1
|
Xu Y, Li C, Zhang Y, Guo T, Zhu C, Xu Y, Liu F. Comparison Between Familial Colorectal Cancer Type X and Lynch Syndrome: Molecular, Clinical, and Pathological Characteristics and Pedigrees. Front Oncol 2020; 10:1603. [PMID: 32984025 PMCID: PMC7493642 DOI: 10.3389/fonc.2020.01603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
Objective This study aimed to compare the molecular, clinical, and pathological characteristics and pedigrees of familial colorectal cancer type X (FCCTX) with those of Lynch syndrome (LS) to provide a theoretical basis for the management of FCCTX. Methods Overall, 46 cases of FCCTX and 47 LS probands and affected families were enrolled between June 2008 and September 2018 for this study. Multigene cancer panel tests that included 139 genes were performed for all patients, and variants in each group were described. The clinical, pathological, and pedigree characteristics were also compared between the two groups. Results In total, 42 variants were detected in 27 (58.7%) cases in the FCCTX group, with BRCA1, BRCA2, POLE, POLD1, ATR, and ATM being the most frequently mutated genes. The mean onset age of colorectal cancer (CRC) was significantly older in the FCCTX group than in the LS group (53.57 ± 12.88 years vs. 44.36 ± 11.26 years, t = −9.204, p < 0.001). The proportion of patients with rectal cancer was also higher in the FCCTX group than in the LS group [43.5% (20/46) vs. 10.6% (5/47), χ2 = 12.823, p = 0.005]. Within a median follow-up time of 53.9 ± 37.0 months, the proportion of patients who developed metachronous CRC was significantly higher in the LS group than in the FCCTX group [34.0% (16/47) vs. 13.0% (6/46), χ2 = 5.676, p = 0.017]. When comparing pedigrees, older age at cancer onset and rectal cancer clustering were observed in the FCCTX families. A higher prevalence in male patients was also observed in the FCCTX families. Conclusion FCCTX is an entity distinct from LS, but its genetic etiology remains unknown. A larger multigene panel would be recommended for determining the underlying pathogenic variants. Considering the pathology and moderate penetrance of the CRC link to FCCTX, less stringent surgical treatments and colonoscopy surveillance would be preferable. Rectum preference is a typical feature of FCCTX. Colonoscopy surveillance in FCCTX families could be less intensive, and more attention should be given to male members.
Collapse
Affiliation(s)
- Yun Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cong Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuqin Zhang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tian'an Guo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Congcong Zhu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ye Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fangqi Liu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
2
|
Terradas M, Capellá G, Valle L. Dominantly Inherited Hereditary Nonpolyposis Colorectal Cancer Not Caused by MMR Genes. J Clin Med 2020; 9:jcm9061954. [PMID: 32585810 PMCID: PMC7355797 DOI: 10.3390/jcm9061954] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/30/2022] Open
Abstract
In the past two decades, multiple studies have been undertaken to elucidate the genetic cause of the predisposition to mismatch repair (MMR)-proficient nonpolyposis colorectal cancer (CRC). Here, we present the proposed candidate genes according to their involvement in specific pathways considered relevant in hereditary CRC and/or colorectal carcinogenesis. To date, only pathogenic variants in RPS20 may be convincedly linked to hereditary CRC. Nevertheless, accumulated evidence supports the involvement in the CRC predisposition of other genes, including MRE11, BARD1, POT1, BUB1B, POLE2, BRF1, IL12RB1, PTPN12, or the epigenetic alteration of PTPRJ. The contribution of the identified candidate genes to familial/early onset MMR-proficient nonpolyposis CRC, if any, is extremely small, suggesting that other factors, such as the accumulation of low risk CRC alleles, shared environmental exposures, and/or gene-environmental interactions, may explain the missing heritability in CRC.
