1
|
Lopez Martinez D, Todorovski I, Noe Gonzalez M, Rusimbi C, Blears D, Khallou N, Han Z, Dirac-Svejstrup AB, Svejstrup JQ. PAF1C-mediated activation of CDK12/13 kinase activity is critical for CTD phosphorylation and transcript elongation. Mol Cell 2025; 85:1952-1967.e8. [PMID: 40315851 DOI: 10.1016/j.molcel.2025.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/12/2025] [Accepted: 04/09/2025] [Indexed: 05/04/2025]
Abstract
The transcription cycle is regulated by dynamic changes in RNA polymerase II (RNAPII) C-terminal domain (CTD) phosphorylation, which are crucial for gene expression. However, the mechanisms regulating the transcription-specific cyclin-dependent kinases (CDKs) during the transcription cycle remain poorly understood. Here, we show that human CDK12 co-phosphorylates CTD Serine2 and Serine5. This di-phosphorylated Serine2-Serine5 CTD mark may then act as a precursor for Serine2 mono-phosphorylated CTD through Serine5 de-phosphorylation. Notably, CDK12 is specifically regulated by association with the elongation-specific factor PAF1 complex (PAF1C), in which the CDC73 subunit contains a metazoan-specific peptide motif, capable of allosteric CDK12/cyclin K activation. This motif is essential for cell proliferation and required for normal levels of CTD phosphorylation in chromatin, and for transcript elongation, particularly across long human genes. Together, these findings provide insight into the mechanisms governing RNAPII phospho-CTD dynamics that ensure progression through the human transcription cycle.
Collapse
Affiliation(s)
- David Lopez Martinez
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Izabela Todorovski
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Melvin Noe Gonzalez
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Charlotte Rusimbi
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Daniel Blears
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Nessrine Khallou
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Zhong Han
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - A Barbara Dirac-Svejstrup
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Jesper Q Svejstrup
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
2
|
Zhu Z, Shen J, Ho PCL, Hu Y, Ma Z, Wang L. Transforming cancer treatment: integrating patient-derived organoids and CRISPR screening for precision medicine. Front Pharmacol 2025; 16:1563198. [PMID: 40201690 PMCID: PMC11975957 DOI: 10.3389/fphar.2025.1563198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/10/2025] [Indexed: 04/10/2025] Open
Abstract
The persistently high mortality rates associated with cancer underscore the imperative need for innovative, efficacious, and safer therapeutic agents, as well as a more nuanced understanding of tumor biology. Patient-derived organoids (PDOs) have emerged as innovative preclinical models with significant translational potential, capable of accurately recapitulating the structural, functional, and heterogeneous characteristics of primary tumors. When integrated with cutting-edge genomic tools such as CRISPR, PDOs provide a powerful platform for identifying cancer driver genes and novel therapeutic targets. This comprehensive review delves into recent advancements in CRISPR-mediated functional screens leveraging PDOs across diverse cancer types, highlighting their pivotal role in high-throughput functional genomics and tumor microenvironment (TME) modeling. Furthermore, this review highlights the synergistic potential of integrating PDOs with CRISPR screens in cancer immunotherapy, focusing on uncovering immune evasion mechanisms and improving the efficacy of immunotherapeutic approaches. Together, these cutting-edge technologies offer significant promise for advancing precision oncology.
Collapse
Affiliation(s)
- Ziyi Zhu
- The First Affiliated Hospital of Yangtze University, Yangtze University, Jingzhou, Hubei, China
- School of Basic Medicine, Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Jiayang Shen
- The First Affiliated Hospital of Yangtze University, Yangtze University, Jingzhou, Hubei, China
- School of Basic Medicine, Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Paul Chi-Lui Ho
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
| | - Ya Hu
- The First Affiliated Hospital of Yangtze University, Yangtze University, Jingzhou, Hubei, China
- School of Basic Medicine, Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Zhaowu Ma
- The First Affiliated Hospital of Yangtze University, Yangtze University, Jingzhou, Hubei, China
- School of Basic Medicine, Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore, Singapore
| |
Collapse
|
3
|
Xu M, Wang Y, Shao K, Hao Y, Song Z. Pyrotinib as a salvage treatment for patients with HER-2 positive advanced lung adenocarcinoma after the progression of afatinib treatment. Clin Transl Oncol 2024; 26:3050-3057. [PMID: 38795256 DOI: 10.1007/s12094-024-03482-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/25/2024] [Indexed: 05/27/2024]
Abstract
BACKGROUND The efficacy of afatinib or pyrotinib has been demonstrated in HER2-positive advanced non-small cell lung cancer (NSCLC) patients; however, the efficacy of pyrotinib after afatinib progression has yet to be determined. METHOD Patients with HER2 mutated advanced lung adenocarcinoma administered afatinib or pyrotinib monotherapy were enrolled. Those who received pyrotinib after afatinib were further analyzed to determine the efficacy and safety of pyrotinib after progression on afatinib. Survival curves were plotted with the Kaplan-Meier method. A swimming plot was used to describe the specific treatments. Additionally, patient-derived tumor organoids (PDTOs) were established from HER2-amplified NSCLC patient samples to investigate the antitumor activity of pyrotinib in HER2-amplified tumor cells in vitro. RESULTS A total of 99 patients were enrolled, 13 of whom were administered pyrotinib after progression on afatinib. No statistical difference in PFS of pyrotinib was observed between patients whether be treated after afatinib progression or not (6.7 months vs. 4.4 months, P = 0.817), thus indicating that progression on afatinib did not affect the efficacy of pyrotinib. Further analysis was conducted on the former patients, which comprising eight patients administered interval chemotherapy after progression on afatinib. Two patients achieved PR after pyrotinib treatment. No independent factors were found to influence the PFS of pyrotinib. PDTOs confirmed the anti-tumor activity of pyrotinib in NSCLC tumor cells with HER2 amplification. CONCLUSIONS Progression after prior afatinib treatment does not influence the efficacy of pyrotinib treatment. Pyrotinib may be a salvage option for patients with HER2 mutation who have experienced progression on afatinib.
Collapse
Affiliation(s)
- Manyi Xu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China
- Department of Clinical Trial, Zhejiang Cancer Hospital, No.1 East Banshan Road, Gongshu District, Hangzhou, 310022, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, China
| | - Yanhua Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China
- Department of Clinical Trial, Zhejiang Cancer Hospital, No.1 East Banshan Road, Gongshu District, Hangzhou, 310022, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, China
| | - Keda Shao
- Wenzhou Medical University, Wenzhou, 325035, China
- Department of Clinical Trial, Zhejiang Cancer Hospital, No.1 East Banshan Road, Gongshu District, Hangzhou, 310022, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, China
| | - Yue Hao
- Department of Clinical Trial, Zhejiang Cancer Hospital, No.1 East Banshan Road, Gongshu District, Hangzhou, 310022, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, China
| | - Zhengbo Song
- Department of Clinical Trial, Zhejiang Cancer Hospital, No.1 East Banshan Road, Gongshu District, Hangzhou, 310022, Zhejiang, China.
