1
|
Hayes AJ, Nixon IF, Strauss DC, Seddon BM, Desai A, Benson C, Judson IR, Dangoor A. UK guidelines for the management of soft tissue sarcomas. Br J Cancer 2025; 132:11-31. [PMID: 38734790 PMCID: PMC11724041 DOI: 10.1038/s41416-024-02674-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 05/13/2024] Open
Abstract
Soft tissue sarcomas (STS) are rare tumours arising in mesenchymal tissues and can occur almost anywhere in the body. Their rarity, and the heterogeneity of subtype and location, means that developing evidence-based guidelines is complicated by the limitations of the data available. This makes it more important that STS are managed by expert multidisciplinary teams, to ensure consistent and optimal treatment, recruitment to clinical trials, and the ongoing accumulation of further data and knowledge. The development of appropriate guidance, by an experienced panel referring to the evidence available, is therefore a useful foundation on which to build progress in the field. These guidelines are an update of the previous versions published in 2010 and 2016 [1, 2]. The original guidelines were drawn up by a panel of UK sarcoma specialists convened under the auspices of the British Sarcoma Group (BSG) and were intended to provide a framework for the multidisciplinary care of patients with soft tissue sarcomas. This iteration of the guidance, as well as updating the general multidisciplinary management of soft tissue sarcoma, includes specific sections relating to the management of sarcomas at defined anatomical sites: gynaecological sarcomas, retroperitoneal sarcomas, breast sarcomas, and skin sarcomas. These are generally managed collaboratively by site specific multidisciplinary teams linked to the regional sarcoma specialist team, as stipulated in the recently published sarcoma service specification [3]. In the UK, any patient with a suspected soft tissue sarcoma should be referred to a specialist regional soft tissues sarcoma service, to be managed by a specialist sarcoma multidisciplinary team. Once the diagnosis has been confirmed using appropriate imaging and a tissue biopsy, the main modality of management is usually surgical excision performed by a specialist surgeon, combined with pre- or post-operative radiotherapy for tumours at higher risk for local recurrence. Systemic anti-cancer therapy (SACT) may be utilised in cases where the histological subtype is considered more sensitive to systemic treatment. Regular follow-up is recommended to assess local control, development of metastatic disease, and any late effects of treatment.
Collapse
Affiliation(s)
- Andrew J Hayes
- The Sarcoma Unit, The Royal Marsden NHS Foundation Trust, London, SW3 6JJ, UK.
- The Institute of Cancer Research, London, SM2 5NG, UK.
| | - Ioanna F Nixon
- Department of Clinical Oncology, The Beatson West of Scotland Cancer Center, Glasgow, G12 0YN, UK
| | - Dirk C Strauss
- The Sarcoma Unit, The Royal Marsden NHS Foundation Trust, London, SW3 6JJ, UK
| | - Beatrice M Seddon
- Department of Medical Oncology, University College London Hospital NHS Foundation Trust, London, NW1 2BU, UK
| | - Anant Desai
- The Midlands Abdominal and Retroperitoneal Sarcoma Unit, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
| | - Charlotte Benson
- The Sarcoma Unit, The Royal Marsden NHS Foundation Trust, London, SW3 6JJ, UK
| | - Ian R Judson
- The Institute of Cancer Research, London, SM2 5NG, UK
| | - Adam Dangoor
- Department of Medical Oncology, University Hospitals Bristol & Weston NHS Foundation Trust, Bristol, BS1 3NU, UK
| |
Collapse
|
2
|
Gogineni E, Chen H, Hu C, Boudadi K, Engle J, Levine A, Deville C. Prospective phase II trial of preoperative hypofractionated proton therapy for extremity and truncal soft tissue sarcoma: the PRONTO study rationale and design. Radiat Oncol 2024; 19:56. [PMID: 38745333 PMCID: PMC11095023 DOI: 10.1186/s13014-024-02447-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Oncologic surgical resection is the standard of care for extremity and truncal soft tissue sarcoma (STS), often accompanied by the addition of pre- or postoperative radiation therapy (RT). Preoperative RT may decrease the risk of joint stiffness and fibrosis at the cost of higher rates of wound complications. Hypofractionated, preoperative RT has been shown to provide acceptable outcomes in prospective trials. Proton beam therapy (PBT) provides the means to decrease dose to surrounding organs at risk, such as the skin, bone, soft tissues, and adjacent joint(s), and has not yet been studied in patients with extremity and truncal sarcoma. METHODS Our study titled "PROspective phase II trial of preoperative hypofractionated protoN therapy for extremity and Truncal soft tissue sarcOma (PRONTO)" is a non-randomized, prospective phase II trial evaluating the safety and efficacy of preoperative, hypofractionated PBT for patients with STS of the extremity and trunk planned for surgical resection. Adult patients with Eastern Cooperative Group Performance Status ≤ 2 with resectable extremity and truncal STS will be included, with the aim to accrue 40 patients. Treatment will consist of 30 Gy radiobiological equivalent of PBT in 5 fractions delivered every other day, followed by surgical resection 2-12 weeks later. The primary outcome is rate of major wound complications as defined according to the National Cancer Institute of Canada Sarcoma2 (NCIC-SR2) Multicenter Trial. Secondary objectives include rate of late grade ≥ 2 toxicity, local recurrence-free survival and distant metastasis-free survival at 1- and 2-years, functional outcomes, quality of life, and pathologic response. DISCUSSION PRONTO represents the first trial evaluating the use of hypofractionated PBT for STS. We aim to prove the safety and efficacy of this approach and to compare our results to historical outcomes established by previous trials. Given the low number of proton centers and limited availability, the short course of PBT may provide the opportunity to treat patients who would otherwise be limited when treating with daily RT over several weeks. We hope that this trial will lead to increased referral patterns, offer benefits towards patient convenience and clinic workflow efficiency, and provide evidence supporting the use of PBT in this setting. TRIAL REGISTRATION NCT05917301 (registered 23/6/2023).
Collapse
Affiliation(s)
- Emile Gogineni
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, 460 W 10 Ave, Columbus, OH, 43210, USA.