Collapse
Affiliation(s)
- Mariona Terradas
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Gabriel Capellá
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-93-260-7145
| |
Collapse
|
3
|
Bellido F, Sowada N, Mur P, Lázaro C, Pons T, Valdés-Mas R, Pineda M, Aiza G, Iglesias S, Soto JL, Urioste M, Caldés T, Balbín M, Blay P, Rueda D, Durán M, Valencia A, Moreno V, Brunet J, Blanco I, Navarro M, Calin GA, Borck G, Puente XS, Capellá G, Valle L. Association Between Germline Mutations in BRF1, a Subunit of the RNA Polymerase III Transcription Complex, and Hereditary Colorectal Cancer. Gastroenterology 2018; 154:181-194.e20. [PMID: 28912018 DOI: 10.1053/j.gastro.2017.09.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/21/2017] [Accepted: 09/03/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Although there is a genetic predisposition to colorectal cancer (CRC), few of the genes that affect risk have been identified. We performed whole-exome sequence analysis of individuals in a high-risk family without mutations in genes previously associated with CRC risk to identify variants associated with inherited CRC. METHODS We collected blood samples from 3 relatives with CRC in Spain (65, 62, and 40 years old at diagnosis) and performed whole-exome sequence analyses. Rare missense, truncating or splice-site variants shared by the 3 relatives were selected. We used targeted pooled DNA amplification followed by next generation sequencing to screen for mutations in candidate genes in 547 additional hereditary and/or early-onset CRC cases (502 additional families). We carried out protein-dependent yeast growth assays and transfection studies in the HT29 human CRC cell line to test the effects of the identified variants. RESULTS A total of 42 unique or rare (population minor allele frequency below 1%) nonsynonymous genetic variants in 38 genes were shared by all 3 relatives. We selected the BRF1 gene, which encodes an RNA polymerase III transcription initiation factor subunit for further analysis, based on the predicted effect of the identified variant and previous association of BRF1 with cancer. Previously unreported or rare germline variants in BRF1 were identified in 11 of 503 CRC families, a significantly greater proportion than in the control population (34 of 4300). Seven of the identified variants (1 detected in 2 families) affected BRF1 mRNA splicing, protein stability, or expression and/or function. CONCLUSIONS In an analysis of families with a history of CRC, we associated germline mutations in BRF1 with predisposition to CRC. We associated deleterious BRF1 variants with 1.4% of familial CRC cases, in individuals without mutations in high-penetrance genes previously associated with CRC. Our findings add additional evidence to the link between defects in genes that regulate ribosome synthesis and risk of CRC.
Collapse
Affiliation(s)
- Fernando Bellido
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL and CIBERONC, Hospitalet de Llobregat, Barcelona, Spain
| | - Nadine Sowada
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Pilar Mur
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL and CIBERONC, Hospitalet de Llobregat, Barcelona, Spain
| | - Conxi Lázaro
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL and CIBERONC, Hospitalet de Llobregat, Barcelona, Spain
| | - Tirso Pons
- Structural Biology and Biocomputing Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Rafael Valdés-Mas
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Marta Pineda
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL and CIBERONC, Hospitalet de Llobregat, Barcelona, Spain
| | - Gemma Aiza
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL and CIBERONC, Hospitalet de Llobregat, Barcelona, Spain
| | - Silvia Iglesias
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL and CIBERONC, Hospitalet de Llobregat, Barcelona, Spain
| | - José Luís Soto
- Molecular Genetics Laboratory, Elche University Hospital, Elche, Spain; Alicante Institute for Health and Biomedical Research (ISABIAL-FISABIO Foundation), Alicante, Spain
| | - Miguel Urioste
- Familial Cancer Clinical Unit, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO) and Center for Biomedical Network Research on Rare Diseases, Madrid, Spain
| | - Trinidad Caldés
