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Eva Rieser
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
- CECAD Research Centre, University of Cologne, Cologne, Germany
| | - Amandeep Bhamra
- Proteomics Research Translational Technology Platform, UCL Ciancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London, UK
| | - Silvia Surinova
- Proteomics Research Translational Technology Platform, UCL Ciancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London, UK
| | - Peter Kreuzaler
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
- CECAD Research Centre, University of Cologne, Cologne, Germany
| | - Meng-Hsing Ho
- Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Chiuan Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Nieves Peltzer
- CECAD Research Centre, University of Cologne, Cologne, Germany
- Department of Translational Genomics and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Medical Faculty, Cologne, Germany
- Department of Genome Editing, University of Stuttgart, Stuttgart, Germany
| | - Diego de Miguel
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
- CECAD Research Centre, University of Cologne, Cologne, Germany
- Aragon Health Research Institute (IIS Aragon), Biomedical Research Centre of Aragon (CIBA), Zaragoza, Spain
| | - Henning Walczak
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK.
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany.
- CECAD Research Centre, University of Cologne, Cologne, Germany.
| |
Collapse
|
2
|
Khan SU, Fatima K, Aisha S, Malik F. Unveiling the mechanisms and challenges of cancer drug resistance. Cell Commun Signal 2024; 22:109. [PMID: 38347575 PMCID: PMC10860306 DOI: 10.1186/s12964-023-01302-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/30/2023] [Indexed: 02/15/2024] Open
Abstract
Cancer treatment faces many hurdles and resistance is one among them. Anti-cancer treatment strategies are evolving due to innate and acquired resistance capacity, governed by genetic, epigenetic, proteomic, metabolic, or microenvironmental cues that ultimately enable selected cancer cells to survive and progress under unfavorable conditions. Although the mechanism of drug resistance is being widely studied to generate new target-based drugs with better potency than existing ones. However, due to the broader flexibility in acquired drug resistance, advanced therapeutic options with better efficacy need to be explored. Combination therapy is an alternative with a better success rate though the risk of amplified side effects is commonplace. Moreover, recent groundbreaking precision immune therapy is one of the ways to overcome drug resistance and has revolutionized anticancer therapy to a greater extent with the only limitation of being individual-specific and needs further attention. This review will focus on the challenges and strategies opted by cancer cells to withstand the current therapies at the molecular level and also highlights the emerging therapeutic options -like immunological, and stem cell-based options that may prove to have better potential to challenge the existing problem of therapy resistance. Video Abstract.
Collapse
Affiliation(s)
- Sameer Ullah Khan
- Division of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Holcombe Blvd, Houston, TX, 77030, USA.
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| | - Kaneez Fatima
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Shariqa Aisha
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Fayaz Malik
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
3
|
Wu J, Zhang Q, Wu J, Yang Z, Liu X, Lou C, Wang X, Peng J, Zhang J, Shang Z, Xiao J, Wang N, Zhang R, Zhou J, Wang Y, Hu Z, Zhang R, Zhang J, Zeng Z. IL-8 from CD248-expressing cancer-associated fibroblasts generates cisplatin resistance in non-small cell lung cancer. J Cell Mol Med 2024; 28:e18185. [PMID: 38396325 PMCID: PMC10891307 DOI: 10.1111/jcmm.18185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/22/2023] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Chemotherapy-resistant non-small cell lung cancer (NSCLC) presents a substantial barrier to effective care. It is still unclear how cancer-associated fibroblasts (CAFs) contribute to NSCLC resistance to chemotherapy. Here, we found that CD248+ CAFs released IL-8 in NSCLC, which, in turn, enhanced the cisplatin (CDDP) IC50 in A549 and NCI-H460 while decreasing the apoptotic percentage of A549 and NCI-H460 in vitro. The CD248+ CAFs-based IL-8 secretion induced NSCLC chemoresistance by stimulating nuclear factor kappa B (NF-κB) and elevating ATP-binding cassette transporter B1 (ABCB1). We also revealed that the CD248+ CAFs-based IL-8 release enhanced cisplatin chemoresistance in NSCLC mouse models in vivo. Relative to wild-type control mice, the CD248 conditional knockout mice exhibited significant reduction of IL-8 secretion, which, in turn, enhanced the therapeutic efficacy of cisplatin in vivo. In summary, our study identified CD248 activates the NF-κB axis, which, consecutively induces the CAFs-based secretion of IL-8, which promotes NSCLC chemoresistance. This report highlights a potential new approach to enhancing the chemotherapeutic potential of NSCLC-treating cisplatin.
Collapse
Affiliation(s)
- Jieheng Wu
- Department of ImmunologyGuizhou Medical UniversityGuiyangGuizhouChina
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular BiologyThe Fourth Military Medical UniversityXi'anChina
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and EngineeringGuizhou Medical UniversityGuiyangGuizhouChina
- Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou ProvinceGuizhou Medical UniversityGuiyangGuizhouChina
| | - Qiaoling Zhang
- Department of ImmunologyGuizhou Medical UniversityGuiyangGuizhouChina
| | - Jiangwei Wu
- Department of ImmunologyGuizhou Medical UniversityGuiyangGuizhouChina
| | - Zeyang Yang
- Department of ImmunologyGuizhou Medical UniversityGuiyangGuizhouChina
| | - Xinlei Liu
- Guizhou Prenatal Diagnsis CenterThe Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Chunju Lou
- Department of ImmunologyGuizhou Medical UniversityGuiyangGuizhouChina
| | - Xuanyin Wang
- Department of ImmunologyGuizhou Medical UniversityGuiyangGuizhouChina
| | - Jiangying Peng
- Department of Pharmaceutical analysisZunyi Medical UniversityZunyiGuizhouChina
| | - Jinyuan Zhang
- School of Health ManagementGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Zhenling Shang
- Department of ImmunologyGuizhou Medical UniversityGuiyangGuizhouChina
| | - Jing Xiao
- Department of ImmunologyGuizhou Medical UniversityGuiyangGuizhouChina
| | - Nianxue Wang
- Department of ImmunologyGuizhou Medical UniversityGuiyangGuizhouChina
| | - Ruya Zhang
- Department of ImmunologyGuizhou Medical UniversityGuiyangGuizhouChina
| | - Jinyao Zhou
- Department of ImmunologyGuizhou Medical UniversityGuiyangGuizhouChina
| | - Yun Wang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and EngineeringGuizhou Medical UniversityGuiyangGuizhouChina
- Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou ProvinceGuizhou Medical UniversityGuiyangGuizhouChina
| | - Zuquan Hu
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and EngineeringGuizhou Medical UniversityGuiyangGuizhouChina
- Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou ProvinceGuizhou Medical UniversityGuiyangGuizhouChina
| | - Rui Zhang
- Department of ImmunologyGuizhou Medical UniversityGuiyangGuizhouChina
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular BiologyThe Fourth Military Medical UniversityXi'anChina
| | - Jian Zhang
- Department of Thoracic SurgeryThe Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Zhu Zeng
- Department of ImmunologyGuizhou Medical UniversityGuiyangGuizhouChina
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and EngineeringGuizhou Medical UniversityGuiyangGuizhouChina
| |
Collapse
|
4
|
Xu F, Wang X, Huang Y, Zhang X, Sun W, Du Y, Xu Z, Kou H, Zhu S, Liu C, Wei X, Li X, Jiang Q, Xu Y. Prostate cancer cell-derived exosomal IL-8 fosters immune evasion by disturbing glucolipid metabolism of CD8 + T cell. Cell Rep 2023; 42:113424. [PMID: 37963015 DOI: 10.1016/j.celrep.2023.113424] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/12/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023] Open
Abstract
Depletion of CD8+ T cells is a major obstacle in immunotherapy; however, the relevant mechanisms remain largely unknown. Here, we showed that prostate cancer (PCa) cell-derived exosomes hamper CD8+ T cell function by transporting interleukin-8 (IL-8). Compared to the low IL-8 levels detected in immune cells, PCa cells secreted the abundance of IL-8 and further accumulated in exosomes. The delivery of PCa cell-derived exosomes into CD8+ T cells exhausted the cells through enhanced starvation. Mechanistically, exosomal IL-8 overactivated PPARα in recipient cells, thereby decreasing glucose utilization by downregulating GLUT1 and HK2 but increasing fatty acid catabolism via upregulation of CPT1A and ACOX1. PPARα further activates uncoupling protein 1 (UCP1), leading to fatty acid catabolism for thermogenesis rather than ATP synthesis. Consequently, inhibition of PPARα and UCP1 restores CD8+ T cell proliferation by counteracting the effect of exosomal IL-8. This study revealed that the tumor exosome-activated IL-8-PPARα-UCP1 axis harms tumor-infiltrating CD8+ T cells by interfering with energy metabolism.