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Hao Chen
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chen Hu
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Karim Boudadi
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jessica Engle
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Adam Levine
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Curtiland Deville
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Jia SB, Shamsabadi R. Secondary cancer risk assessments following the proton therapy of lung cancer as the functions of field characteristics and patient age. Int J Radiat Biol 2024; 100:183-189. [PMID: 37747407 DOI: 10.1080/09553002.2023.2263546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
INTRODUCTION Radiation-induced secondary cancers relevant to proton therapy are still a main concern among cancer survivors. This study aims to determine the effects of age at exposure and treatment field size on radiation-induced secondary tumors following the proton therapy of lung cancer within out of field organs through the Monte Carlo (MC) simulation approach. MATERIAL AND METHODS A full MC model of ICRP-110 male phantom was simulated to calculate the absorbed dose corresponding to secondary radiations within distant organs from the tumor volume. Then, the risks of secondary malignancies were estimated by employing the recommended risk model by the Committee of Biological Effects of Ionizing Radiation (BEIR) for different treatment field sizes and various patient ages at exposure. RESULTS The results revealed that by increasing the patient age from 25 to 45 years, lifetime attributable risk (LAR) values were decreased. Maximum and minimum mortality rates were obtained for the liver and thyroid at the fixed age of 25 years, respectively. Calculated risk values for most near organs to the tumor were higher than those for distant organs. Changing the aperture size from 5 × 5 cm2 to 8 × 10 cm2 resulted in LAR increments with maximum variations of 12.5% for the stomach and a rough variation of 1.12 times in LAR for all exposure ages. CONCLUSION Our work on whole-body phantom addresses the impact of age at exposure and aperture size on LAR during the proton therapy of lung cancer. To minimize secondary cancer risks relevant to proton therapy of lung cancer, extra attention should be considered.
Collapse
Affiliation(s)
| | - Reza Shamsabadi
- Physics Department, Hakim Sabzevari University, Sabzevar, Iran
| |
Collapse
|
4
|
Roohani S, Loskutov J, Heufelder J, Ehret F, Wedeken L, Regenbrecht M, Sauer R, Zips D, Denker A, Joussen AM, Regenbrecht CRA, Kaul D. Photon and Proton irradiation in Patient-derived, Three-Dimensional Soft Tissue Sarcoma Models. BMC Cancer 2023; 23:577. [PMID: 37349697 DOI: 10.1186/s12885-023-11013-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/25/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Despite their heterogeneity, the current standard preoperative radiotherapy regimen for localized high-grade soft tissue sarcoma (STS) follows a one fits all approach for all STS subtypes. Sarcoma patient-derived three-dimensional cell culture models represent an innovative tool to overcome challenges in clinical research enabling reproducible subtype-specific research on STS. In this pilot study, we present our methodology and preliminary results using STS patient-derived 3D cell cultures that were exposed to different doses of photon and proton radiation. Our aim was: (i) to establish a reproducible method for irradiation of STS patient-derived 3D cell cultures and (ii) to explore the differences in tumor cell viability of two different STS subtypes exposed to increasing doses of photon and proton radiation at different time points. METHODS Two patient-derived cell cultures of untreated localized high-grade STS (an undifferentiated pleomorphic sarcoma (UPS) and a pleomorphic liposarcoma (PLS)) were exposed to a single fraction of photon or proton irradiation using doses of 0 Gy (sham irradiation), 2 Gy, 4 Gy, 8 Gy and 16 Gy. Cell viability was measured and compared to sham irradiation at two different time points (four and eight days after irradiation). RESULTS The proportion of viable tumor cells four days after photon irradiation for UPS vs. PLS were significantly different with 85% vs. 65% (4 Gy), 80% vs. 50% (8 Gy) and 70% vs. 35% (16 Gy). Proton irradiation led to similar diverging viability curves between UPS vs. PLS four days after irradiation with 90% vs. 75% (4 Gy), 85% vs. 45% (8 Gy) and 80% vs. 35% (16 Gy). Photon and proton radiation displayed only minor differences in cell-killing properties within each cell culture (UPS and PLS). The cell-killing effect of radiation sustained at eight days after irradiation in both cell cultures. CONCLUSIONS Pronounced differences in radiosensitivity are evident among UPS and PLS 3D patient-derived sarcoma cell cultures which may reflect the clinical heterogeneity. Photon and proton radiation showed similar dose-dependent cell-killing effectiveness in both 3D cell cultures. Patient-derived 3D STS cell cultures may represent a valuable tool to enable translational studies towards individualized subtype-specific radiotherapy in patients with STS.
Collapse
Affiliation(s)
- Siyer Roohani
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), 69120, Berlin, Heidelberg, Germany.
| | - Jürgen Loskutov
- CELLphenomics GmbH, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Jens Heufelder
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, BerlinProtonen am Helmholtz-Zentrum Berlin, 14109, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Ophthalmology, 12200, Berlin, Germany
| | - Felix Ehret
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), 69120, Berlin, Heidelberg, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Lena Wedeken
- CELLphenomics GmbH, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Manuela Regenbrecht
- CELLphenomics GmbH, Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Helios Klinikum Berlin-Buch, Schwanebecker Chaussee 50, 13125, Berlin, Germany
- ASC Oncology GmbH, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Rica Sauer
- Institute of Pathology, Helios Klinikum Emil von Behring, Walterhöferstr. 11, 14165, Berlin, Germany
| | - Daniel Zips
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), 69120, Berlin, Heidelberg, Germany
| | - Andrea Denker
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109, Berlin, Germany
| | - Antonia M Joussen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Ophthalmology, 12200, Berlin, Germany
| | - Christian R A Regenbrecht
- CELLphenomics GmbH, Robert-Rössle-Str. 10, 13125, Berlin, Germany
- ASC Oncology GmbH, Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Institut für Pathologie, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - David Kaul
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), 69120, Berlin, Heidelberg, Germany
| |
Collapse
|
5
|
Wiltink LM, Spalek MJ, Sangalli C, Haas RL. The role of standard and novel radiotherapy approaches in management of retroperitoneal sarcomas. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2023; 49:1111-1114. [PMID: 36115783 DOI: 10.1016/j.ejso.2022.08.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 10/15/2022]
Abstract
Primary non-metastatic retroperitoneal soft tissue sarcoma patients can be cured by radical surgery. However there remains a risk for patients to develop a local recurrence. To minimize this risk, patients with low grade liposarcomas might benefit from preoperative radiotherapy. This review summarizes all issues that should be considered for the irradiation of patients with retroperitoneal soft tissue sarcoma.