- Laboratorio de Oncología Molecular, Servicio de Oncología Médica, Hospital Clínico San Carlos, Madrid, Spain
| | - Milagros Balbín
- Laboratorio de Oncología Molecular, Instituto Universitario de Oncología del Principado de Asturias, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Pilar Blay
- Familial Cancer Unit, Department of Medical Oncology, Instituto Universitario de Oncología del Principado de Asturias, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Daniel Rueda
- Molecular Biology Laboratory, 12 de Octubre University Hospital, Madrid, Spain
| | - Mercedes Durán
- Instituto de Biología y Genética Molecular, IBGM-UVA-CSIC, Valladolid, Spain
| | - Alfonso Valencia
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Life Science Department, Barcelona; Supercomputing Centre (BSC-CNS), Barcelona, Spain
| | - Victor Moreno
- Unit of Biomarkers and Susceptibility, Catalan Institute of Oncology, IDIBELL and CIBERESP, Hospitalet de Llobregat, Spain; Department of Clinical Sciences, School of Medicine, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Joan Brunet
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL and CIBERONC, Hospitalet de Llobregat, Barcelona, Spain; Hereditary Cancer Program, Catalan Institute of Oncology, IDIBGi, Girona, Spain
| | - Ignacio Blanco
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL and CIBERONC, Hospitalet de Llobregat, Barcelona, Spain
| | - Matilde Navarro
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL and CIBERONC, Hospitalet de Llobregat, Barcelona, Spain
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Guntram Borck
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Xose S Puente
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Gabriel Capellá
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL and CIBERONC, Hospitalet de Llobregat, Barcelona, Spain
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL and CIBERONC, Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
4
|
Yu MC, Lee CW, Lee YS, Lian JH, Tsai CL, Liu YP, Wu CH, Tsai CN. Prediction of early-stage hepatocellular carcinoma using OncoScan chromosomal copy number aberration data. World J Gastroenterol 2017; 23:7818-7829. [PMID: 29209123 PMCID: PMC5703911 DOI: 10.3748/wjg.v23.i44.7818] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/26/2017] [Accepted: 11/07/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To identify chromosomal copy number aberrations (CNAs) in early-stage hepatocellular carcinoma (HCC) and analyze whether they are correlated with patient prognosis. METHODS One hundred and twenty patients with early-stage HCC were enrolled in our study, with the collection of formalin fixed, paraffin-embedded (FFPE) specimens and clinicopathological data. Tumor areas were marked by certified pathologists on a hematoxylin and eosin-stained slide, and cancer and adjacent non-cancerous tissues underwent extraction of DNA, which was analyzed with the Affymetrix OncoScan platform to assess CNAs and loss of heterozygosity (LOH). Ten individuals with nonmalignant disease were used as the control group. Another cohort consisting of 40 patients with stage I/II HCC were enrolled to analyze gene expression and to correlate findings with the OncoScan data. RESULTS Copy number amplifications occurred at chromosomes 1q21.1-q44 and 8q12.3-24.3 and deletions were found at 4q13.1-q35.2, 8p 23.2-21.1, 16q23.3-24.3, and 17p13.3-12, while LOH commonly occurred at 1p32.3, 3p21.31, 8p23.2-21.1, 16q22.1-24.3, and 17p 13.3-11 in early-stage HCC. Using Cox regression analysis, we also found that a higher percentage of genome change (≥ 60%) was an independent factor for worse prognosis in early-stage HCC (P = 0.031). Among the 875 genes in the OncoScan GeneChip, six were independent predictors of worse disease-free survival, of which three were amplified (MYC, ELAC2, and SYK) and three were deleted (GAK, MECOM, and WRN). Further, patients with HCC who exhibited ≥ 3 CNAs involving these six genes have worse outcomes compared to those who had < 3 CNAs (P < 0.001). Similarly, Asian patients with stage I HCC from The Cancer Genome Atlas harboring CNAs with these genes were also predicted to have poorer outcomes. CONCLUSION Patients with early-stage HCC and increased genome change or CNAs involving MYC, ELAC2, SYK, GAK, MECOM, or WRN are at risk for poorer outcome after resection.