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, China.
| |
Collapse
|
4
|
He Y, Li H, Ju X, Gong B. Developing pioneering pharmacological strategies with CRISPR/Cas9 library screening to overcome cancer drug resistance. Biochim Biophys Acta Rev Cancer 2024; 1879:189212. [PMID: 39521293 DOI: 10.1016/j.bbcan.2024.189212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Cancer drug resistance is a major obstacle to the effectiveness of chemoradiotherapy, targeted therapy, and immunotherapy. CRISPR/Cas9 library screening has emerged as a powerful genetic screening tool with significant potential to address this challenge. This review provides an overview of the development, methodologies, and applications of CRISPR/Cas9 library screening in the study of cancer drug resistance. We explore its role in elucidating resistance mechanisms, identifying novel anticancer targets, and optimizing treatment strategies. The use of in vivo single-cell CRISPR screens is also highlighted for their capacity to reveal T-cell regulatory networks in cancer immunotherapy. Challenges in clinical translation are discussed, including off-target effects, complexities in data interpretation, and model selection. Despite these obstacles, continuous technological advancements indicate a promising future for CRISPR/Cas9 library screening in overcoming cancer drug resistance.
Collapse
Affiliation(s)
- Yu He
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Huan Li
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xueming Ju
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Bo Gong
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
5
|
Li Z, Li X, Seebacher NA, Liu X, Wu W, Yu S, Hornicek FJ, Huang C, Duan Z. CDK12 is a promising therapeutic target for the transcription cycle and DNA damage response in metastatic osteosarcoma. Carcinogenesis 2024; 45:786-798. [PMID: 39082894 DOI: 10.1093/carcin/bgae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 10/11/2024] Open
Abstract
Osteosarcoma (OS) is a bone malignant tumor affecting children, adolescents, and young adults. Currently, osteosarcoma is treated with chemotherapy regimens established over 40 years ago. The investigation of novel therapeutic strategies for the treatment of osteosarcoma remains an important clinical need. Cyclin-dependent kinases (CDKs) have been considered promising molecular targets in cancer therapy. Among these, CDK12 has been shown to play a crucial role in the pathogenesis of malignancies, but its clinical significance and biological mechanisms in osteosarcoma remain unclear. In the present study, we aim to determine the expression and function of CDK12 and evaluate its prognostic and therapeutic value in metastatic osteosarcoma. We found that overexpression of CDK12 was associated with high tumor grade, tumor progression and reduced patient survival. The underlying mechanism revealed that knockdown of CDK12 expression with small interfering RNA or functional inhibition with the CDK12-targeting agent THZ531 effectively exhibited time- and dose-dependent cytotoxicity. Downregulation of CDK12 paused transcription by reducing RNAP II phosphorylation, interfered with DNA damage repair with increased γH2AX, and decreased cell proliferation through the PI3K-AKT pathway. This was accompanied by the promotion of apoptosis, as evidenced by enhanced Bax expression and reduced Bcl-xL expression. Furthermore, the CDK12 selective inhibitor THZ531 also hindered ex vivo 3D spheroid formation, growth of in vitro 2D cell colony, and prevented cell mobility. Our findings highlight the clinical importance of CDK12 as a potentially valuable prognostic biomarker and therapeutic target in metastatic osteosarcoma.
Collapse
Affiliation(s)
- Zihao Li
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10021China
| | - Xiaoyang Li
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10021China
| | - Nicole A Seebacher
- Department of Oncology, University of Oxford OX3 9DU, Oxford, UK
- St John's Institute of Dermatology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Xu Liu
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10021China
| | - Wence Wu
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10021China
| | - Shengji Yu
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10021China
| | - Francis J Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Miami, FL, 33136USA
| | - Changzhi Huang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10021China
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Miami, FL, 33136USA
| |
Collapse
|
6
|
Pan L, Li J, Xu Q, Gao Z, Yang M, Wu X, Li X. HER2/PI3K/AKT pathway in HER2-positive breast cancer: A review. Medicine (Baltimore) 2024; 103:e38508. [PMID: 38875362 PMCID: PMC11175886 DOI: 10.1097/md.0000000000038508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/01/2024] [Accepted: 05/17/2024] [Indexed: 06/16/2024] Open
Abstract
Breast cancer is currently the most commonly occurring cancer globally. Among breast cancer cases, the human epidermal growth factor receptor 2 (HER2)-positive breast cancer accounts for 15% to 20% and is a crucial focus in the treatment of breast cancer. Common HER2-targeted drugs approved for treating early and/or advanced breast cancer include trastuzumab and pertuzumab, which effectively improve patient prognosis. However, despite treatment, most patients with terminal HER2-positive breast cancer ultimately suffer death from the disease due to primary or acquired drug resistance. The prevalence of aberrantly activated the protein kinase B (AKT) signaling in HER2-positive breast cancer was already observed in previous studies. It is well known that p-AKT expression is linked to an unfavorable prognosis, and the phosphatidylinositol-3-kinase (PI3K)/AKT pathway, as the most common mutated pathway in breast cancer, plays a major role in the mechanism of drug resistance. Therefore, in the current review, we summarize the molecular alterations present in HER2-positive breast cancer, elucidate the relationships between HER2 overexpression and alterations in the PI3K/AKT signaling pathway and the pathways of the alterations in breast cancer, and summarize the resistant mechanism of drugs targeting the HER2-AKT pathway, which will provide an adjunctive therapeutic rationale for subsequent resistance to directed therapy in the future.
Collapse
Affiliation(s)
- Linghui Pan
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Jinling Li
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Department of Laboratory Medicine, Chonggang General Hospital, Chongqing, China
| | - Qi Xu
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Zili Gao
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Mao Yang
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Xiaoping Wu
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Xuesen Li
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
7
|
Wu Z, Zhang W, Chen L, Wang T, Wang X, Shi H, Zhang L, Zhong M, Shi X, Mao X, Chen H, Li Q. CDK12 inhibition upregulates ATG7 triggering autophagy via AKT/FOXO3 pathway and enhances anti-PD-1 efficacy in colorectal cancer. Pharmacol Res 2024; 201:107097. [PMID: 38354870 DOI: 10.1016/j.phrs.2024.107097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024]
Abstract
As the world's fourth most deadly cancer, colorectal cancer (CRC) still needed the novel therapeutic drugs and target urgently. Although cyclin-dependent kinase 12 (CDK12) has been shown to be implicated in the malignancy of several types of cancer, its functional role and mechanism in CRC remain largely unknown. Here, we found that suppression of CDK12 inhibited tumor growth in CRC by inducing apoptosis. And CDK12 inhibition triggered autophagy by upregulating autophagy related gene 7 (ATG7) expression. Inhibition of autophagy by ATG7 knockdown and chloroquine (CQ) further decreased cell viability induced by CDK12 inhibition. Further mechanism exploration showed that CDK12 interacted with protein kinase B (AKT) regulated autophagy via AKT/forkhead box O3 (AKT/FOXO3) pathway. FOXO3 transcriptionally upregulated ATG7 expression and autophagy when CDK12 inhibition in CRC. Level of CDK12 and p-FOXO3/FOXO3 ratio were correlated with survival in CRC patients. Moreover, CDK12 inhibition improved the efficacy of anti-programmed cell death 1(PD-1) therapy in CRC murine models by enhancing CD8 + T cells infiltration. Thus, our study founded that CDK12 inhibition upregulates ATG7 triggering autophagy via AKT/FOXO3 pathway and enhances anti-PD-1 efficacy in CRC. We revealed the roles of CDK12/FOXO3/ATG7 in regulating CRC progression, suggesting potential biomarkers and therapeutic target for CRC.