Collapse
Affiliation(s)
- L M Wiltink
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, the Netherlands.
| | - M J Spalek
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - C Sangalli
- Department of Radiotherapy, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - R L Haas
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, the Netherlands; Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Laughlin BS, Golafshar M, Prince M, Liu W, Kutyreff CJ, Ahmed SK, Vern Gross TZ, Haddock M, Petersen I, DeWees TA, Ashman JB. Dosimetric comparison between proton beam therapy, intensity modulated radiation therapy, and 3D conformal therapy for soft tissue extremity sarcoma. Acta Oncol 2023:1-7. [PMID: 37154167 DOI: 10.1080/0284186x.2023.2209267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
PURPOSE/OBJECTIVES Proton beam therapy (PBT) may provide a dosimetric advantage in sparing soft tissue and bone for selected patients with extremity soft sarcoma (eSTS). We compared PBT with photons plans generated using intensity-modulated radiotherapy (IMRT) and three-dimensional conformal radiotherapy (3D-CRT). MATERIALS/METHODS Seventeen patients previously treated with pencil beam scanning PBT were included in this study. Of these patients, 14 treated with pre-operative 50 Gy in 25 fractions were analyzed. IMRT and 3D-CRT plans were created to compare against the original PBT plans. Dose-volume histogram (DVH) indices were evaluated amongst PBT, IMRT, and 3D plans. Kruskal-Wallis rank sum tests were used to get the statistical significance. A p value smaller than .05 was considered to be statistically significant. RESULTS For the clinical target volume (CTV), D2%, D95%, D98%, Dmin, Dmax, and V50Gy, were assessed. Dmin, D1%, Dmax, Dmean, V1Gy, V5Gy, and V50Gy were evaluated for the adjacent soft tissue. D1%, Dmax, Dmean, and V35-50% were evaluated for bone. All plans met CTV target coverage. The PBT plans delivered less dose to soft tissue and bone. The mean dose to the soft tissue was 2 Gy, 11 Gy, and 13 Gy for PBT, IMRT, and 3D, respectively (p < .001). The mean dose to adjacent bone was 15 Gy, 26 Gy, and 28 Gy for PBT, IMRT, and 3D, respectively (p = .022). CONCLUSION PBT plans for selected patients with eSTS demonstrated improved sparing of circumferential soft tissue and adjacent bone compared to IMRT and 3D-CRT. Further evaluation will determine if this improved dosimetry correlates with reduced toxicity and improved quality of life.
Collapse
Affiliation(s)
| | - Michael Golafshar
- Department of Quanitative Health Sciences, Section of Biostatistics, Mayo Clinic, Scottsdale, AZ, USA
| | - Matthew Prince
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | | | - Safia K Ahmed
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | | | - Michael Haddock
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Ivy Petersen
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Todd A DeWees
- Department of Quanitative Health Sciences, Section of Biostatistics, Mayo Clinic, Scottsdale, AZ, USA
| | | |
Collapse
|
7
|
Laughlin BS, Golafshar MA, Ahmed S, Prince M, Anderson JD, Vern-Gross T, Seetharam M, Goulding K, Petersen I, DeWees T, Ashman JB. Early Experience Using Proton Beam Therapy for Extremity Soft Tissue Sarcoma: A Multicenter Study. Int J Part Ther 2022; 9:1-11. [PMID: 35774491 PMCID: PMC9238125 DOI: 10.14338/ijpt-21-00037.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/21/2022] [Indexed: 11/21/2022] Open
Abstract
Abstract
Purpose
Proton beam therapy (PBT) may provide an advantage when planning well-selected patients with extremity soft tissue sarcoma (eSTS), specifically for large, anatomically challenging cases. We analyzed our early experience with PBT on toxicity and outcomes.
Materials and Methods
A retrospective study was performed for eSTS treated between June 2016 and October 2020 with pencil beam scanning PBT at 2 institutions. Diagnostic, treatment, and toxicity characteristics were gathered from baseline to last follow-up or death. Wound complications were defined as secondary operations for wound repair (debridement, drainage, skin graft, and muscle flap) or nonoperative management requiring hospitalization. Statistical analysis was performed with R software.
Results
Twenty consecutive patients with a median age 51.5 years (range, 19–78 years) were included. Median follow-up was 13.7 months (range, 1.7–48.1 months). Tumor presentation was primary (n = 17) or recurrent after prior combined modality therapy (n = 3). Tumor location was either lower extremity (n = 16) or upper extremity (n = 4). Radiation was delivered preoperatively in most patients (n = 18). Median pretreatment tumor size was 7.9 cm (range, 1.3 –30.0 cm). The 1-year locoregional control was 100%. Four patients (20%) had developed metastatic disease by end of follow-up. Maximum toxicity for acute dermatitis was grade 2 in 8 patients (40%) and grade 3 in 3 patients (15%). After preoperative radiation and surgical resection, acute wound complications occurred in 6 patients (35%). Tumor size was larger in patients with acute wound complications compared with those without (medians 16 cm, range [12–30.0 cm] vs 6.3 cm, [1.3–14.4 cm], P = .003).
Conclusion
PBT for well selected eSTS cases demonstrated excellent local control and similar acute wound complication rate comparable to historic controls. Long-term follow-up and further dosimetric analyses will provide further insight into potential advantages of PBT in this patient population.
Collapse
Affiliation(s)
| | | | - Safia Ahmed
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Matthew Prince
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | | | | | - Mahesh Seetharam
- Department of Hematology/Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Krista Goulding
- Department of Orthopedic Surgery, Mayo Clinic, Phoenix, AZ, USA
| | - Ivy Petersen
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Todd DeWees
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | | |
Collapse
|
8
|
Qiu X, He H, Zeng H, Tong X, Liu Q. The Role of Radiotherapy in Soft Tissue Sarcoma on Extremities With Lymph Nodes Metastasis: An IPTW Propensity Score Analysis of the SEER Database. Front Oncol 2021; 11:751180. [PMID: 34745979 PMCID: PMC8566919 DOI: 10.3389/fonc.2021.751180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Background Soft tissue sarcomas on extremities with regional lymph nodes metastasis (STSE-RLNM) is a devastating situation. Optimizing therapeutic approaches is vital but hampered by a shortage of randomized trials. We used a population-level database to evaluate radiotherapy’s impact on sarcoma-specific survival (SSS) and overall survival (OS) for surgery for STSE-RLNM. Methods We retrospectively screened data from the SEER database (2004–2015), and 265 patients with STSE-RLNM who received surgery, with (134) or without (131) radiotherapy, were enrolled in this study. A propensity-score-matched analysis with the inverse probability of treatment weighting (IPTW) Kaplan–Meier curve was created. The log-rank test and Cox regression analysis were performed to compare SSS and OS in patients with and without radiotherapy. Further analysis of radiotherapy time was conducted, and the Kaplan–Meier curve and the log-rank test were done. Landmark analysis was introduced to attenuate the immortal bias. Results In the original unadjusted cohort, the radiotherapy + surgery group is associated with improved SSS [hazard ratio (HR), 0.66; 95% CI, 0.47–0.91; p = 0.011] and OS (HR, 0.64; 95% CI, 0.47–0.88; p = 0.006). This significant treatment effect was also noted in IPTW-adjusted Cox regression either on SSS (HR, 0.65; 95% CI, 0.45–0.93; p = 0.020) or on OS (HR, 0.64; 95% CI, 0.46–0.91; p = 0.013). The Kaplan–Meier curve and log-rank test showed that pre- and postoperative radiotherapy was not related to SSS (p = 0.980 or OS (p = 0.890). Conclusion Radiotherapy and surgery has a significant benefit on the prognosis of patients with STSE-RLNM compared to surgery alone. These findings should be considered when making treatment decisions for them.
