1
|
Aljagthmi AA, Abdel-Aziz AK. Hematopoietic stem cells: Understanding the mechanisms to unleash the therapeutic potential of hematopoietic stem cell transplantation. Stem Cell Res Ther 2025; 16:60. [PMID: 39924510 PMCID: PMC11809095 DOI: 10.1186/s13287-024-04126-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/21/2024] [Indexed: 02/11/2025] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is a promising approach in regenerative medicine and serves as a standard treatment for different malignant and non-malignant conditions. Despite its widespread applications, HSCT is associated with various complications that compromise patients' lives and pose considerable risks of morbidity and mortality. Understanding the molecular physiology of HSCs is fundamental to ultimately enhance the mobilization, engraftment and differentiation of HSCs, thus unleashing the full therapeutic potential of HSCT in the treated patients. This review outlines the current understanding of HSC biology and its relevance to the clinical challenges associated with HSCT. Furthermore, we critically discuss the pros and cons of the preclinical murine models exploited in the HSCT field. Understanding the molecular physiology of HSCs will ultimately unleash the full therapeutic potential of HSCT. HSCs derived from induced pluripotent stem cells (iPSCs) might present an attractive tool which could be exploited preclinically and clinically. Nonetheless, further studies are warranted to systematically evaluate their potential in terms of improving the therapeutic outcome and minimizing the adverse effects of HSCT.
Collapse
Affiliation(s)
- Amjad Ahmed Aljagthmi
- Research center, King Faisal Specialist Hospital and Research Centre, Jeddah, 21499, Kingdom of Saudi Arabia.
| | - Amal Kamal Abdel-Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| |
Collapse
|
2
|
Brauer J, Tumani M, Frey N, Lehmann LH. The cardio-oncologic burden of breast cancer: molecular mechanisms and importance of preclinical models. Basic Res Cardiol 2025; 120:91-112. [PMID: 39621070 PMCID: PMC11790711 DOI: 10.1007/s00395-024-01090-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 02/04/2025]
Abstract
Breast cancer, the most prevalent cancer affecting women worldwide, poses a significant cardio-oncological burden. Despite advancements in novel therapeutic strategies, anthracyclines, HER2 antagonists, and radiation remain the cornerstones of oncological treatment. However, each carries a risk of cardiotoxicity, though the molecular mechanisms underlying these adverse effects differ. Common mechanisms include DNA damage response, increased reactive oxygen species, and mitochondrial dysfunction, which are key areas of ongoing research for potential cardioprotective strategies. Since these mechanisms are also essential for effective tumor cytotoxicity, we explore tumor-specific effects, particularly in hereditary breast cancer linked to BRCA1 and BRCA2 mutations. These genetic variants impair DNA repair mechanisms, increase the risk of tumorigenesis and possibly for cardiotoxicity from treatments such as anthracyclines and HER2 antagonists. Novel therapies, including immune checkpoint inhibitors, are used in the clinic for triple-negative breast cancer and improve the oncological outcomes of breast cancer patients. This review discusses the molecular mechanisms underlying BRCA dysfunction and the associated pathological pathways. It gives an overview of preclinical models of breast cancer, such as genetically engineered mouse models, syngeneic murine models, humanized mouse models, and various in vitro and ex vivo systems and models to study cardiovascular side effects of breast cancer therapies. Understanding the underlying mechanism of cardiotoxicity and developing cardioprotective strategies in preclinical models are essential for improving treatment outcomes and reducing long-term cardiovascular risks in breast cancer patients.
Collapse
Affiliation(s)
- J Brauer
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Center of Cardiovascular Research (DZHK), Partnersite Heidelberg, Mannheim, Germany
| | - M Tumani
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Center of Cardiovascular Research (DZHK), Partnersite Heidelberg, Mannheim, Germany
| | - N Frey
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Center of Cardiovascular Research (DZHK), Partnersite Heidelberg, Mannheim, Germany
| | - L H Lehmann
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
- German Center of Cardiovascular Research (DZHK), Partnersite Heidelberg, Mannheim, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
3
|
Yu JZ, Kiss Z, Ma W, Liang R, Li T. Preclinical Models for Functional Precision Lung Cancer Research. Cancers (Basel) 2024; 17:22. [PMID: 39796653 PMCID: PMC11718887 DOI: 10.3390/cancers17010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Patient-centered precision oncology strives to deliver individualized cancer care. In lung cancer, preclinical models and technological innovations have become critical in advancing this approach. Preclinical models enable deeper insights into tumor biology and enhance the selection of appropriate systemic therapies across chemotherapy, targeted therapies, immunotherapies, antibody-drug conjugates, and emerging investigational treatments. While traditional human lung cancer cell lines offer a basic framework for cancer research, they often lack the tumor heterogeneity and intricate tumor-stromal interactions necessary to accurately predict patient-specific clinical outcomes. Patient-derived xenografts (PDXs), however, retain the original tumor's histopathology and genetic features, providing a more reliable model for predicting responses to systemic therapeutics, especially molecularly targeted therapies. For studying immunotherapies and antibody-drug conjugates, humanized PDX mouse models, syngeneic mouse models, and genetically engineered mouse models (GEMMs) are increasingly utilized. Despite their value, these in vivo models are costly, labor-intensive, and time-consuming. Recently, patient-derived lung cancer organoids (LCOs) have emerged as a promising in vitro tool for functional precision oncology studies. These LCOs demonstrate high success rates in growth and maintenance, accurately represent the histology and genomics of the original tumors and exhibit strong correlations with clinical treatment responses. Further supported by advancements in imaging, spatial and single-cell transcriptomics, proteomics, and artificial intelligence, these preclinical models are reshaping the landscape of drug development and functional precision lung cancer research. This integrated approach holds the potential to deliver increasingly accurate, personalized treatment strategies, ultimately enhancing patient outcomes in lung cancer.