Collapse
Affiliation(s)
- Zimei Wu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenxin Zhang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Lu Chen
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Tianxiao Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinhai Wang
- Department of Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Huanying Shi
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Liudi Zhang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Mingkang Zhong
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaojin Shi
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiang Mao
- Department of Surgery, Huashan Hospital, Fudan University, Shanghai, China.
| | - Haifei Chen
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China.
| | - Qunyi Li
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Forster‐Sack M, Zoche M, Pestalozzi B, Witzel I, Schwarz EI, Herzig JJ, Fansa H, Tausch C, Ross J, Moch H, Varga Z. ERBB2-amplified lobular breast carcinoma exhibits concomitant CDK12 co-amplification associated with poor prognostic features. J Pathol Clin Res 2024; 10:e12362. [PMID: 38335502 PMCID: PMC10800294 DOI: 10.1002/2056-4538.12362] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/06/2023] [Accepted: 12/22/2023] [Indexed: 02/12/2024]
Abstract
Most invasive lobular breast carcinomas (ILBCs) are luminal-type carcinomas with an HER2-negative phenotype (ERBB2 or HER2 un-amplified) and CDH1 mutations. Rare variants include ERBB2-amplified subtypes associated with an unfavorable prognosis and less response to anti-HER2 targeted therapies. We analyzed the clinicopathological and molecular features of ERBB2-amplified ILBC and compared these characteristics with ERBB2-unamplified ILBC. A total of 253 patients with ILBC were analyzed. Paraffin-embedded formalin-fixed tumor samples from 250 of these patients were added to a tissue microarray. Protein expression of prognostic, stem cell and breast-specific markers was tested by immunohistochemistry (IHC). Hybrid capture-based comprehensive genomic profiling (CGP) was performed for 10 ILBCs that were either fluorescent in situ hybridization (FISH) or IHC positive for HER2 amplification/overexpression and 10 ILBCs that were either FISH or IHC negative. Results were compared with a CGP database of 44,293 invasive breast carcinomas. The CGP definition of ERBB2 amplification was five copies or greater. A total of 17 of 255 ILBC (5%) were ERBB2 amplified. ERBB2-amplified ILBC had higher tumor stage (p < 0.0001), more frequent positive nodal status (p = 0.00022), more distant metastases (p = 0.012), and higher histological grade (p < 0.0001), and were more often hormone receptor negative (p < 0.001) and more often SOX10 positive (p = 0.005). ERBB2 short variant sequence mutations were more often detected in ERBB2-unamplified tumors (6/10, p = 0.027), whereas CDH1 mutations/copy loss were frequently present in both subgroups (9/10 and 7/10, respectively). Amplification of pathogenic genes were more common in HER2-positive ILBC (p = 0.0009). CDK12 gene amplification (≥6 copies) was detected in 7 of 10 ERBB2-amplified ILBC (p = 0.018). There were no CDK12 gene amplifications reported in 44,293 invasive breast carcinomas in the FMI Insights CGP database. ERBB2-amplified ILBC is a distinct molecular subgroup with frequent coamplification of CDK12, whereas ERBB2 sequence mutations occur only in ERBB2-unamplified ILBC. CDK12/ERBB2 co-amplification may explain the poor prognosis and therapy resistance of ERBB2-amplified ILBC.
Collapse
Affiliation(s)
- Miriam Forster‐Sack
- Department of Pathology and Molecular PathologyUniversity Hospital ZurichZürichSwitzerland
| | - Martin Zoche
- Department of Pathology and Molecular PathologyUniversity Hospital ZurichZürichSwitzerland
| | - Bernhard Pestalozzi
- Department of OncologyUniversity Hospital ZurichZürichSwitzerland
- Comprehensive Cancer Center, Breast CenterUniversity Hospital ZurichZürichSwitzerland
| | - Isabell Witzel
- Comprehensive Cancer Center, Breast CenterUniversity Hospital ZurichZürichSwitzerland
- Department of GynecologyUniversity Hospital Zurich, University of ZurichZürichSwitzerland
| | | | | | - Hisham Fansa
- Breast CenterHospital ZollikerbergZollikerbergSwitzerland
| | | | - Jeff Ross
- Department of Pathology, Urology and Medicine (Oncology)Upstate Medical UniversitySyracuseNYUSA
- Foundation Medicine, Inc.CambridgeMAUSA
| | - Holger Moch
- Department of Pathology and Molecular PathologyUniversity Hospital ZurichZürichSwitzerland
| | - Zsuzsanna Varga
- Department of Pathology and Molecular PathologyUniversity Hospital ZurichZürichSwitzerland
| |
Collapse
|
9
|
Guz W, Podgórski R, Bober Z, Aebisher D, Truszkiewicz A, Olek M, Machorowska Pieniążek A, Kawczyk-Krupka A, Bartusik-Aebisher D. In Vitro MRS of Cells Treated with Trastuzumab at 1.5 Tesla. Int J Mol Sci 2024; 25:1719. [PMID: 38338997 PMCID: PMC10855746 DOI: 10.3390/ijms25031719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
The aim of the study was to investigate the effect of Trastuzumab on the MCF-7 and CRL-2314 breast cancer cell lines. Additionally, an attempt was made to optimize magnetic resonance spectroscopy (MRS) for cell culture studies, with particular emphasis on the impact of treatment with Trastuzumab. The research materials included MCF-7 and CRL-2314 breast cancer cell lines. The study examined the response of these cell lines to treatment with Trastuzumab. The clinical magnetic resonance imaging (MRI) system, OPTIMA MR360 manufactured by GEMS, with a magnetic field induction of 1.5 T, was used. Due to the nature of the tested objects, their size and shape, it was necessary to design and manufacture additional receiving coils. They were used to image the tested cell cultures and record the spectroscopic signal. The spectra obtained by MRS were confirmed by NMR using a 300 MHz NMR Fourier 300 with the TopSpin 3.1 system from Bruker. The designed receiving coils allowed for conducting experiments with the cell lines in a satisfactory manner. These tests would not be possible using factory-delivered coils due to their parameters and the size of the test objects, whose volume did not exceed 1 mL. MRS studies revealed an increase in the metabolite at 1.9 ppm, which indicates the induction of histone acetylation. Changes in histone acetylation play a very important role in both cell development and differentiation processes. The use of Trastuzumab therapy in breast cancer cells increases the levels of acetylated histones. MRS studies and spectra obtained from the 300 MHz NMR system are consistent with the specificity inherent in both systems.
Collapse
Affiliation(s)
- Wiesław Guz
- Department of Diagnostic Imaging and Nuclear Medicine, Medical College of Rzeszów University, 35-959 Rzeszów, Poland;
| | - Rafal Podgórski
- Department of Biochemistry and General Chemistry, Medical College of Rzeszów University, 35-959 Rzeszów, Poland; (R.P.); (D.B.-A.)
| | - Zuzanna Bober
- Department of Photomedicine and Physical Chemistry, Medical College of Rzeszów University, 35-959 Rzeszów, Poland; (Z.B.); (A.T.)
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of Rzeszów University, 35-959 Rzeszów, Poland; (Z.B.); (A.T.)
| | - Adrian Truszkiewicz
- Department of Photomedicine and Physical Chemistry, Medical College of Rzeszów University, 35-959 Rzeszów, Poland; (Z.B.); (A.T.)
| | - Marcin Olek
- Department of Densitry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland (A.M.P.)
| | - Agnieszka Machorowska Pieniążek
- Department of Densitry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland (A.M.P.)