Collapse
Affiliation(s)
- Fan Xu
- Research Center, Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing 210029, P.R. China; Laboratory of Cancer Biology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Road, Nanjing 210009, P.R. China
| | - Xiumei Wang
- Research Center, Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing 210029, P.R. China; Department of Oncology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, P.R. China
| | - Ying Huang
- Research Center, Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing 210029, P.R. China
| | - Xiaoqian Zhang
- Research Center, Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing 210029, P.R. China
| | - Wenbo Sun
- Laboratory of Cancer Biology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Road, Nanjing 210009, P.R. China
| | - Yuanyuan Du
- Laboratory of Cancer Biology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Road, Nanjing 210009, P.R. China
| | - Zhi Xu
- Research Center, Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing 210029, P.R. China
| | - Hengyuan Kou
- Research Center, Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing 210029, P.R. China; Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, P.R. China
| | - Shuyi Zhu
- Research Center, Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing 210029, P.R. China; Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, P.R. China
| | - Caidong Liu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, P.R. China
| | - Xiaowei Wei
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, P.R. China
| | - Xiao Li
- Laboratory of Cancer Biology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Road, Nanjing 210009, P.R. China.
| | - Qin Jiang
- Research Center, Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing 210029, P.R. China.
| | - Yong Xu
- Research Center, Affiliated Eye Hospital, Nanjing Medical University, 138 Hanzhong Road, Nanjing 210029, P.R. China; Laboratory of Cancer Biology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Road, Nanjing 210009, P.R. China.
| |
Collapse
|
5
|
Liao H, Li H, Dong J, Song J, Chen H, Si H, Wang J, Bai X. Melatonin blunts the tumor-promoting effect of cancer-associated fibroblasts by reducing IL-8 expression and reversing epithelial-mesenchymal transition. Int Immunopharmacol 2023; 119:110194. [PMID: 37080066 DOI: 10.1016/j.intimp.2023.110194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND Most studies on melatonin have focused on tumor cells but have ignored the tumor microenvironment (TME), especially one of its important components, the cancer-associated fibroblasts (CAFs). Therefore, we attempted to explore the role of melatonin in TME. METHODS We investigated the regulatory role of melatonin in the tumor-promoting effect of CAFs and its underlying mechanism by using cell and animal models. RESULTS CAFs promoted tumor progression, but melatonin weakened the tumor-promoting effect of CAFs. Compared with tumor cells, IL-8 was mainly expressed in CAFs. CAFs-overexpressing IL-8 induced the epithelial-mesenchymal transition (EMT) of tumor cells, and a positive crosstalk was observed between CAFs and tumor cells undergoing EMT, thereby further promoting the IL-8 expression. Melatonin suppressed this crosstalk by inhibiting the NF-κB pathway, thereby impeding the IL-8 expression from CAFs. Importantly, melatonin reversed CAFs-derived IL-8-mediated EMT by inhibiting the AKT pathway. Melatonin was found to directly and indirectly inhibit tumor progression. CONCLUSION Our research reveals the potential action mechanism of melatonin in regulating the CAF-tumor cell interaction and suggests the potential of melatonin as an adjuvant of tumor therapy.
Collapse
Affiliation(s)
- Huifeng Liao
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Huayan Li
- Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Junhua Dong
- Department of General Surgery, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Jin Song
- Department of General Surgery, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Hongye Chen
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Huiyan Si
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Jiandong Wang
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| | - Xue Bai
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
6
|
DiNatale A, Castelli MS, Nash B, Meucci O, Fatatis A. Regulation of Tumor and Metastasis Initiation by Chemokine Receptors. J Cancer 2022; 13:3160-3176. [PMID: 36118530 PMCID: PMC9475358 DOI: 10.7150/jca.72331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/10/2022] [Indexed: 12/13/2022] Open
Abstract
Tumor-initiating cells (TICs) are a rare sub-population of cells within the bulk of a tumor that are major contributors to tumor initiation, metastasis, and chemoresistance. TICs have a stem-cell-like phenotype that is dictated by the expression of master regulator transcription factors, including OCT4, NANOG, and SOX2. These transcription factors are expressed via activation of multiple signaling pathways that drive cancer initiation and progression. Importantly, these same signaling pathways can be activated by select chemokine receptors. Chemokine receptors are increasingly being revealed as major drivers of the TIC phenotype, as their signaling can lead to activation of stemness-controlling transcription factors. Additionally, the cell surface expression of chemokine receptors provides a unique therapeutic target to disrupt signaling pathways that control the expression of master regulator transcription factors and the TIC phenotype. This review summarizes the master regulator transcription factors known to dictate the TIC phenotype, along with the complex signaling pathways that can mediate their expression and the chemokine receptors that are most upstream of this phenotype.
Collapse
Affiliation(s)
- Anthony DiNatale
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.,Present Address: Janssen Oncology, Spring House, PA, USA
| | - Maria Sofia Castelli
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.,Present address: Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bradley Nash
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.,Program in Immune Cell Regulation & Targeting, Sidney Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Alessandro Fatatis
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.,Program in Translational and Cellular Oncology, Sidney Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
7
|
Rossi AJ, Khan TM, Saif A, Marron TU, Hernandez JM. Treatment of Hepatocellular Carcinoma with Neoadjuvant Nivolumab Alone Versus in Combination with a CCR2/5 Inhibitor or an Anti-IL-8 Antibody. Ann Surg Oncol 2021; 29:30-32. [PMID: 34117573 DOI: 10.1245/s10434-021-10269-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 11/18/2022]
Affiliation(s)
- Alexander J Rossi
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tahsin M Khan
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Areeba Saif
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas U Marron
- Early Phase Trials Unit, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Jonathan M Hernandez
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Karabicici M, Alptekin S, Fırtına Karagonlar Z, Erdal E. Doxorubicin-induced senescence promotes stemness and tumorigenicity in EpCAM-/CD133- nonstem cell population in hepatocellular carcinoma cell line, HuH-7. Mol Oncol 2021; 15:2185-2202. [PMID: 33524223 PMCID: PMC8334288 DOI: 10.1002/1878-0261.12916] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 01/06/2021] [Accepted: 01/21/2021] [Indexed: 12/11/2022] Open
Abstract
The therapeutic induction of senescence is a potential means to treat cancer, primarily acting through the induction of a persistent growth‐arrested state in tumors. However, recent studies have indicated that therapy‐induced senescence (TIS) in tumor cells allows for the prolonged survival of a subgroup of cells in a dormant state, with the potential to re‐enter the cell cycle along with an increased stemness gene expression. Residual cells after TIS with increased cancer stem cell phenotype may have profound implications for tumor aggressiveness and disease recurrence. Herein, we investigated senescence‐associated stemness in EpCAM+/CD133+ liver cancer stem cell and EpCAM−/CD133− nonstem cell populations in HuH7 cell line. We demonstrated that treatment with doxorubicin induces senescence in both cell populations, accompanied by a significant increase in the expression of reprogramming genes SOX2, KLF4, and c‐MYC as well as liver stemness‐related genes EpCAM, CK19, and ANXA3 and the multidrug resistance‐related gene ABCG2. Moreover, doxorubicin treatment significantly increased EpCAM + population in nonstem cells indicating senescence‐associated reprogramming of nonstem cell population. Also, Wnt/β‐catenin target genes were increased in these cells, while inhibition of this signaling pathway decreased stem cell gene expression. Importantly, Dox‐treated EpCAM−/CD133− nonstem cells had increased in vivo tumor‐forming ability. In addition, when SASP‐CM from Dox‐treated cells were applied onto hİPSC‐derived hepatocytes, senescence was induced in hepatocytes along with an increased expression of TGF‐β, KLF4, and AXIN2. Importantly, SASP‐CM was not able to induce senescence in Hep3B‐TR cells, a derivative line rendered resistant to TGF‐β signaling. Furthermore, ELISA experiments revealed that the SASP‐CM of Dox‐treated cells contain inflammatory cytokines IL8 and IP10. In summary, our findings further emphasize the importance of carefully dissecting the beneficial and detrimental aspects of prosenescence therapy in HCC and support the potential use of senolytic drugs in HCC treatment in order to eliminate adverse effects of TIS.
Collapse
Affiliation(s)
| | | | | | - Esra Erdal
- Izmir Biomedicine and Genome Center, Turkey.,Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
9
|
Lee HY, Hong IS. Targeting Liver Cancer Stem Cells: An Alternative Therapeutic Approach for Liver Cancer. Cancers (Basel) 2020; 12:cancers12102746. [PMID: 32987767 PMCID: PMC7598600 DOI: 10.3390/cancers12102746] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
The first report of cancer stem cell (CSC) from Bruce et al. has demonstrated the relatively rare population of stem-like cells in acute myeloid leukemia (AML). The discovery of leukemic CSCs prompted further identification of CSCs in multiple types of solid tumor. Recently, extensive research has attempted to identity CSCs in multiple types of solid tumors in the brain, colon, head and neck, liver, and lung. Based on these studies, we hypothesize that the initiation and progression of most malignant tumors rely largely on the CSC population. Recent studies indicated that stem cell-related markers or signaling pathways, such as aldehyde dehydrogenase (ALDH), CD133, epithelial cell adhesion molecule (EpCAM), Wnt/β-catenin signaling, and Notch signaling, contribute to the initiation and progression of various liver cancer types. Importantly, CSCs are markedly resistant to conventional therapeutic approaches and current targeted therapeutics. Therefore, it is believed that selectively targeting specific markers and/or signaling pathways of hepatic CSCs is an effective therapeutic strategy for treating chemotherapy-resistant liver cancer. Here, we provide an overview of the current knowledge on the hepatic CSC hypothesis and discuss the specific surface markers and critical signaling pathways involved in the development and maintenance of hepatic CSC subpopulations.