Collapse
Affiliation(s)
- Ming-Chin Yu
- Department of Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Surgery, Xiamen Chang Gung Hospital, Xiamen 361028, China
| | - Chao-Wei Lee
- Department of Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yun-Shien Lee
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Biotechnology, Ming-Chuan University, Taoyuan 33348, Taiwan
| | - Jang-Hau Lian
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chia-Lung Tsai
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Yi-Ping Liu
- Department of Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chun-Hsing Wu
- Department of Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chi-Neu Tsai
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| |
Collapse
|
5
|
DNA Methylation Identifies Loci Distinguishing Hereditary Nonpolyposis Colorectal Cancer Without Germ-Line MLH1/MSH2 Mutation from Sporadic Colorectal Cancer. Clin Transl Gastroenterol 2016; 7:e208. [PMID: 27977020 PMCID: PMC5288582 DOI: 10.1038/ctg.2016.59] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 10/26/2016] [Indexed: 12/26/2022] Open
Abstract
Objectives: Roughly half of hereditary nonpolyposis colorectal cancer (HNPCC) cases are Lynch syndrome and exhibit germ-line mutations in DNA mismatch repair (MMR) genes; the other half are familial colorectal cancer (CRC) type X (FCCTX) and are MMR proficient. About 70% of Lynch syndrome tumors have germ-line MLH1 or MSH2 mutations. The clinical presentation, histopathological features, and carcinogenesis of FCCTX resemble those of sporadic MMR-proficient colorectal tumors. It is of interest to obtain biomarkers that distinguish FCCTX from sporadic microsatellite stable (MSS) CRC, to develop preventive strategies. Methods: The tumors and adjacent normal tissues of 40 patients with HNPCC were assayed using the Illumina Infinium HumanMethylation27 (HM27) BeadChip to assess the DNA methylation level at about 27,000 loci. The germ-line mutation status of MLH1 and MSH2 and the microsatellite instability status in these patients were obtained. Genome-wide DNA methylation measurements of three groups of patients with general CRC were downloaded from public domain databases. Probes with DNA methylation levels that differed significantly between patients with sporadic MSS CRC and FCCTX were examined, to explore their potential as biomarkers. Results: We found that MSS HNPCC tumors were overwhelmingly hypomethylated compared with those from patient groups with other types of CRC, including germ-line MLH1/MSH2-mutated HNPCC and sporadic MSS CRC. Five gene-marker panels that exhibited a sensitivity of 100% and a specificity higher than 90% in both discovery and validation cohorts were proposed to distinguish MSS HNPCC tumors from sporadic MSS CRC. Conclusions: Our results warrant further investigation and validation. The loci identified here may become useful biomarkers for distinguishing between FCCTX and sporadic MSS CRC tumors.
Collapse
|
6
|
Cross-laboratory validation of the OncoScan® FFPE Assay, a multiplex tool for whole genome tumour profiling. BMC Med Genomics 2015; 8:5. [PMID: 25889064 PMCID: PMC4342810 DOI: 10.1186/s12920-015-0079-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/30/2015] [Indexed: 01/03/2023] Open
Abstract
Background Adoption of new technology in both basic research and clinical settings requires rigorous validation of analytical performance. The OncoScan® FFPE Assay is a multiplexing tool that offers genome-wide copy number and loss of heterozygosity detection, as well as identification of frequently tested somatic mutations. Methods In this study, 162 formalin fixed paraffin embedded samples, representing six different tumour types, were profiled in triplicate across three independent laboratories. OncoScan® formalin fixed paraffin embedded assay data was then analysed for reproducibility of genome-wide copy number, loss of heterozygosity and somatic mutations. Where available, somatic mutation data was compared to data from orthogonal technologies (pyro/sanger sequencing). Results Cross site comparisons of genome-wide copy number and loss of heterozygosity profiles showed greater than 95% average agreement between sites. Somatic mutations pre-validated by orthogonal technologies showed greater than 90% agreement with OncoScan® somatic mutation calls and somatic mutation concordance between sites averaged 97%. Conclusions Reproducibility of whole-genome copy number, loss of heterozygosity and somatic mutation data using the OncoScan® assay has been demonstrated with comparatively low DNA inputs from a range of highly degraded formalin fixed paraffin embedded samples. In addition, our data shows examples of clinically-relevant aberrations that demonstrate the potential utility of the OncoScan® assay as a robust clinical tool for guiding tumour therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12920-015-0079-z) contains supplementary material, which is available to authorized users.
Collapse
|