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of Rzeszów University, 35-959 Rzeszów, Poland; (R.P.); (D.B.-A.)
| |
Collapse
|
10
|
Lan HR, Chen M, Yao SY, Chen JX, Jin KT. Bispecific antibodies revolutionizing breast cancer treatment: a comprehensive overview. Front Immunol 2023; 14:1266450. [PMID: 38111570 PMCID: PMC10725925 DOI: 10.3389/fimmu.2023.1266450] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/16/2023] [Indexed: 12/20/2023] Open
Abstract
Breast cancer (BCa) is known as a complex and prevalent disease requiring the development of novel anticancer therapeutic approaches. Bispecific antibodies (BsAbs) have emerged as a favorable strategy for BCa treatment due to their unique ability to target two different antigens simultaneously. By targeting tumor-associated antigens (TAAs) on cancer cells, engaging immune effector cells, or blocking critical signaling pathways, BsAbs offer enhanced tumor specificity and immune system involvement, improving anti-cancer activity. Preclinical and clinical studies have demonstrated the potential of BsAbs in BCa. For example, BsAbs targeting human epidermal growth factor receptor 2 (HER2) have shown the ability to redirect immune cells to HER2-positive BCa cells, resulting in effective tumor cell killing. Moreover, targeting the PD-1/PD-L1 pathway by BsAbs has demonstrated promising outcomes in overcoming immunosuppression and enhancing immune-mediated tumor clearance. Combining BsAbs with existing therapeutic approaches, such as chemotherapy, targeted therapies, or immune checkpoint inhibitors (ICIs), has also revealed synergistic effects in preclinical models and early clinical trials, emphasizing the usefulness and potential of BsAbs in BCa treatment. This review summarizes the latest evidence about BsAbs in treating BCa and the challenges and opportunities of their use in BCa.
Collapse
Affiliation(s)
- Huan-Rong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Min Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shi-Ya Yao
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Jun-Xia Chen
- Department of Gynecology, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Ke-Tao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| |
Collapse
|
11
|
Jing X, Luo Z, Wu J, Ye F, Li J, Song Z, Zhang Y, Shi M, Sun H, Fang Y, Jiang Y, Ji X. The genomic and immune landscapes of gastric cancer and their correlations with HER2 amplification and PD-L1 expression. Cancer Med 2023; 12:21905-21919. [PMID: 38050871 PMCID: PMC10757096 DOI: 10.1002/cam4.6765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/22/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Anti-PD1/PD-L1 antibody plus human epidermal growth factor receptor 2 (HER2) antibody and chemotherapy have become the new first-line therapy for HER2 overexpression-positive advanced gastric cancers (GC), suggesting that HER2 and PD-L1 play a vital role in guiding systemic treatment for patients with GC. This study aimed to depict the genomic and immune landscapes of Chinese patients with GC and investigate their correlations with HER2 amplification and PD-L1 expression. PATIENTS AND METHODS Next-generation targeted sequencing and PD-L1 immunohistochemistry were performed on tumor samples from 735 patients with pathologically diagnosed GC. The genomic and immune landscapes and their correlations with HER2 amplification and PD-L1 expression were analyzed. RESULTS The most commonly mutated genes in Chinese GC were TP53 (64%), CDH1 (20%), ARID1A (18%), HMCN1 (15%), KMT2D (11%), and PIK3CA (11%). Seventy-six (10%) patients were HER2 amplification, and 291 (40%) had positive PD-L1 expression. Classifying the total population based on HER2 amplification and PD-L1 expression level, 735 patients were divided into four subgroups: HER2+/PD-L1+ (4.5%), HER2+/PD-L1- (5.9%), HER2-/PD-L1+ (35.1%), and HER2-/PD-L1- (54.5%). The HER2+/PD-L1- and HER2+/PD-L1+ subgroups exhibited dramatically higher rate of TP53 mutations, CCNE1 and VEGF amplifications. The HER2+/PD-L1- subgroup also had a markedly higher rate of MYC amplification and KRAS mutations. The HER2-/PD-L1+ subgroup had significantly higher rate of PIK3CA mutations. HER2+/PD-L1- subgroup had the highest TMB level and HER2-/PD-L1+ subgroup had the highest proportion of patients with microsatellite instability-high than other subgroups. Furthermore, we observed that different HER2 amplification levels had distinct impacts on the correlations between PD-L1 expression and therapeutic genomic alterations, but no impact on the prognosis. CONCLUSION The combination of HER2 amplification and PD-L1 expression in Chinese patients with GC could stratify the total populations into several subgroups with distinctive genomic and immune landscapes, which should be considered when making personalized treatment decisions.
Collapse
Affiliation(s)
- Xiaoqian Jing
- Department of General SurgeryRuijin Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhiping Luo
- Department of General SurgeryRuijin Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jiayan Wu
- Genecast Biotechnology Co., LtdWuxiJiangsuChina
| | - Feng Ye
- Department of General SurgeryRuijin Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jianfang Li
- Department of General SurgeryRuijin Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Surgery, Shanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive Surgery, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zijia Song
- Department of General SurgeryRuijin Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yaqi Zhang
- Department of General SurgeryRuijin Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Minmin Shi
- Department of General SurgeryRuijin Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Research Institute of Pancreatic Diseases affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Huaibo Sun
- Genecast Biotechnology Co., LtdWuxiJiangsuChina
| | - Yi Fang
- Department of EmergencyShanghai Tenth People's HospitalShanghaiChina
| | - Yimei Jiang
- Department of General SurgeryRuijin Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaopin Ji
- Department of General SurgeryRuijin Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
12
|
Verschoor N, Smid M, Jager A, Sleijfer S, Wilting SM, Martens JWM. Integrative whole-genome and transcriptome analysis of HER2-amplified metastatic breast cancer. Breast Cancer Res 2023; 25:145. [PMID: 37968696 PMCID: PMC10648326 DOI: 10.1186/s13058-023-01743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/06/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND In breast cancer, the advent of anti-HER2 therapies has made HER2+ tumors a highly relevant subgroup. However, the exact characteristics which prohibit clinical response to anti-HER2 therapies and drive disease progression are not yet fully known. Integrative whole-genome and transcriptomic sequencing data from both primary and metastatic HER2-positive breast cancer will enhance our understanding of underlying biological processes. METHODS Here, we used WGS and RNA sequencing data of 700 metastatic breast tumors, of which 68 being HER2+, to search for specific genomic features of HER2+ disease and therapy resistance. Furthermore, we integrated results with transcriptomic data to associate tumors exhibiting a HER2+-specific gene expression profile with ERBB2 mutation status, prior therapy and relevant gene expression signatures. RESULTS Overall genomic profiles of primary and metastatic HER2+ breast cancers were similar, and no specific acquired genomics traits connected to prior anti-HER2 treatment were observed. However, specific genomic features were predictive of progression-free survival on post-biopsy anti-HER2 treatment. Furthermore, a HER2-driven expression profile grouped HER2-amplified tumors with ERBB2-mutated cases and cases without HER2 alterations. The latter were reported as ER positive in primary disease, but the metastatic biopsy showed low ESR1 expression and upregulation of the MAPK pathway, suggesting transformation to ER independence. CONCLUSIONS In summary, although the quantity of variants increased throughout HER2-positive breast cancer progression, the genomic composition remained largely consistent, thus yielding no new major processes beside those already operational in primary disease. Our results suggest that integrated genomic and transcriptomic analyses may be key in establishing therapeutic options.