Collapse
Affiliation(s)
- Hwa-Yong Lee
- Department of Biomedical Science, Jungwon University, 85 Goesan-eup, Munmu-ro, Goesan-gun, Chungcheongbuk-do 367700, Korea;
| | - In-Sun Hong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406840, Korea
- Correspondence: ; Tel.: +82-32-899-6315; Fax: +82-32-899-6350
| |
Collapse
|
10
|
Alkaraki A, Alshaer W, Wehaibi S, Gharaibeh L, Abuarqoub D, Alqudah DA, Al-Azzawi H, Zureigat H, Souleiman M, Awidi A. Enhancing chemosensitivity of wild-type and drug-resistant MDA-MB-231 triple-negative breast cancer cell line to doxorubicin by silencing of STAT 3, Notch-1, and β-catenin genes. Breast Cancer 2020; 27:989-998. [PMID: 32328816 DOI: 10.1007/s12282-020-01098-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND/OBJECTIVE The absence of receptors in triple-negative breast cancer limits therapeutic choices utilized in clinical management of the disease. Doxorubicin is an important member of therapeutic regimens that is hindered by emergence of resistance. The current work aim to investigate of therapeutic potential of single and combinations of siRNA molecules designed for silencing STAT 3, Notch-1, and β-catenin genes in wild type and doxorubicin resistant MDA-MB-231 triple negative breast cancer cell line. METHODS Doxorubicin resistant MDA-MB-231 cell line was developed and characterized for the expression of multidrug resistance-related genes, CD44/CD24 markers, inflammatory cytokines, and the expression of STAT 3, Notch-1, and β-catenin targeted genes. Further, the effect of single and combinations of siRNA on cell viability and chemosensitivity of both wild type MDA-MB-231 cells (MDA-MB-231/WT) and doxorubicin resistant MDA-MB-231 cells (MDA-MB-231/DR250) were assessed by MTT assay. RESULTS The IC50 of doxorubicin was 10-folds higher in MDA-MB-231/DR250 resistant cells compared to MDA-MB-231/WT control cells, 1.53 ± 0.24 μM compared to 0.16 ± 0.02 μM, respectively. The expression of targeted genes was higher in resistant cells compared to control cells, 3.6 ± 0.16 folds increase in β-catenin, 2.7 ± 0.09 folds increase in Notch-1, and 1.8 ± 0.09 folds increase in STAT-3. Following treatment with siRNAs, there was a variable reduction in mRNA expression of each of the targeted genes compared to scrambled siRNA and a reduction in IC50 in both cell lines. The effect of a combination of three genes produced the largest reduction in IC50 in resistant cell line. CONCLUSION Our study showed that the silencing of single and multiple genes involved in drug resistance and tumor progression by siRNA can enhance the chemosensitivity of cancer cells to conventional chemotherapy.
Collapse
Affiliation(s)
- Arwa Alkaraki
- Cell Therapy Center, The University of Jordan, PO Box: 5825, Amman, 11942, Jordan
- Department of Pharmacology, Faculty of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, PO Box: 5825, Amman, 11942, Jordan.
| | - Suha Wehaibi
- Cell Therapy Center, The University of Jordan, PO Box: 5825, Amman, 11942, Jordan
| | - Lobna Gharaibeh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman, Jordan
| | - Duaa Abuarqoub
- Cell Therapy Center, The University of Jordan, PO Box: 5825, Amman, 11942, Jordan
- Department of Biomedical Sciences and Pharmacology, Faculty of Pharmacy, University of Petra, Amman, 11180, Jordan
| | - Dana A Alqudah
- Cell Therapy Center, The University of Jordan, PO Box: 5825, Amman, 11942, Jordan
| | - Hafsa Al-Azzawi
- Cell Therapy Center, The University of Jordan, PO Box: 5825, Amman, 11942, Jordan
| | - Hadil Zureigat
- Faculty of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Mamoun Souleiman
- Faculty of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, PO Box: 5825, Amman, 11942, Jordan.
- Faculty of Medicine, The University of Jordan, Amman, 11942, Jordan.
- Department of Hematology and Oncology, Jordan University Hospital, The University of Jordan, Amman, 11942, Jordan.
| |
Collapse
|
11
|
Tsui YM, Chan LK, Ng IOL. Cancer stemness in hepatocellular carcinoma: mechanisms and translational potential. Br J Cancer 2020; 122:1428-1440. [PMID: 32231294 PMCID: PMC7217836 DOI: 10.1038/s41416-020-0823-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/30/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer stemness, referring to the stem-cell-like phenotype of cancer cells, has been recognised to play important roles in different aspects of hepatocarcinogenesis. A number of well-established cell-surface markers already exist for liver cancer stem cells, with potential new markers of liver cancer stem cells being identified. Both genetic and epigenetic factors that affect various signalling pathways are known to contribute to cancer stemness. In addition, the tumour microenvironment—both physical and cellular—is known to play an important role in regulating cancer stemness, and the potential interaction between cancer stem cells and their microenvironment has provided insight into the regulation of the tumour-initiating ability as well as the cellular plasticity of liver CSCs. Potential specific therapeutic targeting of liver cancer stemness is also discussed. With increased knowledge, effective druggable targets might be identified, with the aim of improving treatment outcome by reducing chemoresistance.
Collapse
Affiliation(s)
- Yu-Man Tsui
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong.,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
| | - Lo-Kong Chan
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong.,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
| | - Irene Oi-Lin Ng
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong. .,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong.
| |
Collapse
|
12
|
Limpakan Yamada S, Wongsirisin P, Yodkeeree S, Chakrabandhu B, Chongruksut W, Limtrakul Dejkriengkraikul P. Interleukin-8 associated with chemosensitivity and poor chemotherapeutic response to gastric cancer. J Gastrointest Oncol 2020; 10:1120-1132. [PMID: 31949929 DOI: 10.21037/jgo.2019.09.02] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Gastric cancer (GC) patients have been found to have developed chemotherapy resistance that has resulted in a lowering of their overall survival rates. Interleukin-6 (IL-6) and interleukin-8 (IL-8) could be responsible as the predictive biomarkers in monitoring drug resistance. We have developed a protocol to monitor drug treatment by testing ex vivo chemosensitivity and cytokine levels of primary gastric cultures obtained from endoscopic biopsies. Methods We studied 49 patients with distal GC who underwent primary surgical resection between June 2014 and December 2016 in the northern endemic region of Thailand. The clinical and pathological data of patients were recorded, and the cancer sub-type was classified. The correlation of cytokine IL-6 and IL-8 protein expression levels and chemotherapy sensitivity in primary gastric cultures was investigated. Endoscopic biopsies were collected before and/or after chemotherapy treatment followed by FOLFOXIV regimen (oxaliplatin + 5-FU/leucovorin). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to examine ex vivo chemosensitivity to cisplatin, oxaliplatin, 5-fluorouracil (5-FU) and irinotecan. Enzyme-linked immunosorbent assay (ELISA) was performed to investigate cytokine levels. Results Ex vivo drug treatment of 49 primary gastric cultures from naive patients revealed a significant correlation between basal levels of IL-8 and chemosensitivity to cisplatin (P=0.001) and oxaliplatin (P=0.001). IL-8 protein expression levels were significantly decreased in the early phase after cisplatin and oxaliplatin treatments leading to an increase in cell sensitivity to drug treatments. Among 49 patients, 11 patients were classified as partial or poor responders after drug interventions, in which case, second endoscopic biopsies were performed for determination of chemosensitivity and cytokine levels. The results demonstrated significant decreases in sensitivity to cisplatin (P=0.049) and oxaliplatin (P=0.014), meanwhile IL-8 protein expression levels were significantly increased by P=0.0423 in both drug treatments. There was no correlation of IL-6 and drug resistance when treatments of the primary gastric cultures involved each of the four chemotherapeutic drugs (P=0.0663). Conclusions Upregulation of IL-8 after drug intervention might be useful as predictive biomarker in monitoring drug resistance in GC patients; however, this needs to be confirmed among a larger number of patients and with control groups that are properly age-paired. The established primary gastric culture could serve as a valuable tool for chemotherapy screening, while the repeated usage of platinum drugs may result in drug resistance via upregulation of IL-8 levels.