Collapse
Affiliation(s)
- Xinzhu Qiu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Hongbo He
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Zeng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaopeng Tong
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Qing Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Role of Radiation Therapy for Newly Diagnosed Retroperitoneal Sarcoma. Curr Treat Options Oncol 2021; 22:75. [PMID: 34213610 DOI: 10.1007/s11864-021-00877-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
OPINION STATEMENT Soft tissue sarcomas (STS) are rare, aggressive, and heterogenous tumors, comprising approximately 1% of adult cancers with over 50 different subtypes. The mainstay of treatment for retroperitoneal sarcomas (RPS) includes surgical resection. The addition of radiation therapy (RT), either preoperatively or postoperatively, has been used to potentially decrease the risk of local recurrence. The recently published results from STRASS (EORTC-STBSG 62092-22092), which randomized patients to receive or not receive preoperative radiation, indicate no abdominal recurrence-free survival benefit (primary endpoint) nor overall survival benefit to date from the addition of preoperative RT prior to surgical resection in patients with RPS. Keeping in mind caveats of subgroup analyses, the data show a significant reduction in local recurrence with radiation therapy in resected patients and non-significant trends toward improved abdominal recurrence-free survival in all patients and improved local control and abdominal recurrence-free survival in patients with liposarcoma and low-grade sarcoma. Given the high rate of local failure with surgery alone, it is possible that higher RT dose and/or selective RT dose painting may improve outcomes. Prior to treatment, the authors encourage multidisciplinary review and discussion of management options at a sarcoma center for patients with RPS. Selective use of RT may be considered for patients at high risk of local recurrence.
Collapse
|
10
|
Brinkmann EJ, Ahmed SK, Houdek MT. Extremity Soft Tissue Sarcoma: Role of Local Control. Curr Treat Options Oncol 2020; 21:13. [PMID: 32025823 DOI: 10.1007/s11864-020-0703-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OPINION STATEMENT For localized extremity soft tissue sarcoma (eSTS), treatment is individualized and each patient needs to be evaluated by a multidisciplinary team at a referral sarcoma center specialized in the care of sarcoma. For a majority of patients, treatment for eSTS involves limb-salvage surgery, with or without the addition of radiation therapy. Surgery should only be performed by surgeons specifically fellowship trained in the resection of eSTS. Surgery alone may be considered for small, low-grade, and superficial tumors as long a wide (≥ 2 cm) margin can be achieved. In cases where a less than wide negative margin can be achieved, radiation therapy should be utilized to facilitate a planned close margin resection to preserve critical structures (such as nerves, blood vessels, and bone) without a significant impact on oncologic outcomes. Soft tissue sarcomas are rare, and as such patients often present following an inadvertent excision. In these situations, we recommend preoperative radiation and wide tumor bed re-excision, as rates of residual tumor can be high in this scenario. While there is large amount of evidence to support the use of radiotherapy to enhance local tumor control, the evidence to support the use of chemotherapy to enhance local tumor control is lacking, and as such cannot be recommended for all patients.
Collapse
Affiliation(s)
- Elyse J Brinkmann
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Safia K Ahmed
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Matthew T Houdek
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
11
|
de Bruyns A, Li H, MacNeil A, Simmons C, Clarkson P, Goddard K, Munk PL, Hart JJ, Holloway C, Truong P, Feng X. Evolving Practice Patterns Over Two Decades (1993-2013) in the Management of Desmoid-type Fibromatosis in British Columbia. Clin Oncol (R Coll Radiol) 2019; 32:e102-e110. [PMID: 31685376 DOI: 10.1016/j.clon.2019.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/19/2019] [Accepted: 10/04/2019] [Indexed: 01/24/2023]
Abstract
AIMS Due to the rarity and varied natural history of desmoid-type fibromatosis, evidence-based treatment standards for this disease remain lacking. This study evaluated outcomes in patients with desmoid-type fibromatosis managed at a Canadian institution over two decades. MATERIALS AND METHODS Records of 227 patients with desmoid-type fibromatosis referred from 1990 to 2013 were retrospectively reviewed to investigate management strategies including active surveillance, surgery, radiation therapy, cryoablation, and systemic therapy, including tamoxifen and chemotherapy. RESULTS Thirty-two per cent of cases were men, median age 40 years, median tumour size 5.4 cm. Initial treatments were surgery (79%), tamoxifen (13%), radiation therapy (5.0%), chemotherapy (1.8%) and cryoablation (1.2%). Active surveillance was used upfront in 26% of cases, most after 2005. At a median follow-up of 77 months, one patient died of disease, 13 died of unrelated causes and the remainder were alive with no evidence of disease (56%), stable/responding disease (33%) or progressive disease (4%). The recurrence rate was 25% after upfront surgery. Response rates and disease control rates were 40% and 76% for active surveillance; 68% and 96% for radiation therapy; 31% and 67% for tamoxifen; and 53% and 80% for chemotherapy. On univariable analysis, factors associated with a higher recurrence after initial surgery were young age (P = 0.012), male gender (P = 0.012) and extremity location (P = 0.005). On multivariable analysis, only young age was significantly associated with recurrence risk (P = 0.010). CONCLUSIONS Active surveillance was associated with spontaneous regression and long-term disease control consistent with other studies. Primary radiation therapy appeared to provide a similar response and disease control compared with systemic treatments and may be a viable option for patients who are not candidates for surgery or active surveillance.