Collapse
Affiliation(s)
- Noortje Verschoor
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| | - Marcel Smid
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Agnes Jager
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Stefan Sleijfer
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Saskia M Wilting
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| |
Collapse
|
13
|
Zagami P, Boscolo Bielo L, Nicolò E, Curigliano G. HER2-positive breast cancer: cotargeting to overcome treatment resistance. Curr Opin Oncol 2023; 35:461-471. [PMID: 37621172 DOI: 10.1097/cco.0000000000000971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
PURPOSE OF REVIEW The introduction in clinical practice of anti-HER2 agents changed the prognosis of patients with HER2-positive (HER2+) breast cancer in both metastatic and early setting. Although the incomparable results obtained in the last years with the approval of new drugs targeting HER2, not all patients derive benefit from these treatments, experiencing primary or secondary resistance. The aim of this article is to review the data about cotargeting HER2 with different pathways (or epitopes of receptors) involved in its oncogenic signaling, as a mechanism to overcome resistance to anti-HER2 agents. RECENT FINDINGS Concordantly to the knowledge of the HER2+ breast cancer heterogeneity as well as new drugs, novel predictive biomarkers of response to anti-HER2 treatments are always raised helping to define target to overcome resistance. Cotargeting HER2 and hormone receptors is the most well known mechanism to improve benefit in HER2+/HR+ breast cancer. Additional HER2-cotargeting, such as, with PI3K pathway, as well as different HERs receptors or immune-checkpoints revealed promising results. SUMMARY HER2+ breast cancer is an heterogenous disease. Cotargeting HER2 with other signaling pathways involved in its mechanism of resistance may improve patient outcomes. Research efforts will continue to investigate novel targets and combinations to create more effective treatment regimes.
Collapse
Affiliation(s)
- Paola Zagami
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Lineberger comprehensive cancer center, University of North Carolina, Chapel hill, North Carolina
| | - Luca Boscolo Bielo
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Eleonora Nicolò
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, New York, USA
| | - Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
14
|
Yan Z, Du Y, Zhang H, Zheng Y, Lv H, Dong N, He F. Research progress of anticancer drugs targeting CDK12. RSC Med Chem 2023; 14:1629-1644. [PMID: 37731700 PMCID: PMC10507796 DOI: 10.1039/d3md00004d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/17/2023] [Indexed: 09/22/2023] Open
Abstract
Cyclin-dependent kinase 12 (CDK12) is a transcription-associated CDK that plays key roles in transcription, translation, mRNA splicing, the cell cycle, and DNA damage repair. Research has identified that high expression of CDK12 in organs such as the breast, stomach, and uterus can lead to HER2-positive breast cancer, gastric cancer and cervical cancer. Inhibiting high expression of CDK12 suppresses tumor growth and proliferation, suggesting that it is both a biomarker for cancer and a potential target for cancer therapy. CDK12 inhibitors can competitively bind the CDK12 hydrophobic pocket with ATP to avoid CDK12 phosphorylation, blocking subsequent signaling pathways. The development of CDK12 inhibitors is challenging due to the high homology of CDK12 with other CDKs. This review summarizes the research progress of CDK12 inhibitors, their mechanism of action and the structure-activity relationship, providing new insights into the design of CDK12 selective inhibitors.
Collapse
Affiliation(s)
- Zhijia Yan
- School of Chemistry & Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) 3501 Da Xue Road Jinan 250353 China
| | - Yongli Du
- School of Chemistry & Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) 3501 Da Xue Road Jinan 250353 China
| | - Haibin Zhang
- School of Chemistry & Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) 3501 Da Xue Road Jinan 250353 China
| | - Yong Zheng
- School of Chemistry & Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) 3501 Da Xue Road Jinan 250353 China
| | - Huiting Lv
- School of Chemistry & Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) 3501 Da Xue Road Jinan 250353 China
| | - Ning Dong
- School of Chemistry & Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) 3501 Da Xue Road Jinan 250353 China
| | - Fang He
- School of Water Conservancy and Environment, University of Jinan 336 Nanxinzhuang West Road Jinan 250022 China
| |
Collapse
|
15
|
Kobayashi K, Saito Y, Kage H, Fukuoka O, Yamamura K, Mukai T, Oda K, Yamasoba T. CDK12 alterations and ARID1A mutations are predictors of poor prognosis and therapeutic targets in high-grade salivary gland carcinoma: analysis of the National Genomic Profiling Database. Jpn J Clin Oncol 2023; 53:798-807. [PMID: 37357968 DOI: 10.1093/jjco/hyad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/03/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND Due to the diversity of histopathologic types in salivary gland carcinoma, genomic analysis of large cohorts with next-generation sequencing by histologic type has not been adequately performed. METHODS We analysed data from 93 patients with salivary duct carcinoma and 243 patients with adenoid cystic carcinoma who underwent comprehensive genomic profiling testing in the Center for Cancer Genomics and Advanced Therapeutics database, a Japanese national genome profiling database. We visualised gene mutation profiles using the OncoPrinter platform. Fisher's exact test, Kaplan-Meier analysis, log-rank test and Cox regression models were used for statistical analysis. RESULTS In salivary duct carcinoma, a population with CDK12 and ERBB2 co-amplification was detected in 20 of 37 (54.1%) patients with ERBB2 amplification. We identified five loss-of-function variants in genes related to homologous recombination deficiency, such as BRCA2 and CDK12. Cox survival analysis showed that CDK12 and ERBB2 co-amplification is associated with overall survival (hazard ratio, 3.597; P = 0.045). In salivary duct carcinoma, NOTCH1 mutations were the most common, followed by mutations in chromatin modification genes such as KMT2D, BCOR, KDM6A, ARID1A, EP300 and CREBBP. In the multivariate Cox analysis, activating NOTCH1 mutations (hazard ratio, 3.569; P = 0.009) and ARID1A mutations (hazard ratio, 4.029; P = 0.034) were significantly associated with overall survival. CONCLUSION CDK12 and ERBB2 co-amplification is associated with a poor prognosis in salivary duct carcinoma. Chromatin remodelling genes are deeply involved in tumour progression in adenoid cystic carcinoma. One such gene, ARID1A, was an independent prognostic factor. In salivary duct carcinoma and adenoid cystic carcinoma, there might be minor populations with mutations that could be targeted for treatment with the synthetic lethality approach.