Collapse
Affiliation(s)
- Sirikan Limpakan Yamada
- Division of Gastrointestinal Surgery and Endoscopy, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Gastric Cancer Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pattama Wongsirisin
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Supachai Yodkeeree
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, Thailand
| | - Bandhuphat Chakrabandhu
- Division of Gastrointestinal Surgery and Endoscopy, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Gastric Cancer Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wilaiwan Chongruksut
- Division of Gastrointestinal Surgery and Endoscopy, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Gastric Cancer Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pornngarm Limtrakul Dejkriengkraikul
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
13
|
Kahraman DC, Kahraman T, Cetin-Atalay R. Targeting PI3K/Akt/mTOR Pathway Identifies Differential Expression and Functional Role of IL8 in Liver Cancer Stem Cell Enrichment. Mol Cancer Ther 2019; 18:2146-2157. [PMID: 31439713 DOI: 10.1158/1535-7163.mct-19-0004] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/01/2019] [Accepted: 08/15/2019] [Indexed: 11/16/2022]
Abstract
Activation of the PI3K/Akt/mTOR pathway is an important signaling mechanism involved in the development and the progression of liver cancer stem cell (LCSC) population during acquired Sorafenib resistance in advanced hepatocellular carcinoma (HCC). Therefore, identification of novel therapeutic targets involving this pathway and acting on LCSCs is highly essential. Here, we analyzed the bioactivities and the molecular pathways involved in the action of small-molecule PI3K/Akt/mTOR pathway inhibitors in comparison with Sorafenib, DNA intercalators, and DAPT (CSC inhibitor) on CD133/EpCAM-positive LCSCs. Sorafenib and DNA intercalators lead to the enrichment of LCSCs, whereas Rapamycin and DAPT significantly reduced CD133/EpCAM positivity. Sequential treatment with Rapamycin followed by Sorafenib decreased the ratio of LCSCs as well as their sphere formation capacity, as opposed to Sorafenib alone. Under the stress of the inhibitors, differential expression analysis of 770 cancer pathway genes using network-based systems biology approach singled out IL8 expression association with LCSCs. Furthermore, IL8 secretion and LCSC enrichment ratio was also positively correlated. Following IL8 inhibition with its receptor inhibitor Reparixin or siRNA knockdown, LCSC features of HCC cells were repressed, and sensitivity of cells to Sorafenib increased significantly. Furthermore, inflammatory cytokines (IL8, IL1β, and IL11) were also upregulated upon treatment with HCC-approved kinase inhibitors Sorafenib and Regorafenib. Hence, chemotherapeutic stress alters inflammatory cytokine gene expression in favor of hepatic CSC population survival. Autocrine IL8 signaling is identified as a critical event, and its inhibition provides a promising complimentary therapeutic approach for the prevention of LCSC population enrichment.
Collapse
Affiliation(s)
- Deniz Cansen Kahraman
- Cancer Systems Biology Laboratory, Graduate School of Informatics, ODTU, Ankara, Turkey.
| | - Tamer Kahraman
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Rengul Cetin-Atalay
- Cancer Systems Biology Laboratory, Graduate School of Informatics, ODTU, Ankara, Turkey
| |
Collapse
|
14
|
Wang D, Yang L, Yue D, Cao L, Li L, Wang D, Ping Y, Shen Z, Zheng Y, Wang L, Zhang Y. Macrophage-derived CCL22 promotes an immunosuppressive tumor microenvironment via IL-8 in malignant pleural effusion. Cancer Lett 2019; 452:244-253. [PMID: 30928379 DOI: 10.1016/j.canlet.2019.03.040] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/16/2019] [Accepted: 03/22/2019] [Indexed: 12/20/2022]
Abstract
Immune dysfunction often occurs in malignant pleural effusion (MPE). In our previous study, TGF-β derived predominantly from macrophages plays an important role in impairing T cell cytotoxicity in MPE. Therefore, we aimed to investigate whether other immunoregulatory cells and factors mediated TGF-β secretion from macrophages, involved in the immunosuppressive microenvironment of MPE, and to provide clues for potential immune therapy for MPE as well. We found that CCL22 level in MPE was significantly higher than that in non-malignant pleural effusion. The high level of CCL22 was closely associated with poor survival in MPE patients with lung cancer. CCL22 was dominantly produced by tumor-associated macrophages (TAMs) in MPE. Meanwhile, TAM-derived TGF-β mediated CCL22 expression in TAMs via c-Fos. CCL22 promoted the recruitment of regulatory T cells (Tregs) in MPE. Lastly, Treg-secreted high level of IL-8 further induced TGF-β production from TAMs, and promoted the immunosuppressive tumor microenvironment in MPE. Our results indicate that macrophage-derived CCL22 plays an important role in the immunosuppressive tumor microenvironment via IL-8 in MPE.
Collapse
Affiliation(s)
- Dong Wang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China; Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China; Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, Henan, 450052, PR China
| | - Li Yang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China; Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China; Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, Henan, 450052, PR China
| | - Dongli Yue
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China; Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China; Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, Henan, 450052, PR China
| | - Ling Cao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China; Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China; Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, Henan, 450052, PR China
| | - Lifeng Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China; Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China; Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, Henan, 450052, PR China
| | - Dan Wang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China; Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China; Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, Henan, 450052, PR China
| | - Yu Ping
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China; School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, Henan, 450052, PR China
| | - Zhibo Shen
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China; Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China; Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, Henan, 450052, PR China
| | - Yujia Zheng
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China; Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China; Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, Henan, 450052, PR China
| | - Liping Wang
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China; Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, Henan, 450052, PR China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China; Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China; School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, Henan, 450052, PR China.
| |
Collapse
|
15
|
A systematic review and meta-analysis of evaluation of serum interleukin 8 levels in hepatocellular carcinoma. Clin Exp Hepatol 2019; 5:123-128. [PMID: 31508492 PMCID: PMC6728862 DOI: 10.5114/ceh.2019.84780] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 11/24/2018] [Indexed: 01/15/2023] Open
Abstract
Aim of the study To estimate serum interleukin 8 (IL-8) level in patients with hepatocellular carcinoma (HCC) compared to controls and patients with chronic hepatitis (CH) and liver cirrhosis (LC). Material and methods Three databases, i.e. PubMed, Web of Science, and Scopus, were searched up to November 2017 without language restriction. The mean difference (MD) and 95% confidence interval (CI) were used by a random-effects analysis in RevMan version 5.3, and sensitivity analysis was performed as the secondary analysis. Results Out of 239 studies found, 10 studies recruiting 659 HCC patients, 237 controls, 357 patients with LC, and 48 patients with CH were included and analyzed in the meta-analysis. The pooled MDs were 39.48 (95%CI: 152.31, 406.47, p < 0.00001), 21.32 (95% CI: –6.04, 48.68, p = 0.13), and 36.46 (95% CI: 21.77, 51.15, p < 0.00001) in the patients with HCC compared to the controls, the patients with LC and those with CH, respectively. Conclusions An elevated serum IL-8 level in the HCC patients compared to the three other groups showed an increased risk for this cytokine in HCC patients. Therefore, this interleukin can be used as a new biomarker replacing alpha-fetoprotein (AFP) or as a clinical assay for evaluation of the pathogenesis and probably the progression or development of HCC.
Collapse
|
16
|
Corrò C, Healy ME, Engler S, Bodenmiller B, Li Z, Schraml P, Weber A, Frew IJ, Rechsteiner M, Moch H. IL-8 and CXCR1 expression is associated with cancer stem cell-like properties of clear cell renal cancer. J Pathol 2019; 248:377-389. [PMID: 30883740 PMCID: PMC6618115 DOI: 10.1002/path.5267] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/25/2019] [Accepted: 03/13/2019] [Indexed: 12/28/2022]
Abstract
Recent studies suggest that clear cell renal cell carcinoma (ccRCC) possesses a rare population of cancer stem cells (CSCs) that might contribute to tumor heterogeneity, metastasis and therapeutic resistance. Nevertheless, their relevance for renal cancer is still unclear. In this study, we successfully isolated CSCs from established human ccRCC cell lines. CSCs displayed high expression of the chemokine IL‐8 and its receptor CXCR1. While recombinant IL‐8 significantly increased CSC number and properties in vitro, CXCR1 inhibition using an anti‐CXCR1 antibody or repertaxin significantly reduced these features. After injection into immune‐deficient mice, CSCs formed primary tumors that metastasized to the lung and liver. All xenografted tumors in mice expressed high levels of IL‐8 and CXCR1. Furthermore, IL‐8/CXCR1 expression significantly correlated with decreased overall survival in ccRCC patients. These results suggest that the IL‐8/CXCR1 phenotype is associated with CSC‐like properties in renal cancer. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Claudia Corrò
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland.,Life Science Zurich Graduate School, ETH and University of Zurich, Zurich, Switzerland
| | - Marc E Healy
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Stefanie Engler
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Bernd Bodenmiller
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Zhe Li
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter Schraml
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Achim Weber
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Ian J Frew
- Clinic of Internal Medicine I, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg im Breisgau, Germany
| | - Markus Rechsteiner
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Wen Q, Xu C, Zhou J, Liu NM, Cui YH, Quan MF, Cao JG, Ren KQ. 8-bromo-7-methoxychrysin suppress stemness of SMMC-7721 cells induced by co-culture of liver cancer stem-like cells with hepatic stellate cells. BMC Cancer 2019; 19:224. [PMID: 30866863 PMCID: PMC6416872 DOI: 10.1186/s12885-019-5419-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 02/27/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Our previous works have demonstrated that 8-bromo-7-methoxychrysin suppressed stemness of human hepatocellular carcinoma (HCC) cell line SMMC-7721 induced by condition medium from hepatic stellate cell line LX-2 that was activated by liver cancer stem-like cells (LCSCs). However, whether and whereby BrMC inhibits the stemness induced by co-culture of LCSCs and LX-2 cells remains to be investigated. METHODS The second-generation spheres by sphere culture were identified and used as SMMC-7721-and MHCC97H-derived LCSLCs. SMMC-7721-and MHCC97-derived LCSCs/LX-2 cells transwell co-culture system was treated with BrMC and its lead compound chrysin. The concentrations of IL-6, IL-8, HGF and PDGF in condition medium from co-culture were measured by enzyme-linked immunosorbent assay (ELISA). The stemness of SMMC-7721 cells was evaluated by sphere formation assay and western blot analysis for expression levels of cancer stem cell markers (CD133 and CD44).The expression levels of cancer-associated fibroblast markers (FAP-α and α-SMA) were employed to evaluate pathologic activation of LX-2 cells. Addition of IL-6 and/or HGF or deletion of IL-6 and/or HGF was conducted to investigate the mechanisms for BrMC and chrysin treatment in SMMC-7721-derived LCSLCs co-cultured with LX-2cells. RESULTS The co-culture of LCSLCs with LX-2 cells increased sphere formation capability as well as expression of CD133 and CD44 in SMMC-7721 cells, meanwhile, upregulated expression of FAP-α in LX-2 cells. ELISA indicated that the concentrations of IL-6 and HGF were significantly elevated in Co-CM than that of condition media from co-cultured SMMC-7721 cells/LX-2 cells. Treatment of BrMC and chrysin with co-cultures of SMMC-7721- and MHCC97H-derived LCSLCs and LX-2 cells effectively inhibited the above responses. Moreover, addition of IL-6 and/or HGF induced stemness of SMMC-7721 cells and activation of LX-2 cells, conversely, deletion of IL-6 and/or HGF suppressed those. Furthermore, the inhibitory effects of BrMC and chrysin on stemness of SMMC-7721 cells and activation of LX-2 cells were attenuated by addition of IL-6 or HGF, and enhanced by deletion of IL-6 or HGF. CONCLUSIONS Our results suggest IL-6 and HGF may be the key communication molecules for the interaction between LCSLCs and HSCs, and BrMC and chrysin could block these effects and be the novel therapeutic candidates for HCC management.