Collapse
Affiliation(s)
- A de Bruyns
- Faculty of Medicine, Island Medical Program, University of British Columbia, Victoria, British Columbia, Canada
| | - H Li
- Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada
| | - A MacNeil
- Department of Surgery, Vancouver General Hospital, University of British Columbia, British Columbia Cancer Agency - Vancouver Center, Vancouver, British Columbia, Canada
| | - C Simmons
- Department of Medical Oncology, University of British Columbia, British Columbia Cancer Agency - Vancouver Center, Vancouver, British Columbia, Canada
| | - P Clarkson
- Department of Surgery, Vancouver General Hospital, University of British Columbia, British Columbia Cancer Agency - Vancouver Center, Vancouver, British Columbia, Canada
| | - K Goddard
- Department of Radiation Oncology, University of British Columbia, British Columbia Cancer Agency - Vancouver Center, Vancouver, British Columbia, Canada
| | - P L Munk
- Department of Medical Imaging, Vancouver General Hospital, University of British Columbia, British Columbia Cancer Agency - Vancouver Center, Vancouver, British Columbia, Canada
| | - J J Hart
- Department of Medical Oncology, University of British Columbia, British Columbia Cancer Agency - Vancouver Center, Vancouver, British Columbia, Canada
| | - C Holloway
- Department of Radiation Oncology, University of British Columbia, British Columbia Cancer Agency - Vancouver Center, Vancouver, British Columbia, Canada
| | - P Truong
- Department of Radiation Oncology, University of British Columbia, British Columbia Cancer Agency - Vancouver Center, Vancouver, British Columbia, Canada
| | - X Feng
- Department of Medical Oncology, University of British Columbia, British Columbia Cancer Agency - Vancouver Center, Vancouver, British Columbia, Canada.
| |
Collapse
|
12
|
Matos GDR, de Camargo VP, Munhoz RR, de Castro G. Non-gastrointestinal stromal tumours soft tissue sarcomas: an update. Ecancermedicalscience 2019; 13:958. [PMID: 31645886 PMCID: PMC6759358 DOI: 10.3332/ecancer.2019.958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Indexed: 11/21/2022] Open
Abstract
Soft tissue sarcomas (STS) encompass a diverse family of neoplasms of mesenchymal origin, marked by significant heterogeneity in terms of physiopathology, molecular characterisation, natural history and response to different therapies. This review aims to summarise the current strategies for the management of patients with STS, including surgery, systemic treatments and radiation therapy, along with considerations applicable to the most frequent subtypes, as well as particularities associated with less common and specific histologies. It also provides insights into upcoming strategies to tackle this challenging group of diseases.
Collapse
Affiliation(s)
- Gustavo Duarte Ramos Matos
- Instituto do Câncer do Estado de São Paulo, São Paulo 01246-000, Brazil.,https://orcid.org/0000-0002-0681-4975
| | - Veridiana Pires de Camargo
- Instituto do Câncer do Estado de São Paulo, São Paulo 01246-000, Brazil.,Onco Star São Luiz Rede D'Or, São Paulo 04544-000, Brazil
| | - Rodrigo Ramella Munhoz
- Instituto do Câncer do Estado de São Paulo, São Paulo 01246-000, Brazil.,Hospital Sírio-Libanês, São Paulo 01308-050, Brazil
| | - Gilberto de Castro
- Instituto do Câncer do Estado de São Paulo, São Paulo 01246-000, Brazil.,Hospital Sírio-Libanês, São Paulo 01308-050, Brazil.,https://orcid.org/0000-0001-8765-3044
| |
Collapse
|
13
|
Kok HP, Van Dijk IWEM, Crama KF, Franken NAP, Rasch CRN, Merks JHM, Crezee J, Balgobind BV, Bel A. Re‑irradiation plus hyperthermia for recurrent pediatric sarcoma; a simulation study to investigate feasibility. Int J Oncol 2018; 54:209-218. [PMID: 30387837 DOI: 10.3892/ijo.2018.4622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/21/2018] [Indexed: 11/05/2022] Open
Abstract
Recurrent pediatric tumors pose a challenge since treatment options may be limited, particularly after previous irradiation. Positive results have been reported for chemotherapy and hyperthermia, but the combination of re‑irradiation and hyperthermia has not been investigated thus far, although it is a proven treatment strategy in adults. The theoretical feasibility of re‑irradiation plus hyperthermia was investigated for infield recurrent pediatric sarcoma in the pelvic region and the extremities. A total of 46 recurrent pediatric sarcoma cases diagnosed at the Academic Medical Center (Amsterdam, The Netherlands) between 2002 and 2017 were evaluated. Patients not previously irradiated, outfield recurrences and locations other than the pelvis and extremities were excluded, ultimately yielding four eligible patients: Two with sarcomas in the pelvis and two in an extremity. Re‑irradiation and hyperthermia treatment plans were simulated for 23x2 Gy treatment schedules and weekly hyperthermia. The radiosensitizing effect of hyperthermia was quantified using biological modelling with a temperature‑dependent change in the parameters of the linear‑quadratic model. The possible effectiveness of re‑irradiation plus hyperthermia was estimated by calculating the equivalent radiotherapy dose distribution. Treatment planning revealed that tumors located in the pelvis and the extremities can be effectively heated in children. Equivalent dose distributions indicated that hyperthermic radiosensitization can be quantified as a target‑selective additional D95% of typically 10 Gy, thereby delivering a possibly curative dose of 54 Gy, without substantially increasing the equivalent dose to the organs at risk. Therefore, re‑irradiation plus hyperthermia is a theoretically feasible and possibly effective treatment option for recurrent pediatric sarcoma in the pelvic region and the extremities, and its clinical feasibility is worthy of evaluation.
Collapse
Affiliation(s)
- H Petra Kok
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Irma W E M Van Dijk
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Koen F Crama
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Nicolaas A P Franken
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Coen R N Rasch
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Johannes H M Merks
- Department of Pediatric Oncology, Emma Children's Hospital/Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Johannes Crezee
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Brian V Balgobind
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Arjan Bel
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
14
|
La protonthérapie comme modalité d’irradiation dans les sarcomes des os ou cartilage et des tissus mous, état des lieux en 2018. Bull Cancer 2018; 105:830-838. [DOI: 10.1016/j.bulcan.2018.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 05/14/2018] [Indexed: 01/06/2023]
|
15
|
Kasper B, Baumgarten C, Garcia J, Bonvalot S, Haas R, Haller F, Hohenberger P, Penel N, Messiou C, van der Graaf WT, Gronchi A. An update on the management of sporadic desmoid-type fibromatosis: a European Consensus Initiative between Sarcoma PAtients EuroNet (SPAEN) and European Organization for Research and Treatment of Cancer (EORTC)/Soft Tissue and Bone Sarcoma Group (STBSG). Ann Oncol 2018; 28:2399-2408. [PMID: 28961825 PMCID: PMC5834048 DOI: 10.1093/annonc/mdx323] [Citation(s) in RCA: 267] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Desmoid-type fibromatosis is a rare and locally aggressive monoclonal, fibroblastic proliferation characterized by a variable and often unpredictable clinical course. Currently, there is no established or evidence-based treatment approach available for this disease. Therefore, in 2015 the European Desmoid Working Group published a position paper giving recommendations on the treatment of this intriguing disease. Here, we present an update of this consensus approach based on professionals' AND patients' expertise following a round table meeting bringing together sarcoma experts from the European Organization for Research and Treatment of Cancer/Soft Tissue and Bone Sarcoma Group with patients and patient advocates from Sarcoma PAtients EuroNet. In this paper, we focus on new findings regarding the prognostic value of mutational analysis in desmoid-type fibromatosis patients and new systemic treatment options.