Collapse
Affiliation(s)
- Kenya Kobayashi
- Department of Otolaryngology, Head and Neck Surgery, The University of Tokyo, Tokyo, Japan
| | - Yuki Saito
- Department of Otolaryngology, Head and Neck Surgery, The University of Tokyo, Tokyo, Japan
| | - Hidenori Kage
- Department of Next-Generation Precision Medicine Development Laboratory, The University of Tokyo, Tokyo, Japan
| | - Osamu Fukuoka
- Department of Otolaryngology, Head and Neck Surgery, The University of Tokyo, Tokyo, Japan
| | - Koji Yamamura
- Department of Otolaryngology, Head and Neck Surgery, The University of Tokyo, Tokyo, Japan
| | - Toshiyuki Mukai
- Department of Otolaryngology, Head and Neck Surgery, The University of Tokyo, Tokyo, Japan
| | - Katsutoshi Oda
- Department of Integrative Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology, Head and Neck Surgery, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Hu Q, Oki E, Yamada T, Kashiwada T, Sonoda H, Kataoka M, Kawanaka H, Tsuji Y, Makiyama A, Nakashima Y, Ota M, Kimura Y, Yoshizumi T. Genomic characterization between HER2-positive and negative gastric cancer patients in a prospective trial. Cancer Med 2023; 12:16649-16660. [PMID: 37325934 PMCID: PMC10469643 DOI: 10.1002/cam4.6269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/27/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND We aimed to clarify the genomic characteristics of HER2-positive and negative gastric cancer cases that potentially affect tumor progression and treatment response in a prospective trial. METHODS We collected 80 formalin-fixed paraffin-embedded (FFPE) samples (49 HER2+ and 31 HER2-) from gastric cancer patients who participated in the TROX-A1 trial (UMIN000036865). We queried a 435-gene panel (CANCERPLEX-JP) to generate comprehensive genomic profiling data, including the tumor mutation burden, somatic mutations, and copy number variations. In addition, the genomic differences between HER2+ and HER2- gastric cancer patients were analyzed. RESULTS Mutational analyses showed that TP53 was the most frequently mutated gene regardless of HER2 status. ARID1A mutation was significantly enriched in HER2-negative patients. The number of total mutations in HER2-negative patients with ARID1A mutation was remarkably higher than that in HER2-positive patients. Next, copy number variation analyses showed that the number of amplified genes (such as CCNE1, PGAP3, and CDK12) in HER2-positive cases was significantly higher than that in HER2-negative cases. Moreover, PTEN deletion was more common in HER2-positive cases. Finally, we found that, compared with HER2-positive patients, HER2-negative patients tended to have a higher tumor mutation burden, particularly in patients with ARID1A mutation. Pathway analyses of the gene alterations showed an enrichment of several immune-related pathways in HER2-negative patients. CONCLUSIONS According to the genomic profiling of HER2-positive and negative gastric cancer, several gene alterations in the HER2 pathway may be the potential mechanism underlying trastuzumab resistance. Relative to HER2-positive gastric cancer, HER2-negative gastric tumors with ARID1A mutation may be sensitive to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Qingjiang Hu
- Department of Surgery and ScienceKyushu University HospitalFukuokaJapan
| | - Eiji Oki
- Department of Surgery and ScienceKyushu University HospitalFukuokaJapan
| | - Teppei Yamada
- Department of Gastroenterological SurgeryFukuoka University HospitalFukuokaJapan
| | - Tomomi Kashiwada
- Department of Medical OncologySaga Medical Center KoseikanSagaJapan
| | | | - Masato Kataoka
- Department of SurgeryNational Hospital Organization Nagoya Medical CenterNagoyaJapan
| | - Hirofumi Kawanaka
- Clinical Research Institute / Department of Gastroenterological SurgeryNational Hospital Organization Beppu Medical CenterBeppuJapan
| | - Yasushi Tsuji
- Department of Medical OncologyTonan HospitalSapporoJapan
| | | | | | - Mitsuhiko Ota
- Department of Surgery and ScienceKyushu University HospitalFukuokaJapan
| | - Yasue Kimura
- Department of Surgery and ScienceKyushu University HospitalFukuokaJapan
| | | |
Collapse
|
17
|
Niu Y, Yang W, Qian H, Sun Y. Intracellular and extracellular factors of colorectal cancer liver metastasis: a pivotal perplex to be fully elucidated. Cancer Cell Int 2022; 22:341. [DOI: 10.1186/s12935-022-02766-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractMetastasis is the leading cause of death in colorectal cancer (CRC) patients, and the liver is the most common site of metastasis. Tumor cell metastasis can be thought of as an invasion-metastasis cascade and metastatic organotropism is thought to be a process that relies on the intrinsic properties of tumor cells and their interactions with molecules and cells in the microenvironment. Many studies have provided new insights into the molecular mechanism and contributing factors involved in CRC liver metastasis for a better understanding of the organ-specific metastasis process. The purpose of this review is to summarize the theories that explain CRC liver metastasis at multiple molecular dimensions (including genetic and non-genetic factors), as well as the main factors that cause CRC liver metastasis. Many findings suggest that metastasis may occur earlier than expected and with specific organ-anchoring property. The emergence of potential metastatic clones, the timing of dissemination, and the distinct routes of metastasis have been explained by genomic studies. The main force of CRC liver metastasis is also thought to be epigenetic alterations and dynamic phenotypic traits. Furthermore, we review key extrinsic factors that influence CRC cell metastasis and liver tropisms, such as pre-niches, tumor stromal cells, adhesion molecules, and immune/inflammatory responses in the tumor microenvironment. In addition, biomarkers associated with early diagnosis, prognosis, and recurrence of liver metastasis from CRC are summarized to enlighten potential clinical practice, including some markers that can be used as therapeutic targets to provide new perspectives for the treatment strategies of CRC liver metastasis.
Collapse
|
18
|
Resistance to Trastuzumab. Cancers (Basel) 2022; 14:cancers14205115. [PMID: 36291900 PMCID: PMC9600208 DOI: 10.3390/cancers14205115] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Trastuzumab is a humanized antibody that has significantly improved the management and treatment outcomes of patients with cancers that overexpress HER2. Many research groups, both in academia and industry, have contributed towards understanding the various mechanisms engaged by trastuzumab to mediate its anti-tumor effects. Nevertheless, data from several clinical studies have indicated that a significant proportion of patients exhibit primary or acquired resistance to trastuzumab therapy. In this article, we discuss underlying mechanisms that contribute towards to resistance. Furthermore, we discuss the potential strategies to overcome some of the mechanisms of resistance to enhance the therapeutic efficacy of trastuzumab and other therapies based on it. Abstract One of the most impactful biologics for the treatment of breast cancer is the humanized monoclonal antibody, trastuzumab, which specifically recognizes the HER2/neu (HER2) protein encoded by the ERBB2 gene. Useful for both advanced and early breast cancers, trastuzumab has multiple mechanisms of action. Classical mechanisms attributed to trastuzumab action include cell cycle arrest, induction of apoptosis, and antibody-dependent cell-mediated cytotoxicity (ADCC). Recent studies have identified the role of the adaptive immune system in the clinical actions of trastuzumab. Despite the multiple mechanisms of action, many patients demonstrate resistance, primary or adaptive. Newly identified molecular and cellular mechanisms of trastuzumab resistance include induction of immune suppression, vascular mimicry, generation of breast cancer stem cells, deregulation of long non-coding RNAs, and metabolic escape. These newly identified mechanisms of resistance are discussed in detail in this review, particularly considering how they may lead to the development of well-rationalized, patient-tailored combinations that improve patient survival.
Collapse
|
19
|
Protein tyrosine kinase inhibitor resistance in malignant tumors: molecular mechanisms and future perspective. Signal Transduct Target Ther 2022; 7:329. [PMID: 36115852 PMCID: PMC9482625 DOI: 10.1038/s41392-022-01168-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/08/2022] [Accepted: 08/26/2022] [Indexed: 02/07/2023] Open
Abstract
AbstractProtein tyrosine kinases (PTKs) are a class of proteins with tyrosine kinase activity that phosphorylate tyrosine residues of critical molecules in signaling pathways. Their basal function is essential for maintaining normal cell growth and differentiation. However, aberrant activation of PTKs caused by various factors can deviate cell function from the expected trajectory to an abnormal growth state, leading to carcinogenesis. Inhibiting the aberrant PTK function could inhibit tumor growth. Therefore, tyrosine kinase inhibitors (TKIs), target-specific inhibitors of PTKs, have been used in treating malignant tumors and play a significant role in targeted therapy of cancer. Currently, drug resistance is the main reason for limiting TKIs efficacy of cancer. The increasing studies indicated that tumor microenvironment, cell death resistance, tumor metabolism, epigenetic modification and abnormal metabolism of TKIs were deeply involved in tumor development and TKI resistance, besides the abnormal activation of PTK-related signaling pathways involved in gene mutations. Accordingly, it is of great significance to study the underlying mechanisms of TKIs resistance and find solutions to reverse TKIs resistance for improving TKIs efficacy of cancer. Herein, we reviewed the drug resistance mechanisms of TKIs and the potential approaches to overcome TKI resistance, aiming to provide a theoretical basis for improving the efficacy of TKIs.