Collapse
Affiliation(s)
- Qi Wen
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, 410013 China
- Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Changsha, 410013 China
| | - Chang Xu
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, 410013 China
- Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Changsha, 410013 China
| | - Jie Zhou
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, 410013 China
- Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Changsha, 410013 China
| | - Nuo-Min Liu
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, 410013 China
- Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Changsha, 410013 China
| | - Ying-Hong Cui
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, 410013 China
- Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Changsha, 410013 China
| | - Mei-Fang Quan
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, 410013 China
- Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Changsha, 410013 China
| | - Jian-Guo Cao
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, 410013 China
- Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Changsha, 410013 China
| | - Kai-qun Ren
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, 410013 China
- Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Changsha, 410013 China
| |
Collapse
|
18
|
Duan M, Goswami S, Shi JY, Wu LJ, Wang XY, Ma JQ, Zhang Z, Shi Y, Ma LJ, Zhang S, Xi RB, Cao Y, Zhou J, Fan J, Zhang XM, Gao Q. Activated and Exhausted MAIT Cells Foster Disease Progression and Indicate Poor Outcome in Hepatocellular Carcinoma. Clin Cancer Res 2019; 25:3304-3316. [PMID: 30723143 DOI: 10.1158/1078-0432.ccr-18-3040] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/25/2018] [Accepted: 02/01/2019] [Indexed: 12/26/2022]
Abstract
PURPOSE Innate immunity is an indispensable arm of tumor immune surveillance, and the liver is an organ with a predominance of innate immunity, where mucosal-associated invariant T (MAIT) cells are enriched. However, little is known about the phenotype, functions, and immunomodulatory role of MAIT cells in hepatocellular carcinoma (HCC).Experimental Design: The distribution, phenotype, and function of MAIT cells in patients with HCC were evaluated by both flow cytometry (FCM) and in vitro bioassays. Transcriptomic analysis of MAIT cells was also performed. Prognostic significance of tumor-infiltrating MAIT cells was validated in four independent cohorts of patients with HCC. RESULTS Despite their fewer densities in HCC tumor than normal liver, MAIT cells were significantly enriched in the HCC microenvironment compared with other mucosa-associated organs. Tumor-derived MAIT cells displayed a typical CCR7-CD45RA-CD45RO+CD95+ effector memory phenotype with lower costimulatory and effector capabilities. Tumor-educated MAIT cells significantly upregulated inhibitory molecules like PD-1, CTLA-4, TIM-3, secreted significantly less IFNγ and IL17, and produced minimal granzyme B and perforin while shifting to produce tumor-promoting cytokines like IL8. Transcriptome sequencing confirmed that tumor-derived MAIT cells were reprogrammed toward a tumor-promoting direction by downregulating genes enriched in pathways of cytokine secretion and cytolysis effector function like NFKB1 and STAT5B and by upregulating genes like IL8, CXCL12, and HAVCR2 (TIM-3). High infiltration of MAIT cells in HCC significantly correlated with an unfavorable clinical outcome, revealed by FCM, qRT-PCR, and multiplex IHC analyses, respectively. CONCLUSIONS HCC-infiltrating MAIT cells were functionally impaired and even reprogrammed to shift away from antitumor immunity and toward a tumor-promoting direction.See related commentary by Carbone, p. 3199.
Collapse
Affiliation(s)
- Meng Duan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Shyamal Goswami
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Jie-Yi Shi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Lin-Jie Wu
- School of Mathematical Sciences, Peking University, Beijing, China
| | - Xiao-Ying Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Jia-Qiang Ma
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Zhao Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Yang Shi
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Li-Jie Ma
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Shu Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Rui-Bin Xi
- School of Mathematical Sciences, Peking University, Beijing, China.,Center for Statistical Sciences, Peking University, Beijing, China
| | - Ya Cao
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Hunan, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China.,Institute of Biomedical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China. .,Institute of Biomedical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Xiao-Ming Zhang
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China. .,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Quagliariello V, Masarone M, Armenia E, Giudice A, Barbarisi M, Caraglia M, Barbarisi A, Persico M. Chitosan-coated liposomes loaded with butyric acid demonstrate anticancer and anti-inflammatory activity in human hepatoma HepG2 cells. Oncol Rep 2018; 41:1476-1486. [PMID: 30569138 PMCID: PMC6365699 DOI: 10.3892/or.2018.6932] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 10/17/2018] [Indexed: 02/07/2023] Open
Abstract
Butyric acid (BA) has been reported to induce anticancer effects on hepatocellular carcinoma (HCC) cells both in vitro and in vivo. However, its delivery and release in cancer tissues must be optimized. On the basis of these requirements, we prepared liposomes coated with chitosan and uncoated liposomes and both types were loaded with BA through a thin-film hydration method. The liposomes coated or uncoated with chitosan had a mean hydrodynamic size of 83.5 and 110.3 nm, respectively, with a homogeneous size distribution of the particles. For evaluation of the biological effects of the nanoformulations, the hepatoblastoma (HB) HepG2 cell line was utilized. BA-loaded liposomes coated with chitosan showed a considerable higher cytotoxicity than both uncoated liposomes and free BA, with IC50 values, after 72 h of incubation, of 7.5, 2.5 and 1.6 mM, respectively. Treatment of HepG2 cells for 5 h with the BA-loaded liposomes coated with chitosan at 5 mM lowered the extent of the increase in IL-8, IL-6, TNF-α and TGF-β expression of approximately 64, 58, 85 and 73.8%, respectively, when compared to the untreated cells. The BA-loaded liposomes coated with chitosan had marked capacity to be internalized in human HB cells showing an increased cytotoxic activity when compared with free BA and important anti-inflammatory effects by inhibiting production of cytokines with a central role in liver cell survival.
Collapse
Affiliation(s)
- Vincenzo Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, I-80131 Naples, Italy
| | - Mario Masarone
- Internal Medicine and Hepatology Division, Department of Medicine, University of Medicine of Salerno, Salerno, I-80123 Naples, Italy
| | - Emilia Armenia
- Department of Thoracic and Cardio-Respiratory Sciences, University of Campania 'Luigi Vanvitelli', I-80138 Naples, Italy
| | - Aldo Giudice
- Istituto Nazionale Tumori IRCCS Fondazione Pascale, I-80131 Napoli, Italy
| | - Manlio Barbarisi
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania 'Luigi Vanvitelli', I-80138 Naples, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', I-80138 Naples, Italy
| | - Alfonso Barbarisi
- Department of Thoracic and Cardio-Respiratory Sciences, University of Campania 'Luigi Vanvitelli', I-80138 Naples, Italy
| | - Marcello Persico
- Internal Medicine and Hepatology Division, Department of Medicine, University of Medicine of Salerno, Salerno, I-80123 Naples, Italy
| |
Collapse
|
20
|
IL-8 regulates the doxorubicin resistance of colorectal cancer cells via modulation of multidrug resistance 1 (MDR1). Cancer Chemother Pharmacol 2018; 81:1111-1119. [PMID: 29693201 DOI: 10.1007/s00280-018-3584-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/16/2018] [Indexed: 12/12/2022]
Abstract
Cytokines play important roles in tumorigenesis and progression of cancer cells, while their functions in drug resistance remain to be illustrated. We successfully generated doxorubicin (Dox)-resistant CRC HCT-116 and SW480 cells (namely HCT-116/Dox and SW480/Dox, respectively). Cytokine expression analysis revealed that IL-8, while not FGF-2, EGF, TGF-β, IL-6, or IL-10, was significantly increased in Dox-resistant CRC cells as compared with their corresponding parental cells. Targeted inhibition of IL-8 via siRNAs or its inhibitor reparixin can increase the Dox sensitivity of HCT-116/Dox and SW480/Dox cells. The si-IL-8 can decrease the mRNA and protein expression of multidrug resistance 1 (MDR1, encoded by ABCB1), while has no effect on the expression of multidrug resistance-associated protein 1 (ABCC1), in CRC Dox-resistant cells. IL-8 can increase the phosphorylation of p65 and then upregulate the binding between p65 and promoter of ABCB1. BAY 11-7082, the inhibitor of NF-κB, suppressed the recombination IL-8 (rIL-8) induced upregulation of ABCB1. It confirmed that NF-κB is involved in IL-8-induced upregulation of ABCB1. rIL-8 also increased the phosphorylation of IKK-β, which can further activate NF-κB, while specific inhibitor of IKK-β (ACHP) can reverse rIL-8-induced phosphorylation of p65 and upregulation of MDR1. These results suggested that IL-8 regulates the Dox resistance of CRC cells via modulation of MDR1 through IKK-β/p65 signals. The targeted inhibition of IL-8 might be an important potential approach to overcome the clinical Dox resistance in CRC patients.