Collapse
Affiliation(s)
- B Kasper
- Sarcoma Unit, Interdisciplinary Tumor Center, Mannheim University Medical Center, University of Heidelberg, Mannheim;.
| | - C Baumgarten
- SPAEN Sarcoma PAtients EuroNet e.V, Wölfersheim, Germany
| | - J Garcia
- SPAEN Sarcoma PAtients EuroNet e.V, Wölfersheim, Germany
| | - S Bonvalot
- Department of Surgical Oncology, Institut Curie, PSL University, Paris, France
| | - R Haas
- Department of Radiotherapy, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam;; Department of Radiotherapy, Leiden University Medical Center, Leiden, The Netherlands
| | - F Haller
- Institute of Pathology, Friedrich Alexander University Erlangen, Erlangen, Germany
| | - P Hohenberger
- Sarcoma Unit, Interdisciplinary Tumor Center, Mannheim University Medical Center, University of Heidelberg, Mannheim
| | - N Penel
- Department of Medical Oncology, Centre Oscar Lambret, Lille, France
| | - C Messiou
- Department of Radiology, The Royal Marsden Hospital, London
| | - W T van der Graaf
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - A Gronchi
- Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | | |
Collapse
|
16
|
Stacchiotti S, Gronchi A, Fossati P, Akiyama T, Alapetite C, Baumann M, Blay JY, Bolle S, Boriani S, Bruzzi P, Capanna R, Caraceni A, Casadei R, Colia V, Debus J, Delaney T, Desai A, Dileo P, Dijkstra S, Doglietto F, Flanagan A, Froelich S, Gardner PA, Gelderblom H, Gokaslan ZL, Haas R, Heery C, Hindi N, Hohenberger P, Hornicek F, Imai R, Jeys L, Jones RL, Kasper B, Kawai A, Krengli M, Leithner A, Logowska I, Martin Broto J, Mazzatenta D, Morosi C, Nicolai P, Norum OJ, Patel S, Penel N, Picci P, Pilotti S, Radaelli S, Ricchini F, Rutkowski P, Scheipl S, Sen C, Tamborini E, Thornton KA, Timmermann B, Torri V, Tunn PU, Uhl M, Yamada Y, Weber DC, Vanel D, Varga PP, Vleggeert-Lankamp CLA, Casali PG, Sommer J. Best practices for the management of local-regional recurrent chordoma: a position paper by the Chordoma Global Consensus Group. Ann Oncol 2018; 28:1230-1242. [PMID: 28184416 PMCID: PMC5452071 DOI: 10.1093/annonc/mdx054] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chordomas are rare, malignant bone tumors of the skull-base and axial skeleton. Until recently, there was no consensus among experts regarding appropriate clinical management of chordoma, resulting in inconsistent care and suboptimal outcomes for many patients. To address this shortcoming, the European Society of Medical Oncology (ESMO) and the Chordoma Foundation, the global chordoma patient advocacy group, convened a multi-disciplinary group of chordoma specialists to define by consensus evidence-based best practices for the optimal approach to chordoma. In January 2015, the first recommendations of this group were published, covering the management of primary and metastatic chordomas. Additional evidence and further discussion were needed to develop recommendations about the management of local-regional failures. Thus, ESMO and CF convened a second consensus group meeting in November 2015 to address the treatment of locally relapsed chordoma. This meeting involved over 60 specialists from Europe, the United States and Japan with expertise in treatment of patients with chordoma. The consensus achieved during that meeting is the subject of the present publication and complements the recommendations of the first position paper.
Collapse
Affiliation(s)
| | - A Gronchi
- Surgery, Fondazione IRCCS Istituto Nazionale Tumori, Milan
| | - P Fossati
- CNAO National Center for Oncological Hadrontherapy, Pavia.,Department of Radiotherapy, IEO-European Institute of Oncology, Milan, Italy
| | - T Akiyama
- Department of Orthopaedic Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - C Alapetite
- Department of Radiotherapy, Institut Curie, Paris.,Institut Curie-Centre de Protonthérapie d'Orsay (ICPO), Orsay, France
| | - M Baumann
- Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - J Y Blay
- Cancer Medicine Department, Centre Léon Bérard, Lyon
| | - S Bolle
- Department of Radiotherapy, Gustave Roussy, Villejuif Cedex, France
| | - S Boriani
- Department of Degenerative and Oncological Spine Surgery, Rizzoli Institute Bologna, Bologna
| | - P Bruzzi
- Department of Epidemiology, IRCCS Azienda Ospedaliera Universitaria San Martino, IST Istituto Nazionale per la Ricerca sul Cancro, Genova
| | - R Capanna
- University Clinic of Orthopedics and Traumatology AO Pisa, Pisa
| | - A Caraceni
- Palliative Care Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan
| | - R Casadei
- Orthopedic Department, Rizzoli Institute Bologna, Bologna, Italy
| | - V Colia
- Departments of Cancer Medicine
| | - J Debus
- Department of Radiation Oncology, University of Heidelberg, Heidelberg, Germany
| | - T Delaney
- Department of Radiation Oncology, Francis H. Burr Proton Therapy Center, Massachusetts General Hospital, Boston, USA
| | - A Desai
- Midlands Abdominal and Retroperitoneal Sarcoma Unit (MARSU), Queen Elizabeth Hospital, Birmingham
| | - P Dileo
- Department of Oncology, University College London Hospitals (UCLH), London, UK
| | - S Dijkstra
- Department of Orthopaedic Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| | - F Doglietto
- Institute of Neurosurgery, University of Brescia, Brescia, Italy
| | - A Flanagan
- University College London Cancer Institute, London.,Histopathology Department, Royal National Orthopaedic Hospital NHS Trust, Stanmore, UK
| | - S Froelich
- Department of Neurosurgery, Paris Diderot University, Hôpital Lariboisière, Paris, France
| | - P A Gardner
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - H Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Z L Gokaslan
- Department of Neurosurgery, Brown University School of Medicine, Providence, USA
| | - R Haas
- Department of Radiotherapy, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - C Heery
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - N Hindi
- Department of Cancer Medicine, Hospital Universitario Virgen del Rocio, Sevilla, Spain
| | - P Hohenberger
- Sarcoma Unit, Interdisciplinary Tumor Center, Mannheim University Medical Center, University of Heidelberg, Mannheim, Germany
| | - F Hornicek
- Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - R Imai
- National Institute of Radiological Sciences, Research Center Hospital for Charged Particle Therapy, Chiba, Japan