Collapse
|
20
|
Liu C, Zheng S, Wang Z, Wang S, Wang X, Yang L, Xu H, Cao Z, Feng X, Xue Q, Wang Y, Sun N, He J. KRAS-G12D mutation drives immune suppression and the primary resistance of anti-PD-1/PD-L1 immunotherapy in non-small cell lung cancer. Cancer Commun (Lond) 2022; 42:828-847. [PMID: 35811500 PMCID: PMC9456691 DOI: 10.1002/cac2.12327] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/19/2022] [Accepted: 06/14/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Although immune checkpoint inhibitors (ICIs) against programmed cell death protein 1 (PD-1) and its ligand PD-L1 have demonstrated potency towards treating patients with non-small cell lung carcinoma (NSCLC), the potential association between Kirsten rat sarcoma viral oncogene homolog (KRAS) oncogene substitutions and the efficacy of ICIs remains unclear. In this study, we aimed to find point mutations in the KRAS gene resistant to ICIs and elucidate resistance mechanism. METHODS The association between KRAS variant status and the efficacy of ICIs was explored with a clinical cohort (n = 74), and confirmed with a mouse model. In addition, the tumor immune microenvironment (TIME) of KRAS-mutant NSCLC, such as CD8+ tumor-infiltrating lymphocytes (TILs) and PD-L1 level, was investigated. Cell lines expressing classic KRAS substitutions were used to explore signaling pathway activation involved in the formation of TIME. Furthermore, interventions that improved TIME were developed to increase responsiveness to ICIs. RESULTS We observed the inferior efficacy of ICIs in KRAS-G12D-mutant NSCLC. Based upon transcriptome data and immunostaining results from KRAS-mutant NSCLC, KRAS-G12D point mutation negatively correlated with PD-L1 level and secretion of chemokines CXCL10/CXCL11 that led to a decrease in CD8+ TILs, which in turn yielded an immunosuppressive TIME. The analysis of cell lines overexpressing classic KRAS substitutions further revealed that KRAS-G12D mutation suppressed PD-L1 level via the P70S6K/PI3K/AKT axis and reduced CXCL10/CXCL11 levels by down-regulating high mobility group protein A2 (HMGA2) level. Notably, paclitaxel, a chemotherapeutic agent, upregulated HMGA2 level, and in turn, stimulated the secretion of CXCL10/CXCL11. Moreover, PD-L1 blockade combined with paclitaxel significantly suppressed tumor growth compared with PD-L1 inhibitor monotherapy in a mouse model with KRAS-G12D-mutant lung adenocarcinoma. Further analyses revealed that the combined treatment significantly enhanced the recruitment of CD8+ TILs via the up-regulation of CXCL10/CXCL11 levels. Results of clinical study also revealed the superior efficacy of chemo-immunotherapy in patients with KRAS-G12D-mutant NSCLC compared with ICI monotherapy. CONCLUSIONS Our study elucidated the molecular mechanism by which KRAS-G12D mutation drives immunosuppression and enhances resistance of ICIs in NSCLC. Importantly, our findings demonstrate that ICIs in combination with chemotherapy may be more effective in patients with KRAS-G12D-mutant NSCLC.
Collapse
Affiliation(s)
- Chengming Liu
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Sufei Zheng
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Zhanyu Wang
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Sihui Wang
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Xinfeng Wang
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Lu Yang
- Department of Medical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Haiyan Xu
- Department of Comprehensive OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Zheng Cao
- Department of PathologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Xiaoli Feng
- Department of PathologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Qi Xue
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Yan Wang
- Department of Medical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Nan Sun
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Jie He
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| |
Collapse
|
21
|
Vique‐Sánchez JL, Benítez‐Cardoza CG. A Potential PIK3CA Inhibitor to Develop an Anticancer Drug. ChemistrySelect 2022. [DOI: 10.1002/slct.202202301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
The Protective Mechanism of Afuresertib against Esophageal Cancer. DISEASE MARKERS 2022; 2022:1832241. [PMID: 35872696 PMCID: PMC9303141 DOI: 10.1155/2022/1832241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 12/24/2022]
Abstract
Esophageal cancer (EC) is a common malignant tumor of the digestive system. Exploring the molecular biological mechanism of EC will help to clarify its carcinogenesis mechanism, find important molecular targets in the process of carcinogenesis, and provide new ideas for the diagnosis and treatment of EC. Phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling pathway is one of the signal transduction pathways most closely related to cell proliferation and apoptosis. The regulation of various downstream molecules affects the proliferation and growth of tumor cells. In this study, we determined the effect of different concentrations of afuresertib on cell viability by MTT assay and determined the effect of afuresertib on cell apoptosis by Annexin V-FITC/PI dual staining. Animal experiments verified the effects of afuresertib on VEGF, bFGF, and PI3K/Akt. Our results indicated that afuresertib is closely related to the survival, proliferation, and apoptosis of esophageal cancer cell lines. More importantly, we found that afuresertib could reduce tumor volume and mass in EC rats through in vivo experiments. In conclusion, afuresertib may exert its antitumor effect by inhibiting the expression of PI3K and Akt-related proteins in rat tumor tissues.
Collapse
|
23
|
Lei P, Zhang J, Liao P, Ren C, Wang J, Wang Y. Current progress and novel strategies that target CDK12 for drug discovery. Eur J Med Chem 2022; 240:114603. [PMID: 35868123 DOI: 10.1016/j.ejmech.2022.114603] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 02/05/2023]
Abstract
CDK12 is a cyclin-dependent kinase that plays critical roles in DNA replication, transcription, mRNA splicing, and DNA damage repair. CDK12 genomic changes, including mutation, amplification, deletion, and fusion, lead to various cancers, such as colorectal cancer, gastric cancer, and ovarian cancer. An increasing number of CDK12 inhibitors have been reported since CDK12 was identified as a biomarker and cancer therapeutic target. A major challenge lies in that CDK12 and CDK13 share highly similar sequences, which leads to great difficulties in the development of highly selective CDK12 inhibitors. In recent years, great efforts were made in developing selective CDK12 blockers. Techniques including PROTAC and molecular glue degraders were also applied to facilitate their development. Also, the drug combination strategy of CDK12 small molecule inhibitors were studied. This review discusses the latest studies on CDK12 inhibitors and analyzes their structure-activity relationships, shedding light on their further development.
Collapse
Affiliation(s)
- Peng Lei
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jifa Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Tianfu Jincheng Laboratory, Chengdu, 610041, Sichuan, China
| | - Peiyu Liao
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, 611130, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Tianfu Jincheng Laboratory, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
24
|
Guo X, Chen H, Zhou Y, Shen L, Wu S, Chen Y. Cyclin-dependent kinase inhibition and its intersection with immunotherapy in breast cancer: more than CDK4/6 inhibition. Expert Opin Investig Drugs 2022; 31:933-944. [PMID: 35786092 DOI: 10.1080/13543784.2022.2097067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Cyclin-dependent kinase (CDK) 4/6 inhibitors (CDK4/6i) have had clinical success in treating hormone receptor-positive, human epidermal growth factor receptor 2-negative metastatic breast cancer. Notably, CDK4/6i have expanded to the neoadjuvant setting for early breast cancer and other cancer types and potently synergize with immunotherapy. Other CDKs, including CDK7, CDK9, and CDK12/13, mainly function in transcriptional processes as well as cell cycle regulation, RNA splicing, and DNA damage response. Inhibiting these CDKs aids in suppressing tumors, reversing drug resistance, increasing drug sensitivity, and enhancing anti-tumor immunity in breast cancer. AREAS COVERED We reviewed the applications of CDK4/6i, CDK7i, CDK9i and CDK12/13i for various breast cancer subtypes and their potentials for combination with immunotherapy. A literature search of PubMed, Embase, and Web of Science was conducted in April 2022. EXPERT OPINION The use of CDK4/6i represents a major milestone in breast cancer treatment. Moreover, transcription-related CDKs play critical roles in tumor development and are promising therapeutic targets for breast cancer. Some relevant clinical studies are underway. More specific and efficient CDKis will undoubtedly be developed and clinically tested. Characterization of their immune-priming effects will promote the development of combination therapies consisting of CDKi and immunotherapy.