Collapse
Affiliation(s)
- Jie-Zeng Yu
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA; (J.-Z.Y.); (Z.K.); (W.M.); (R.L.)
| | - Zsofia Kiss
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA; (J.-Z.Y.); (Z.K.); (W.M.); (R.L.)
| | - Weijie Ma
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA; (J.-Z.Y.); (Z.K.); (W.M.); (R.L.)
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Ruqiang Liang
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA; (J.-Z.Y.); (Z.K.); (W.M.); (R.L.)
| | - Tianhong Li
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA; (J.-Z.Y.); (Z.K.); (W.M.); (R.L.)
- Medical Service, Hematology/Oncology, Veterans Affairs Northern California Health Care System, Mather, CA 10535, USA
| |
Collapse
|
4
|
Zhang R, Jiang Q, Zhuang Z, Zeng H, Li Y. A bibliometric analysis of drug resistance in immunotherapy for breast cancer: trends, themes, and research focus. Front Immunol 2024; 15:1452303. [PMID: 39188717 PMCID: PMC11345160 DOI: 10.3389/fimmu.2024.1452303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
While breast cancer treatments have advanced significantly nowadays, yet metastatic, especially triple-negative breast cancer (TNBC), remains challenging with low survival. Cancer immunotherapy, a promising approach for HER2-positive and TNBC, still faces resistance hurdles. Recently, numerous studies have set their sights on the resistance of immunotherapy for breast cancer. Our study provides a thorough comprehension of the current research landscape, hotspots, and emerging breakthroughs in this critical area through a meticulous bibliometric analysis. As of March 26, 2024, a total of 1341 articles on immunology resistance in breast cancer have been gathered from Web of Science Core Collection, including 765 articles and 576 reviews. Bibliometrix, CiteSpace and VOSviewer software were utilized to examine publications and citations per year, prolific countries, contributive institutions, high-level journals and scholars, as well as highly cited articles, references and keywords. The research of immunotherapy resistance in breast cancer has witnessed a remarkable surge over the past seven years. The United States and China have made significant contributions, with Harvard Medical School being the most prolific institution and actively engaging in collaborations. The most contributive author is Curigliano, G from the European Institute of Oncology in Italy, while Wucherpfennig, K. W. from the Dana-Farber Cancer Institute in the USA, had the highest citations. Journals highly productive primarily focus on clinical, immunology and oncology research. Common keywords include "resistance", "expression", "tumor microenvironment", "cancer", "T cell", "therapy", "chemotherapy" and "cell". Current research endeavors to unravel the mechanisms of immune resistance in breast cancer through the integration of bioinformatics, basic experiments, and clinical trials. Efforts are underway to develop strategies that improve the effectiveness of immunotherapy, including the exploration of combination therapies and advancements in drug delivery systems. Additionally, there is a strong focus on identifying novel biomarkers that can predict patient response to immunology. This study will provide researchers with an up-to-date overview of the present knowledge in drug resistance of immunology for breast cancer, serving as a valuable resource for informed decision-making and further research on innovative approaches to address immunotherapy resistance.