Collapse
|
21
|
Tan C, Hu W, He Y, Zhang Y, Zhang G, Xu Y, Tang J. Cytokine-mediated therapeutic resistance in breast cancer. Cytokine 2018; 108:151-159. [PMID: 29609137 DOI: 10.1016/j.cyto.2018.03.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/20/2022]
Abstract
Therapeutic resistance leading to tumor relapse is a major challenge in breast cancer (BCa) treatment. Numerous factors involved in multiple mechanisms promote the development of tumor chemo/radio-resistance. Cytokines/chemokines are important inflammatory factors and highly related to tumorigenesis, metastasis and tumors responses to treatment. A large number of studies have demonstrated that the network of cytokines activates multiple cell signaling pathways to promote tumor cell survival, proliferation, invasion, and migration. Particularly in BCa, cytokines-enhanced the epithelial-mesenchymal transition (EMT) process plays a pivotal role in the progression of metastatic phenotypes and resistance to the traditional chemo/radio-therapy. Virtually, therapeutic resistance is not entirely determined by tumor cell intrinsic characteristics but also dependent upon synchronized effects by numerous of local microenvironmental factors. Emerging evidence highlighted that exosomes secreted from various types of cells promote intercellular communication by transferring bioactive molecules including miRNAs and cytokines, suggesting that exosomes are essential for sustentation of tumor progression and therapeutic resistance within the tumor microenvironment. In this review, we discuss the mechanisms by which cytokines promote therapeutic resistance of BCa and suggest a potential approach for improving BCa therapeutics by inhibition of exosome function.
Collapse
Affiliation(s)
- Chunli Tan
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China; Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, 42 Baiziting, Nanjing 210009, PR China
| | - Weizi Hu
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China; Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, 42 Baiziting, Nanjing 210009, PR China
| | - Yunjie He
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China
| | - Yanyan Zhang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, 42 Baiziting, Nanjing 210009, PR China
| | - Guangqin Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Yong Xu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, 42 Baiziting, Nanjing 210009, PR China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, 101 Longmian Road, Nanjing 211166, PR China.
| | - Jinhai Tang
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China.
| |
Collapse
|
22
|
di Martino S, Amoreo CA, Nuvoli B, Galati R, Strano S, Facciolo F, Alessandrini G, Pass HI, Ciliberto G, Blandino G, De Maria R, Cioce M. HSP90 inhibition alters the chemotherapy-driven rearrangement of the oncogenic secretome. Oncogene 2018; 37:1369-1385. [PMID: 29311642 DOI: 10.1038/s41388-017-0044-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/24/2017] [Accepted: 09/10/2017] [Indexed: 12/29/2022]
Abstract
Adaptive resistance to therapy is a hallmark of cancer progression. To date, it is not entirely clear how microenvironmental stimuli would mediate emergence of therapy-resistant cell subpopulations, although a rearrangement of the cancer cell secretome following therapy-induced stress can be pivotal for such a process. Here, by using the highly chemoresistant malignant pleural mesothelioma (MPM) as an experimental model, we unveiled a key contribution of the chaperone HSP90 at assisting a chemotherapy-instigated Senescence-Associated-Secretory-Phenotype (SASP). Thus, administration of a clinical trial grade, HSP90, inhibitor blunted the release of several cytokines by the chemotherapy-treated MPM cells, including interleukin (IL)-8. Reduction of IL-8 levels hampered the FAK-AKT signaling and inhibited 3D growth and migration. This correlated with downregulation of key EMT and chemoresistance genes and affected the survival of chemoresistant ALDHbright cell subpopulations. Altogether, inhibition of HSP90 provoked a switch from a pro-tumorigenic SASP to a pro-apoptotic senescence status, thus resulting in chemosensitizing effects. In mouse xenografts treated with first-line agents, inhibiting HSP90 blunted FAK activation and reduced the expression of ALDH1A3 and the levels of circulating human IL-8, these latter strongly correlating with the effect on tumor growth. We validated the above findings in primary mesothelioma cultures, a more clinically relevant model. We unveiled here a key contribution of the chaperone HSP90 at assisting the secretory stress in chemotherapy-treated cells, which may warrant further investigation in combinatorial therapeutic settings.
Collapse
Affiliation(s)
- Simona di Martino
- Oncogenomic and Epigenetic Unit Regina Elena National Cancer Institute, Rome, Italy
| | | | - Barbara Nuvoli
- Preclinical Models and New Therapeutic Agents Unit, Regina Elena National Cancer Institute, Rome, Italy
| | - Rossella Galati
- Preclinical Models and New Therapeutic Agents Unit, Regina Elena National Cancer Institute, Rome, Italy
| | - Sabrina Strano
- Molecular Chemoprevention Unit, Regina Elena National Cancer Institute, Rome, Italy.,Department of Oncology, McMaster University, Hamilton, ON, Canada
| | - Francesco Facciolo
- Department of Thoracic Surgery, Regina Elena National Cancer Institute, Rome, Italy
| | | | - Harvey I Pass
- New York University School of Medicine, Department of Cardiothoracic Surgery, New York, NY, USA
| | - Gennaro Ciliberto
- Scientific Direction, Regina Elena National Cancer Institute, Rome, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit Regina Elena National Cancer Institute, Rome, Italy.,Department of Oncology, McMaster University, Hamilton, ON, Canada
| | - Ruggero De Maria
- Scientific Direction, Regina Elena National Cancer Institute, Rome, Italy. .,Current address: Institute of General Pathology, Catholic University and Gemelli Polyclinic, Rome, Italy.
| | - Mario Cioce
- Oncogenomic and Epigenetic Unit Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
23
|
Kim W, Pyo J, Noh BJ, Jeong JW, Lee J, Kim JE. CCAR2 negatively regulates IL-8 production in cervical cancer cells. Oncotarget 2017; 9:1143-1155. [PMID: 29416683 PMCID: PMC5787426 DOI: 10.18632/oncotarget.23199] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/27/2017] [Indexed: 01/10/2023] Open
Abstract
Cell cycle and apoptosis regulator 2 (CCAR2) is a multifaceted protein that controls diverse cellular functions; however, its function in cancer is unclear. To better understand its potential role in cancer, we examined gene expression patterns regulated by CCAR2 in cervical cancer cells. Cytokine and chemokine production by CCAR2-deficient cells increased under oxidative conditions. In particular, H2O2-treated CCAR2-depleted cells showed a significant increase in interleukin-8 (IL-8) production, indicating a negative regulation of IL-8 by CCAR2. Upregulation of IL-8 expression in CCAR2-deficient cells occurred via activation of transcription factor AP-1. The negative correlation between CCAR2 and IL-8 expression was confirmed by examining mRNA and protein levels in tissues from cervical cancer patients. Furthermore, CCAR2-regulated IL-8 expression is associated with a shorter survival of cervical cancer patients. Overall, the data suggest that CCAR2 plays a critical role in controlling both the cancer secretome and cancer progression.
Collapse
Affiliation(s)
- Wootae Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jaehyuk Pyo
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Byeong-Joo Noh
- Department of Pathology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joo-Won Jeong
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.,Department of Anatomy and Neurobiology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Juhie Lee
- Department of Pathology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ja-Eun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.,Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
24
|
Hochnadel I, Kossatz-Boehlert U, Jedicke N, Lenzen H, Manns MP, Yevsa T. Cancer vaccines and immunotherapeutic approaches in hepatobiliary and pancreatic cancers. Hum Vaccin Immunother 2017; 13:2931-2952. [PMID: 29112462 PMCID: PMC5718787 DOI: 10.1080/21645515.2017.1359362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatobiliary and pancreatic cancers along with other gastrointestinal malignancies remain the leading cause of cancer-related deaths worldwide. Strategies developed in the recent years on immunotherapy and cancer vaccines in the setting of primary liver cancer as well as in pancreatic cancer are the scope of this review. Significance of orthotopic and autochthonous animal models which mimic and/or closely reflect human malignancies allowing for a prompt and trustworthy analysis of new therapeutics is underlined. Combinational approaches that on one hand, specifically target a defined cancer-driving pathway, and on the other hand, restore the functions of immune cells, which effector functions are often suppressed by a tumor milieu, are shown to have the strongest perspectives and future directions. Among combinational immunotherapeutic approaches a personalized- and individual cancer case-based therapy is of special importance.