Collapse
Affiliation(s)
- Xianan Guo
- Department of Breast Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huihui Chen
- Department of Breast Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yunxiang Zhou
- Department of Breast Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lu Shen
- Department of Breast Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shijie Wu
- Department of Breast Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yiding Chen
- Department of Breast Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
25
|
Mauro PD, Capici S, Cogliati V, Pepe FF, Maggioni C, Riva F, Cicchiello F, Cazzaniga ME. Exceptional disease control with neratinib monotherapy in HER2-positive advanced breast cancer: a case report. CURRENT PROBLEMS IN CANCER: CASE REPORTS 2022. [DOI: 10.1016/j.cpccr.2022.100167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
26
|
Zhang J, Ji D, Cai L, Yao H, Yan M, Wang X, Shen W, Du Y, Pang H, Lai X, Zeng H, Huang J, Sun Y, Peng X, Xu J, Yang J, Yang F, Xu T, Hu X. First-in-human HER2-targeted Bispecific Antibody KN026 for the Treatment of Patients with HER2-positive Metastatic Breast Cancer: Results from a Phase I Study. Clin Cancer Res 2021; 28:618-628. [PMID: 34844975 DOI: 10.1158/1078-0432.ccr-21-2827] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/12/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE KN026 is a novel bispecific antibody that simultaneously binds to two distinct HER2 epitopes. This first-in-human phase I study evaluated the safety/tolerability, pharmacokinetics, preliminary efficacy, and potential predictive biomarker activity of KN026 administered as monotherapy to patients with HER2-positive metastatic breast cancer (MBC). PATIENTS AND METHODS Female patients with HER2-positive MBC who had progressed on prior anti HER2 therapies received intravenous KN026 monotherapy at 5 mg/kg (once weekly), 10 mg/kg (once weekly), 20 mg/kg (once every 2 weeks), or 30 mg/kg (once every 3 weeks). Dose escalation was guided by a "3+3" dose escalation rule followed by dose expansion. RESULTS Sixty-three patients were enrolled. The most common treatment-related adverse events (TRAE) were pyrexia (23.8%), diarrhea (22.2%), aspartate aminotransferase increased (22.2%), alanine aminotransferase increased (22.2%). Only 4 patients reported grade 3 TRAEs. Results from exposure-response analysis supported the selection of the recommended phase II doses at 20 mg/kg once every 2 weeks or 30 mg/kg once every 3 weeks, which had objective response rates (ORR) of 28.1% and median progression-free survival (PFS) of 6.8 months (95% confidence interval: 4.2-8.3) in 57 patients. Translational research in 20 HER2-amplified patients further confirmed that co-amplification (vs. no co-amplification) of CDK12 was a promising biomarker in predicting better response to KN026 (ORR of 50% vs. 0% and median PFS of 8.2 vs. 2.7 months, P = 0.05 and 0.04, respectively). CONCLUSIONS KN026, a HER2 bispecific antibody, was well tolerated and achieved comparable efficacy as trastuzumab and pertuzumab doublet even in the more heavily pretreated patients. Co-amplification of HER2/CDK12 may define patients who benefit more from KN026.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Dongmei Ji
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Li Cai
- Department of Medical Oncology, Tumor Hospital of Harbin Medical University, Harbin, P.R. China
| | - Herui Yao
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanghai, P.R. China
| | - Min Yan
- Department of Medical Oncology, Henan Cancer Hospital, Zhengzhou, P.R. China
| | - Xiaojia Wang
- Department of Medical Oncology, Zhejiang Cancer Hospital, Shanghai, P.R. China
| | - Weina Shen
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yiqun Du
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Hui Pang
- Department of Medical Oncology, Tumor Hospital of Harbin Medical University, Harbin, P.R. China
| | - Xiuping Lai
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanghai, P.R. China
| | - Huiai Zeng
- Department of Medical Oncology, Henan Cancer Hospital, Zhengzhou, P.R. China
| | - Jian Huang
- Department of Medical Oncology, Zhejiang Cancer Hospital, Shanghai, P.R. China
| | - Yan Sun
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Xinxin Peng
- Precision Scientific (Beijing) Co., Ltd, Beijing, P.R. China
| | - Junfang Xu
- Jiangsu Alphamab Biopharmaceuticals Co., Ltd., Suzhou, P.R. China
| | - Jing Yang
- Jiangsu Alphamab Biopharmaceuticals Co., Ltd., Suzhou, P.R. China
| | - Fei Yang
- Jiangsu Alphamab Biopharmaceuticals Co., Ltd., Suzhou, P.R. China
| | - Ting Xu
- Jiangsu Alphamab Biopharmaceuticals Co., Ltd., Suzhou, P.R. China
| | - Xichun Hu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| |
Collapse
|
27
|
Naro C, Bielli P, Sette C. Oncogenic dysregulation of pre-mRNA processing by protein kinases: challenges and therapeutic opportunities. FEBS J 2021; 288:6250-6272. [PMID: 34092037 PMCID: PMC8596628 DOI: 10.1111/febs.16057] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/13/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022]
Abstract
Alternative splicing and polyadenylation represent two major steps in pre-mRNA-processing, which ensure proper gene expression and diversification of human transcriptomes. Deregulation of these processes contributes to oncogenic programmes involved in the onset, progression and evolution of human cancers, which often result in the acquisition of resistance to existing therapies. On the other hand, cancer cells frequently increase their transcriptional rate and develop a transcriptional addiction, which imposes a high stress on the pre-mRNA-processing machinery and establishes a therapeutically exploitable vulnerability. A prominent role in fine-tuning pre-mRNA-processing mechanisms is played by three main families of protein kinases: serine arginine protein kinase (SRPK), CDC-like kinase (CLK) and cyclin-dependent kinase (CDK). These kinases phosphorylate the RNA polymerase, splicing factors and regulatory proteins involved in cleavage and polyadenylation of the nascent transcripts. The activity of SRPKs, CLKs and CDKs can be altered in cancer cells, and their inhibition was shown to exert anticancer effects. In this review, we describe key findings that have been reported on these topics and discuss challenges and opportunities of developing therapeutic approaches targeting splicing factor kinases.
Collapse
Affiliation(s)
- Chiara Naro
- Department of NeuroscienceSection of Human AnatomyCatholic University of the Sacred HeartRomeItaly
- Fondazione Policlinico Universitario A. GemelliIRCCSRomeItaly
| | - Pamela Bielli
- Department of Biomedicine and PreventionUniversity of Rome Tor VergataItaly
- Fondazione Santa LuciaIRCCSRomeItaly
| | - Claudio Sette
- Department of NeuroscienceSection of Human AnatomyCatholic University of the Sacred HeartRomeItaly
- Fondazione Santa LuciaIRCCSRomeItaly
| |
Collapse
|