Collapse
Affiliation(s)
- Rendong Zhang
- Department of Breast Surgery, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Qiongzhi Jiang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Zhemin Zhuang
- Engineering College, Shantou University, Shantou, Guangdong, China
| | - Huancheng Zeng
- Department of Breast Surgery, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Yaochen Li
- The Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
5
|
Abdel-Aziz AK. Advances in acute myeloid leukemia differentiation therapy: A critical review. Biochem Pharmacol 2023; 215:115709. [PMID: 37506924 DOI: 10.1016/j.bcp.2023.115709] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Acute myeloid leukemia (AML) is characterized by impaired differentiation and indefinite proliferation of abnormal myeloid progenitors. Although differentiating agents were deemed to revolutionize AML therapy, most treated non-APL AML patients are refractory or relapse. According to cancer stem cell model, leukemia-initiating cells are the root cause of relapse given their unidirectional potential to generate differentiated AML blasts. Nonetheless, accumulating evidences emphasize the de-differentiation plasticity and leukemogenic potential of mature AML blasts and the frailty of targeting leukemic stem cells per se. This review critically discusses the potential and challenges of (lessons learnt from) conventional and novel differentiating agents in AML therapy. Although differentiating agents might hold promise, they should be exploited within the context of a rationale combination regimen eradicating all maturation/differentiation states of AML cells. The results of the routinely used immunophenotypic markers and/or morphological analyses of differentiation should be carefully interpreted given their propensity to underestimate AML burden.
Collapse
Affiliation(s)
- Amal Kamal Abdel-Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; Smart Health Initiative, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudia Arabia.
| |
Collapse
|
6
|
Montazeri Aliabadi H, Manda A, Sidgal R, Chung C. Targeting Breast Cancer: The Familiar, the Emerging, and the Uncharted Territories. Biomolecules 2023; 13:1306. [PMID: 37759706 PMCID: PMC10526846 DOI: 10.3390/biom13091306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Breast cancer became the most diagnosed cancer in the world in 2020. Chemotherapy is still the leading clinical strategy in breast cancer treatment, followed by hormone therapy (mostly used in hormone receptor-positive types). However, with our ever-expanding knowledge of signaling pathways in cancer biology, new molecular targets are identified for potential novel molecularly targeted drugs in breast cancer treatment. While this has resulted in the approval of a few molecularly targeted drugs by the FDA (including drugs targeting immune checkpoints), a wide array of signaling pathways seem to be still underexplored. Also, while combinatorial treatments have become common practice in clinics, the majority of these approaches seem to combine molecularly targeted drugs with chemotherapeutic agents. In this manuscript, we start by analyzing the list of FDA-approved molecularly targeted drugs for breast cancer to evaluate where molecular targeting stands in breast cancer treatment today. We will then provide an overview of other options currently under clinical trial or being investigated in pre-clinical studies.
Collapse
Affiliation(s)
- Hamidreza Montazeri Aliabadi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
| | | | | | | |
Collapse
|
7
|
Kamal Abdel-Aziz A, Dokla EM, Abouzid KA, Minucci S. Discovery of EMD37, a 1,2,4-oxadiazole derivative, as a novel endoplasmic reticulum stress inducer with potent anticancer activity. Biochem Pharmacol 2022; 206:115316. [DOI: 10.1016/j.bcp.2022.115316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/05/2022] [Accepted: 10/17/2022] [Indexed: 11/02/2022]
|
8
|
Elimam H, Hussein J, Abdel-Latif Y, Abdel-Aziz AK, El-Say KM. Preclinical activity of fluvastatin-loaded self-nanoemulsifying delivery system against breast cancer models: Emphasis on apoptosis. J Cell Biochem 2022; 123:947-963. [PMID: 35342983 DOI: 10.1002/jcb.30238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/27/2022] [Accepted: 03/08/2022] [Indexed: 12/22/2022]
Abstract
Statins trigger apoptotic cell death in some types of growing tumor cells in a cholesterol-lowering-independent manner. Self-nanoemulsifying delivery systems (SNEDs) are potentially effective for the suppression of breast cancer development. This study aims to investigate the potential anticancer activity of fluvastatin (FLV)-SNEDs in breast cancer while comparing it with FLV in vitro as well as in vivo exploiting/using MDA-MB-231 and Erhlich ascites carcinoma (EAC)-bearing mice, respectively. Biochemical analysis of liver and kidney functions, oxidative stress markers, and histopathological examinations of such tumor tissues were performed showing the potentiality of SNEDs as a nanocarrier for antitumor agents. FLV-SNEDs demonstrated more potent anticancer activity compared to FLV on MDA-MB-231 and hepatocellular carcinoma (HepG2) cells. In vivo experiments on the EAC-bearing mice model indicated that FLV and-to a greater extent-FLV-SNEDs ameliorated EAC-induced hepatotoxicity and nephrotoxicity. FLV or FLV-SNEDs evidently reduced the percent of Ki-67 +ve EAC cells by 57.5% and 86.5% in comparison to the vehicle-treated EAC group. In addition, FLV or FLV-SNEDs decreased Bcl-2 levels in serum and liver specimens. In contrast, FLV or FLV-SNEDs significantly activated the executioner caspase-3. Simultaneously, both FLV and FLV-SNEDs stimulated p53 signaling and modulated Bcl-2 protein levels in treated cells. Collectively, these results support the contribution of apoptotic cell death in mediating the anticancer activities of FLV and FLV-SNEDs against murine EAC model in vivo. This study provides new understandings of how FLV and FLV-SNEDs regulate EAC cell viability via upregulation of p53 signaling, and through modulation of cleaved caspase-3 as well as antiapoptotic Bcl-2 marker.