Collapse
Affiliation(s)
- Inga Hochnadel
- a Department of Gastroenterology , Hepatology and Endocrinology, Hannover Medical School , Hannover , Germany
| | - Uta Kossatz-Boehlert
- b Institute for Neuroanatomy, Eberhard-Karls University Tuebingen , Tuebingen , Germany
| | - Nils Jedicke
- a Department of Gastroenterology , Hepatology and Endocrinology, Hannover Medical School , Hannover , Germany
| | - Henrike Lenzen
- a Department of Gastroenterology , Hepatology and Endocrinology, Hannover Medical School , Hannover , Germany
| | - Michael P Manns
- a Department of Gastroenterology , Hepatology and Endocrinology, Hannover Medical School , Hannover , Germany
| | - Tetyana Yevsa
- a Department of Gastroenterology , Hepatology and Endocrinology, Hannover Medical School , Hannover , Germany
| |
Collapse
|
25
|
Xu F, Yi J, Wang F, Wang W, Wang Z, Xue J, Luan X. Involvement of soluble B7-H3 in combination with the serum inflammatory cytokines interleukin-17, -8 and -6 in the diagnosis of hepatocellular carcinoma. Oncol Lett 2017; 14:8138-8143. [PMID: 29344257 DOI: 10.3892/ol.2017.7215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 09/01/2017] [Indexed: 02/07/2023] Open
Abstract
Previous studies have demonstrated that B7-H3, and the inflammatory cytokines interleukin (IL)-17, IL-8 and IL-6, are involved in the development of a variety of tumors. The objectives of the present study were: i) To investigate the association between soluble B7-H3 (sB7-H3) and cytokine levels of IL-17, IL-8 and IL-6 in the serum of patients with hepatocellular carcinoma (HCC); and ii) to determine their potential value for use in HCC diagnosis. Serum sB7-H3, IL-17, IL-8 and IL-6 levels in the HCC patients and healthy control subjects were measured using ELISA. The accuracy of each of these biomarkers in HCC diagnosis was compared using a receiver operating characteristic curve and the area under the curve (AUC). A logistic regression model was used to investigate the accuracy of diagnosing HCC when evaluated using combined determinations of sB7-H3, IL-17, IL-8 and IL-6 levels. The data demonstrated that serum levels of sB7-H3, IL-17, IL-8 and IL-6 were significantly increased in HCC patients compared with those in the healthy control group. Serum sB7-H3 levels were positively associated with serum IL-17, whereas serum IL-8 levels were negatively correlated with serum IL-17 levels. The AUC values for sB7-H3, IL-17, IL-8 and IL-6 were 83.2, 65.7, 95.3 and 97.0%, respectively, and indicated that all four biomarkers exhibited a statistically significant capacity for diagnosing HCC. Using the logistic regression model, the AUC value, sensitivity and specificity, as determined for the combination of the four biomarkers, were 99.2, 96.67 and 97.14%, respectively. This was significantly greater than that achieved when any single biomarker was used alone in the logistic regression model to assess their accuracy in HCC diagnosis. The optimum cutoff value of the predicted probability obtained by the combination of sB7-H3, IL-17, IL-8 and IL-6 in the regression model was 0.5745. To conclude, the present study revealed that there exists a positive association between serum sB7-H3 and IL-17 levels in HCC patients. Determinations involving the combination of serum sB7-H3, IL-17, IL-8 and IL-6 levels demonstrate great potential for use in HCC diagnosis.
Collapse
Affiliation(s)
- Fenghuang Xu
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Junzhu Yi
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Feifei Wang
- Department of Anesthesiology, The Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Weiwei Wang
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Zhuoya Wang
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Jiangnan Xue
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Xiying Luan
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| |
Collapse
|
26
|
Lee S, Lee M, Kim JB, Jo A, Cho EJ, Yu SJ, Lee JH, Yoon JH, Kim YJ. 17β-estradiol exerts anticancer effects in anoikis-resistant hepatocellular carcinoma cell lines by targeting IL-6/STAT3 signaling. Biochem Biophys Res Commun 2016; 473:1247-1254. [PMID: 27091428 DOI: 10.1016/j.bbrc.2016.04.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 02/07/2023]
Abstract
17β-Estradiol (E2) has been proven to exert protective effects against HCC; however, its mechanism on HCC proliferation and suppression of invasion remains to be further explored. Because HCC up-regulates serum Interleukin-6 (IL-6) levels and Signal Transducer and Activator of Transcription 3 (STAT3), molecular agents that attenuate IL-6/STAT3 signaling can potentially suppress HCC development. In this study, we examined involvement of E2 in anoikis resistance that induces invasion capacities and chemo-resistance. Huh-BAT and HepG2 cells grown under anchorage-independent condition were selected. The anoikis-resistant (AR) cells showed stronger chemo-resistance against sorafenib, doxorubicin, 5-fluorouracil and cisplatin compared to adherent HCC cells. AR HCC cells exhibited decreased expression of E-cadherin and increased expression of the N-cadherin and vimentin compared to adherent HCC cells. We then demonstrated that E2 suppressed cell proliferation in AR HCC cells. IL-6 treatment enhanced invasive characteristics, and E2 reversed it. Regarding mechanism of E2, it decreased in the phosphorylation of STAT3 that overexpressed on AR HCC cells. The inhibitory effect of E2 on cell growth was accompanied with cell cycle arrest at G2/M phase and caspase-3/9/PARP activation through c-Jun N-terminal Kinase (JNK) phosphorylation. Taken together, these findings suggested that E2 inhibited the proliferation of AR HCC cells through down-regulation of IL-6/STAT3 signaling. Thus, E2 can be a potential therapeutic drug for treatment of metastatic or chemo-resistant HCC.
Collapse
Affiliation(s)
- Seulki Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799, South Korea.
| | - Minjong Lee
- Division of Gastroenterology, Department of Internal Medicine, Kangwon National University Hospital, 156 Baengnyeong-ro, Chuncheon-si, Gangwon-do, South Korea.
| | - Jong Bin Kim
- Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA.
| | - Ara Jo
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799, South Korea.
| | - Eun Ju Cho
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799, South Korea.
| | - Su Jong Yu
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799, South Korea.
| | - Jeong-Hoon Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799, South Korea.
| | - Jung-Hwan Yoon
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799, South Korea.
| | - Yoon Jun Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799, South Korea.
| |
Collapse
|
27
|
Liu YN, Chang TH, Tsai MF, Wu SG, Tsai TH, Chen HY, Yu SL, Yang JCH, Shih JY. IL-8 confers resistance to EGFR inhibitors by inducing stem cell properties in lung cancer. Oncotarget 2016; 6:10415-31. [PMID: 25871388 PMCID: PMC4496364 DOI: 10.18632/oncotarget.3389] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/15/2015] [Indexed: 01/17/2023] Open
Abstract
Epidermal growth factor receptor (EGFR)-targeted strategy is limited by resistance. We identify the potential genes involved in EGFR TKI (tyrosine kinase inhibitor) resistance and study the therapeutic mechanism in the non-small cell lung cancers. Potential genes involved in resistance were examined by analyzing datasets from a pair of EGFR TKI-sensitive (PC9) and TKI-resistant cells (PC9/gef). Blood specimens from patients taking EGFR TKI as first-line treatment were used to examine the correlation between drug's efficacy and IL-8 level. The effects of IL-8 on gefitinib-induced apoptosis, stemness, and in vivo tumorigenicity were investigated using established cell lines. We identified IL-8 was up-regulated in gefitinib-resistant cells, and high plasma IL-8 level was correlated with shorter progression-free-survival time. IL-8 overexpression suppressed gefitinib-induced apoptosis in gefitinib-sensitive cells. By contrast, suppression of IL-8 enhanced gefitinib-induced cell death in gefitinib-resistant cells. IL-8 also increased stem-like characteristics including aldehyde dehydrogenase activity, expression of stemness-related genes, clonogenic activity, side-population, and in vivo tumorigenicity. Consistently, knockdown of IL-8 leads to loss of stem cell-like characteristics in gefitinib-resistant cells. Our study demonstrates an important role for IL-8, and suggests IL-8 is a potential therapeutic target for overcoming EGFR TKI resistance.
Collapse
Affiliation(s)
- Yi-Nan Liu
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzu-Hua Chang
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Meng-Feng Tsai
- Department of Molecular Biotechnology, Dayeh University, Changhua, Taiwan
| | - Shang-Gin Wu
- Department of Internal Medicine, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin, Taiwan
| | - Tzu-Hsiu Tsai
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsuan-Yu Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - James Chih-Hsin Yang
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Oncology, Cancer Research Center, National Taiwan University, Taipei, Taiwan
| | - Jin-Yuan Shih
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
28
|
Glioblastoma Stem Cells Microenvironment: The Paracrine Roles of the Niche in Drug and Radioresistance. Stem Cells Int 2016; 2016:6809105. [PMID: 26880981 PMCID: PMC4736577 DOI: 10.1155/2016/6809105] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 12/13/2022] Open
Abstract
Among all solid tumors, the high-grade glioma appears to be the most vascularized one. In fact, "microvascular hyperplasia" is a hallmark of GBM. An altered vascular network determines irregular blood flow, so that tumor cells spread rapidly beyond the diffusion distance of oxygen in the tissue, with the consequent formation of hypoxic or anoxic areas, where the bulk of glioblastoma stem cells (GSCs) reside. The response to this event is the induction of angiogenesis, a process mediated by hypoxia inducible factors. However, this new capillary network is not efficient in maintaining a proper oxygen supply to the tumor mass, thereby causing an oxygen gradient within the neoplastic zone. This microenvironment helps GSCs to remain in a "quiescent" state preserving their potential to proliferate and differentiate, thus protecting them by the effects of chemo- and radiotherapy. Recent evidences suggest that responses of glioblastoma to standard therapies are determined by the microenvironment of the niche, where the GSCs reside, allowing a variety of mechanisms that contribute to the chemo- and radioresistance, by preserving GSCs. It is, therefore, crucial to investigate the components/factors of the niche in order to formulate new adjuvant therapies rendering more efficiently the gold standard therapies for this neoplasm.