| | - L Jeys
- Department of Orthopaedics, Royal Orthopaedic Hospital Birmingham, Birmingham
| | - R L Jones
- Sarcoma Unit, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, London, UK
| | - B Kasper
- Sarcoma Unit, Interdisciplinary Tumor Center, Mannheim University Medical Center, University of Heidelberg, Mannheim, Germany
| | - A Kawai
- Musculoskeletal Oncology and Rehabilitation Medicine, National Cancer Center, Tokio, Japan
| | - M Krengli
- Radiotherapy Department, University of Piemonte Orientale, Novara, Italy
| | - A Leithner
- Department of Orthopaedics and Orthopaedic Surgery, Medical University Graz, Graz, Austria
| | - I Logowska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - J Martin Broto
- Department of Cancer Medicine, Hospital Universitario Virgen del Rocio, Sevilla, Spain
| | - D Mazzatenta
- Department of Neurosurgery, IRCCS Istituto delle Scienze Neurologiche, Bologna
| | - C Morosi
- Department of Radiology, Fondazione IRCCS Istituto Nazionale Tumori, Milan
| | - P Nicolai
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Brescia, Brescia, Italy
| | - O J Norum
- Department of Tumor Orthopedic Surgery, The Norwegian Radium Hospital, Oslo, Norway
| | - S Patel
- Department of Sarcoma Medical Oncology, MD Anderson Cancer Center, Houston, USA
| | - N Penel
- Cencer Medicine Department, Oscar Lambret Cancer Centre, Lille, France
| | - P Picci
- Laboratory of Oncologic Research, Istituto Ortopedico Rizzoli, Bologna
| | - S Pilotti
- Laboratory of Molecular Pathology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - S Radaelli
- Surgery, Fondazione IRCCS Istituto Nazionale Tumori, Milan
| | - F Ricchini
- Palliative Care Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan
| | - P Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - S Scheipl
- Department of Orthopaedics and Orthopaedic Surgery, Medical University Graz, Graz, Austria
| | - C Sen
- Department of Neurosurgery, NYU Langone Medical Center, New York
| | - E Tamborini
- Laboratory of Molecular Pathology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - K A Thornton
- Center for Bone and Soft Tissue Sarcoma, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - B Timmermann
- Particle Therapy Department, West German Proton Therapy Centre Essen, University Hospital Essen, Essen, Germany
| | - V Torri
- Oncology Unit, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - P U Tunn
- Department of Orthopaedic Oncology, HELIOS Klinikum Berlin-Buch, Berlin, Germany
| | - M Uhl
- Department of Radiation Oncology, University of Heidelberg, Heidelberg, Germany
| | - Y Yamada
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - D C Weber
- Paul Scherrer Institut PSI, Villigen, Switzerland
| | - D Vanel
- Department of Radiology, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - P P Varga
- National Center for Spinal Disorders, Budapest, Hungary
| | | | | | - J Sommer
- Chordoma Foundation, Durham, USA
| |
Collapse
|
17
|
Haas RL, Baldini EH, Chung PW, van Coevorden F, DeLaney TF. Radiation therapy in retroperitoneal sarcoma management. J Surg Oncol 2017; 117:93-98. [DOI: 10.1002/jso.24892] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/04/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Rick L. Haas
- Department of Radiation Oncology; The Netherlands Cancer Institute; Amsterdam The Netherlands
- Department of Radiation Oncology; Leiden University Medical Centre; Leiden The Netherlands
| | - Elizabeth H. Baldini
- Department of Radiation Oncology; Brigham and Women's Hospital and Dana-Farber Cancer Institute; Center for Sarcoma and Bone Oncology; Dana-Farber Cancer Institute; Harvard Medical School; Boston Massachusetts
| | - Peter W. Chung
- Department of Radiation Oncology; Princess Margaret Hospital; Toronto Ontario Canada
| | - Frits van Coevorden
- Department of Surgical Oncology; The Netherlands Cancer Institute; Amsterdam The Netherlands
| | - Thomas F. DeLaney
- Department of Radiation Oncology; Massachusetts General Hospital; Harvard Medical School; Boston Massachusetts
| |
Collapse
|
18
|
Nesseler JP, Salleron J, Rios M, Nickers P, Marchal F, Brocard F, Peiffert D, Vogin G. A retrospective cohort study to assess adjuvant concurrent chemoradiation (CCRT) compared to adjuvant radiation therapy (RT) in the treatment of grade 2 and 3 extremity soft tissue sarcomas. Radiother Oncol 2017; 125:160-167. [PMID: 28951009 DOI: 10.1016/j.radonc.2017.08.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 08/09/2017] [Accepted: 08/12/2017] [Indexed: 11/16/2022]
Abstract
PURPOSE To evaluate the efficacy and tolerance of adjuvant concurrent chemoradiation (CCRT) as treatment of grade 2 and 3 (G2-3) localized extremity soft tissue sarcomas (STS) by comparing CCRT with standard adjuvant radiation therapy (RT). PATIENTS AND METHODS This monocentric retrospective study included non-pediatric patients (>16years) treated by adjuvant RT with or without chemotherapy (CT) after conservative resection of non-recurrent G2-3 extremity STS. RESULTS A total of 80 patients were treated between 1990 and 2012: 51 by RT and 29 by CCRT. Of the 29 CCRT patients, 25 received doxorubicin monotherapy (75mg/m2/3weeks). The CCRT group contained a greater proportion of grade 3 extremity STS (p<0.001). Median follow up was 68months (9-284). Multivariate analysis revealed greater local control in the CCRT group (1 local recurrence vs 8 in the RT group; HR=0.082, 95% CI 0.011-0.321) and incomplete resection as the major risk factor of local recurrence (HR=25.2, 95% CI 4.767-133.226). The two groups exhibited no differences in distant failure-free survival (HR=1.469, 95% CI 0.668-3.228), disease-free survival (HR=1.096, 95% CI 0.519-2.315) or overall survival (HR=1.378, 95% CI 0.498-3.814). Grade 3 was an adverse prognostic factor for overall survival (HR=3.11, 95% CI 1.04-9.32). Our analyses also revealed that CCRT tended to increase the risk of both grade ≥3 acute dermatitis (14 events vs 6 in the RT group; OR=6.99, 95% CI 2.28-21.47) and grade ≥2 late toxicity (6 events vs 3 in the RT group; p=0.0572). CONCLUSION CCRT could improve local control as part of a limb-preservation strategy. However, with a limited number of patients, CCRT showed no improvement in either distant control or survival and increased toxicity.