Collapse
Affiliation(s)
- Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt.,Department of Biochemistry, Faculty of Pharmacy, Sinai University, Kantara, Egypt
| | - Jihan Hussein
- Department of Medical Biochemistry, National Research Centre, Giza, Egypt
| | - Yasmin Abdel-Latif
- Department of Medical Biochemistry, National Research Centre, Giza, Egypt.,Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), 6th of October, Giza, Egypt
| | - Amal Kamal Abdel-Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Khalid M El-Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
9
|
Yang M, Lv X, Zhan S, Lu M, Zhang X, Qiu T. Glutathione-sensitive IPI-549 nanoparticles synergized with photodynamic Chlorin e6 for the treatment of breast cancer. NANOTECHNOLOGY 2022; 33:235101. [PMID: 35193121 DOI: 10.1088/1361-6528/ac57ac] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
We combined phosphoinositol-3-kinin inhibitor IPI-549 and photodynamic Chlorin e6 (Ce6) on carboxymethyl chitosan to develop a novel drug delivery nanoparticle (NP) system (Ce6/CMCS-DSP-IPI549) and evaluate its glutathione (GSH) sensitivity and targeting ability for breast cancer treatment. The NPs were spherical with a uniform size of 218.8 nm, a stable structure over 7 days. The maximum encapsulation efficiency was 64.42%, and NPs drug loading was 8.05%. The NPs released drugs within tumor cells due to their high GSH concentration, while they maintained structural integrity in normal cells, which have low GSH concentration. The cumulative release rates of IPI-549 and Ce6 at 108 h were 70.67% and 40.35% (at GSH 10 mM) and 8.11% and 2.71% (at GSH 2μM), respectively. The NPs showed a strong inhibitory effect on 4T1 cells yet did not affect human umbilical vein endothelial cells (HUVECs). After irradiation by a 660 nm infrared laser for 72 h, the survival rate of 4T1 cells was 15.51%. Cellular uptake studies indicated that the NPs could accurately release drugs into tumor cells. In addition, the NPs had a good photodynamic effect and promoted the release of reactive oxygen species to damage tumor cells. Overall, the combination therapy of IPI-549 and Ce6 is safe and effective, and may provide a new avenue for the treatment of breast cancer.
Collapse
Affiliation(s)
- Mengjia Yang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
- Xi'an Medical College, Xi'an 710309, People's Republic of China
| | - Xiaojun Lv
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
- Hubei Institute for Drug Control, Wuhan 430064, People's Republic of China
| | - Siwen Zhan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Mengli Lu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Xueqiong Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Tong Qiu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| |
Collapse
|
10
|
Saadeldin MK, Abdel-Aziz AK, Abdellatif A. Dendritic cell vaccine immunotherapy; the beginning of the end of cancer and COVID-19. A hypothesis. Med Hypotheses 2020; 146:110365. [PMID: 33221134 PMCID: PMC7836805 DOI: 10.1016/j.mehy.2020.110365] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/17/2020] [Accepted: 10/26/2020] [Indexed: 02/08/2023]
Abstract
Immunotherapy is the newest approach to combat cancer. It can be achieved using several strategies, among which is the dendritic cell (DC) vaccine therapy. Several clinical trials are ongoing using DC vaccine therapy either as a sole agent or in combination with other interventions to tackle different types of cancer. Immunotherapy can offer a potential treatment to coronavirus disease 2019 (COVID-19) the worst pandemic facing this generation, a disease with deleterious effects on the health and economic systems worldwide. We hypothesize that DC vaccine therapy may provide a potential treatment strategy to help combat COVID-19. Cancer patients are at the top of the vulnerable population owing to their immune-compromised status. In this review, we discuss DC vaccine therapy in the light of the body's immunity, cancer, and newly emerging infections such as COVID-19 in hopes of better-customized treatment options for patients with multiple comorbidities.
Collapse
Affiliation(s)
- Mona Kamal Saadeldin
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan 20139, Italy.
| | - Amal Kamal Abdel-Aziz
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan 20139, Italy; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ahmed Abdellatif
- Biology Department, School of Science and Engineering, American University in Cairo, New Cairo 11835, Egypt.
| |
Collapse
|