Collapse
|
29
|
Choi SH, Park JY, Kang W, Kim SU, Kim DY, Ahn SH, Ro SW, Han KH. Knockdown of HIF-1α and IL-8 induced apoptosis of hepatocellular carcinoma triggers apoptosis of vascular endothelial cells. Apoptosis 2016; 21:85-95. [PMID: 26467924 DOI: 10.1007/s10495-015-1185-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A local hypoxic microenvironment is one of the most important characteristics of solid tumors. Hypoxia inducible factor-1α (HIF-1α) and Interleukin-8 (IL-8) activate tumor survival from hypoxic-induced apoptosis in each pathway. This study aimed to evaluate whether knockdown of HIF-1α and IL-8 induced apoptosis of the hepatocellular carcinoma (HCC) and endothelial cell lines. HCC cell lines were infected with adenovirus-expressing shRNA for HIF-1α and IL-8 and maintained under hypoxic conditions (1% O2, 24 h). The expression levels of HIF-1α and both apoptotic and growth factors were examined by real-time quantitative PCR and western blot. We also investigated apoptosis by TUNEL assay (FACS and Immunofluorescence) and measured the concentration of cytochrome C. Inhibition of HIF-1α and IL-8 up-regulated the expression of apoptotic factors while downregulating anti-apoptotic factors simultaneously. Knockdown of HIF-1α and IL-8 increased the concentration of cytochrome C and enhanced DNA fragmentation in HCC cell lines. Moreover, culture supernatant collected from the knockdown of HIF-1α and IL-8 in HCC cell lines induced apoptosis in human umbilical vein endothelial cells under hypoxia, and the expression of variable apoptotic ligand increased from HCC cell lines, time-dependently. These data suggest that adenovirus-mediated knockdown of HIF-1α and IL-8 induced apoptosis in HCC cells and triggered apoptosis of vascular endothelial cells.
Collapse
Affiliation(s)
- Sung Hoon Choi
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Jun Yong Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.
- Yonsei Liver Center, Yonsei University Health System, Seoul, Korea.
| | - Wonseok Kang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Up Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Yonsei University Health System, Seoul, Korea
| | - Do Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Yonsei University Health System, Seoul, Korea
| | - Sang Hoon Ahn
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Yonsei University Health System, Seoul, Korea
| | - Simon Wonsang Ro
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Kwang-Hyub Han
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Yonsei University Health System, Seoul, Korea
| |
Collapse
|
30
|
CCL21 Facilitates Chemoresistance and Cancer Stem Cell-Like Properties of Colorectal Cancer Cells through AKT/GSK-3β/Snail Signals. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:5874127. [PMID: 27057280 PMCID: PMC4707330 DOI: 10.1155/2016/5874127] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 10/19/2015] [Indexed: 01/11/2023]
Abstract
Some evidence indicated that chemoresistance associates with the acquisition of cancer stem-like properties. Recent studies suggested that chemokines can promote the chemoresistance and stem cell properties in various cancer cells, while the underling mechanism is still not completely illustrated. In our study, we found that CCL21 can upregulate the expression of P-glycoprotein (P-gp) and stem cell property markers such as Bmi-1, Nanog, and OCT-4 in colorectal cancer (CRC) HCT116 cells and then improve the cell survival rate and mammosphere formation. Our results suggested that Snail was crucial for CCL21-mediated chemoresistance and cancer stem cell property in CRC cells. Further, we observed that CCL21 treatment increased the protein but not mRNA levels of Snail, which suggested that CCL21 upregulates Snail via posttranscriptional ways. The downstream signals AKT/GSK-3β mediated CCL21 induced the upregulation of Snail due to the fact that CCL21 treatment can obviously phosphorylate both AKT and GSK-3β. The inhibitor of PI3K/Akt, LY294002 significantly abolished CCL21 induced chemoresistance and mammosphere formation of HCT116 cells. Collectively, our results in the present study revealed that CCL21 can facilitate chemoresistance and stem cell property of CRC cells via the upregulation of P-gp, Bmi-1, Nanog, and OCT-4 through AKT/GSK-3β/Snail signals, which suggested a potential therapeutic approach to CRC patients.
Collapse
|
31
|
Kondo Y, Kimura O, Shimosegawa T. Significant biomarkers for the management of hepatocellular carcinoma. Clin J Gastroenterol 2015; 8:109-115. [PMID: 25855582 DOI: 10.1007/s12328-015-0568-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 03/30/2015] [Indexed: 02/07/2023]
Abstract
Surveillance of hepatocellular carcinoma (HCC) is important for early detection. Imaging tests including computed tomography, magnetic resonance imaging and ultrasonography with or without various kinds of contrast medium are important options for detecting HCC. In addition to the imaging tests, various kinds of biomarkers including alpha-fetoprotein (AFP), lectin-bound AFP (AFP-L3) and protein induced by vitamin K absence or antagonist II (PIVKA-II) have been widely used to detect HCC and analyze treatment response. Recently, various kinds of novel biomarkers (proteins and miRNA) have been found to predict the malignancy potential of HCC and treatment response to specific therapies. Moreover, various combinations of well-established biomarkers and novel biomarkers have been tested to improve sensitivity and specificity. In practical terms, biomarkers that can be analyzed using peripheral blood samples might be more useful than immunohistochemical techniques. It has been reported that quantification of cytokines in peripheral blood and the analysis of peripheral immune subsets could be good biomarkers for managing HCC. Here, we describe the usefulness of and update well-established and novel biomarkers for the management of HCC.
Collapse
Affiliation(s)
- Yasuteru Kondo
- Division of Gastroenterology, Tohoku University Hospital, 1-1 Seiryo, Aoba, Sendai City, Miyagi, 980-8574, Japan,
| | | | | |
Collapse
|
32
|
Xue TC, Zhang BH, Ye SL, Ren ZG. Differentially expressed gene profiles of intrahepatic cholangiocarcinoma, hepatocellular carcinoma, and combined hepatocellular-cholangiocarcinoma by integrated microarray analysis. Tumour Biol 2015; 36:5891-9. [PMID: 25712376 DOI: 10.1007/s13277-015-3261-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/13/2015] [Indexed: 02/06/2023] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) and hepatocellular carcinoma (HCC) are common primary liver cancers worldwide. However, the survival and prognosis of ICC are much poorer than those of HCC, indicating the different molecular characteristics and mechanisms between ICC and HCC. To identify differentially expressed (DE) genes between ICC and HCC or combined hepatocellular-cholangiocarcinoma (CHC), we performed integrated analysis of publicly available microarray Gene Expression Omnibus (GEO) datasets by MetaOmics. Three GEO datasets comprising 32 ICC biochips, 77 HCC biochips, and 34 CHC biochips were available for the data integration. We identified 7313 DE genes between ICC and HCC, including 3650 upregulated genes and 3663 downregulated genes. The S100 family members on chromosome 1q21 were extensively upregulated in ICC, and S100A11 had the greatest degree of upregulation in ICC. Based on the DE genes, combined gene ontology and Kyoto Encyclopedia of Genes and Genomes analysis showed the enhanced pathways of local adhesion, ECM-receptor interaction, and regulation of action cytoskeleton, suggesting the enhanced communication between ICC and the microenvironment. Additionally, development-related genes and development-related pathways, including the Notch, Wnt, and TGF-β signaling pathways, were shown to be active prominently in ICC. Taken together, we identified the characteristically upregulated or downregulated DE genes and pathways in ICC compared with HCC or CHC. These DE genes and pathways supply new transcriptomics evidence for ICC and could help identify new therapeutic targets.
Collapse
Affiliation(s)
- Tong-Chun Xue
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | | | | | | |
Collapse
|
33
|
Mesenchymal stem cell-induced doxorubicin resistance in triple negative breast cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:532161. [PMID: 25140317 PMCID: PMC4124237 DOI: 10.1155/2014/532161] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 01/14/2023]
Abstract
Triple negative breast cancer (TNBC) is an aggressive histological subtype with limited treatment options and a worse clinical outcome compared with other breast cancer subtypes. Doxorubicin is considered to be one of the most effective agents in the treatment of TNBC. Unfortunately, resistance to this agent is common. In some drug-resistant cells, drug efflux is mediated by adenosine triphosphate-dependent membrane transporter termed adenosine triphosphate-binding cassette (ABC) transporter, which can drive the substrates across membranes against concentration gradient. In the tumor microenvironment, upon interaction with mesenchymal stem cells (MSCs), tumor cells exhibit altered biological functions of certain gene clusters, hence increasing stemness of tumor cells, migration ability, angiogenesis, and drug resistance. In our present study, we investigated the mechanism of TNBC drug resistance induced by adipose-derived MSCs. Upon exposure of TNBC to MSC-secreted conditioned medium (CM), noticeable drug resistance against doxorubicin with markedly increased BCRP protein expression was observed. Intracellular doxorubicin accumulation of TNBC was also decreased by MSC-secreted CM. Furthermore, we found that doxorubicin resistance of TNBC was mediated by IL-8 presented in the MSC-secreted CM. These findings may enrich the list of potential targets for overcoming drug resistance induced by MSCs in TNBC patients.
Collapse
|