Collapse
Affiliation(s)
- Jean Philippe Nesseler
- Department of Radiation Oncology, Institut de Cancérologie de Lorraine, Vandoeuvre-Lès-Nancy, France.
| | - Julia Salleron
- Department of Biostatistics and Data Management, Institut de Cancérologie de Lorraine, Vandoeuvre-Lès-Nancy, France
| | - Maria Rios
- Department of Medical Oncology, Institut de Cancérologie de Lorraine, Vandoeuvre-Lès-Nancy, France
| | - Philippe Nickers
- Department of Radiation Oncology, Centre François Baclesse, Esch-Sur-Alzette, Luxembourg
| | - Frederic Marchal
- Department of Surgical Oncology, Institut de Cancérologie de Lorraine, Vandoeuvre-Lès-Nancy, France
| | - Fabien Brocard
- Department of Medical Oncology, Polyclinique de Gentilly, Nancy, France
| | - Didier Peiffert
- Department of Radiation Oncology, Institut de Cancérologie de Lorraine, Vandoeuvre-Lès-Nancy, France
| | - Guillaume Vogin
- Department of Radiation Oncology, Institut de Cancérologie de Lorraine, Vandoeuvre-Lès-Nancy, France; UMR 7365 CNRS Université de Lorraine, Vandoeuvre-Lès-Nancy, France
| |
Collapse
|
19
|
Ajithkumar TV, Hatcher H. Multidisciplinary Management of Sarcomas - Where Are We Now? Clin Oncol (R Coll Radiol) 2017; 29:467-470. [PMID: 28583345 DOI: 10.1016/j.clon.2017.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 02/07/2023]
Affiliation(s)
- T V Ajithkumar
- Cambridge University Hospitals NHS Trust, Cambridge, UK.
| | - H Hatcher
- Cambridge University Hospitals NHS Trust, Cambridge, UK
| |
Collapse
|
20
|
Frisch S, Timmermann B. The Evolving Role of Proton Beam Therapy for Sarcomas. Clin Oncol (R Coll Radiol) 2017; 29:500-506. [DOI: 10.1016/j.clon.2017.04.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/11/2017] [Accepted: 04/18/2017] [Indexed: 11/30/2022]
|
21
|
Andritsch E, Beishon M, Bielack S, Bonvalot S, Casali P, Crul M, Delgado-Bolton R, Donati DM, Douis H, Haas R, Hogendoorn P, Kozhaeva O, Lavender V, Lovey J, Negrouk A, Pereira P, Roca P, de Lempdes GR, Saarto T, van Berck B, Vassal G, Wartenberg M, Yared W, Costa A, Naredi P. ECCO Essential Requirements for Quality Cancer Care: Soft Tissue Sarcoma in Adults and Bone Sarcoma. A critical review. Crit Rev Oncol Hematol 2017; 110:94-105. [DOI: 10.1016/j.critrevonc.2016.12.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 12/05/2016] [Indexed: 01/04/2023] Open
|
22
|
Dangoor A, Seddon B, Gerrand C, Grimer R, Whelan J, Judson I. UK guidelines for the management of soft tissue sarcomas. Clin Sarcoma Res 2016; 6:20. [PMID: 27891213 PMCID: PMC5109663 DOI: 10.1186/s13569-016-0060-4] [Citation(s) in RCA: 307] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/01/2016] [Indexed: 01/18/2023] Open
Abstract
Soft tissue sarcomas (STS) are rare tumours arising in mesenchymal tissues, and can occur almost anywhere in the body. Their rarity, and the heterogeneity of subtype and location means that developing evidence-based guidelines is complicated by the limitations of the data available. However, this makes it more important that STS are managed by teams, expert in such cases, to ensure consistent and optimal treatment, as well as recruitment to clinical trials, and the ongoing accumulation of further data and knowledge. The development of appropriate guidance, by an experienced panel referring to the evidence available, is therefore a useful foundation on which to build progress in the field. These guidelines are an update of the previous version published in 2010 (Grimer et al. in Sarcoma 2010:506182, 2010). The original guidelines were drawn up following a consensus meeting of UK sarcoma specialists convened under the auspices of the British Sarcoma Group (BSG) and were intended to provide a framework for the multidisciplinary care of patients with soft tissue sarcomas. This current version has been updated and amended with reference to other European and US guidance. There are specific recommendations for the management of selected subtypes of disease including retroperitoneal and uterine sarcomas, as well as aggressive fibromatosis (desmoid tumours) and other borderline tumours commonly managed by sarcoma services. An important aim in sarcoma management is early diagnosis and prompt referral. In the UK, any patient with a suspected soft tissue sarcoma should be referred to one of the specialist regional soft tissues sarcoma services, to be managed by a specialist sarcoma multidisciplinary team. Once the diagnosis has been confirmed using appropriate imaging, plus a biopsy, the main modality of management is usually surgical excision performed by a specialist surgeon. In tumours at higher risk of recurrence or metastasis pre- or post-operative radiotherapy should be considered. Systemic anti-cancer therapy (SACT) may be utilized in some cases where the histological subtype is considered more sensitive to systemic treatment. Regular follow-up is recommended to assess local control, development of metastatic disease, and any late-effects of treatment. For local recurrence, and more rarely in selected cases of metastatic disease, surgical resection would be considered. Treatment for metastases may include radiotherapy, or systemic therapy guided by the sarcoma subtype. In some cases, symptom control and palliative care support alone will be appropriate.
Collapse
Affiliation(s)
- Adam Dangoor
- Bristol Cancer Institute, Bristol Haematology & Oncology Centre, University Hospitals Bristol NHS Trust, Bristol, BS2 8ED UK
| | - Beatrice Seddon
- Department of Oncology, University College London Hospital NHS Trust, London, NW1 2PG UK
| | - Craig Gerrand
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle-upon-Tyne, NE7 7DN UK
| | - Robert Grimer
- Royal Orthopaedic Hospital NHS Trust, Birmingham, B31 2AP UK
| | - Jeremy Whelan
- Department of Oncology, University College London Hospital NHS Trust, London, NW1 2PG UK
| | - Ian Judson
- Royal Marsden NHS Foundation Trust, London, SW3 6JJ UK
| |
Collapse
|