1
|
Chirra PV, Giriprakash P, Rizk AG, Kurowski JA, Viswanath SE, Gandhi NS. Developing a Reproducible Radiomics Model for Diagnosis of Active Crohn's Disease on CT Enterography Across Annotation Variations and Acquisition Differences. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2025; 38:1594-1605. [PMID: 39466507 DOI: 10.1007/s10278-024-01303-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024]
Abstract
To systematically identify radiomics features on CT enterography (CTE) scans which can accurately diagnose active Crohn's disease across multiple sources of variation. Retrospective study of CTE scans curated between 2013 and 2015, comprising 164 subjects (65 male, 99 female; all patients were over the age of 18) with endoscopic confirmation for the presence or absence of active Crohn's disease. All patients had three distinct sets of scans available (full and reduced dose, where the latter had been reconstructed via two different methods), acquired on a single scanner at a single institution. Radiomics descriptors from annotated terminal ileum regions were individually and systematically evaluated for resilience to different imaging variations (changes in dose/reconstruction, batch effects, and simulated annotation differences) via multiple reproducibility measures. Multiple radiomics models (by accounting for each source of variation) were evaluated in terms of classifier area under the ROC curve (AUC) for identifying patients with active Crohn's disease, across separate discovery and hold-out validation cohorts. Radiomics descriptors selected based on resiliency to multiple sources of imaging variation yielded the highest overall classification performance in the discovery cohort (AUC = 0.79 ± 0.04) which also best generalized in hold-out validation (AUC = 0.81). Performance was maintained across multiple doses and reconstructions while also being significantly better (p < 0.001) than non-resilient descriptors or descriptors only resilient to a single source of variation. Radiomics features can accurately diagnose active Crohn's disease on CTE scans across multiple sources of imaging variation via systematic analysis of reproducibility measures. Clinical utility and translatability of radiomics features for diagnosis and characterization of Crohn's disease on CTE scans will be contingent on their reproducibility across multiple types and sources of imaging variation.
Collapse
Affiliation(s)
- Prathyush V Chirra
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Pavithran Giriprakash
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Alain G Rizk
- Section, Abdominal Imaging, Imaging Institute, and Digestive Diseases and Surgery Institute and Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jacob A Kurowski
- Department of Pediatric Gastroenterology, Hepatology & Nutrition, Cleveland Clinic, Cleveland, OH, USA
| | - Satish E Viswanath
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
- Cleveland Veterns Affairs Medical Center, Cleveland, OH, USA.
| | - Namita S Gandhi
- Section, Abdominal Imaging, Imaging Institute, and Digestive Diseases and Surgery Institute and Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
2
|
Kar SS, Cetin H, Srivastava SK, Madabhushi A, Ehlers JP. Stable and discriminating OCT-derived radiomics features for predicting anti-VEGF treatment response in diabetic macular edema. Med Phys 2025; 52:2762-2772. [PMID: 40085126 PMCID: PMC12059529 DOI: 10.1002/mp.17695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Radiomics-based characterization of fluid and retinal tissue compartments of spectral-domain optical coherence tomography (SD-OCT) scans has shown promise to predict anti-VEGF therapy treatment response in diabetic macular edema (DME). Radiomics features are sensitive to different image acquisition parameters of OCT scanners such as axial resolution, A-scan rate, and voxel size; consequently, the predictive capability of the radiomics features might be impacted by inter-site and inter-scanner variations. PURPOSE The main objective of this study was (1) to develop a more generalized classifier by identifying the OCT-derived texture-based radiomics features that are both stable (across multiple scanners) as well as discriminative of therapeutic response in DME and (2) to identify the relative stability of individual radiomic features that are associated with specific spatial compartments (e/g. fluid or tissue) within the eye. METHODS A combination of 151 optimal responders and rebounders of anti-VEGF therapy in DME were included from the PERMEATE (imaged using Cirrus HD-OCT scanner) and VISTA clinical trials (imaged using Cirrus HD-OCT and Spectralis scanners). For each patient within the study, a set of 494 texture-based radiomics features were extracted from the fluid and the retinal tissue compartment of OCT images. The training set (S t ${{S}_t}$ ) included 76 patients and the independent test set( S v $({{S}_v}$ ) comprised of 75 patients. Features were ranked based on (i) only discriminability criteria, that is, maximizing area under the receiver operating characteristic curve (AUC) and (ii) both stability and discriminability criteria. The subset of radiomic features for which the feature expression remained relatively consistent between the two datasets, as assessed by Wilcoxon rank-sum test, were considered to be stable. Different machine learning (ML) classifiers (such as k-nearest neighbors, Random Forest, Linear Discriminant Analysis, Quadratic Discriminant Analysis, Support Vector Machine using linear and radial basis kernel, Naive Bayes) were trained using the features selected based on both the stability and discriminability criteria onS t ${{S}_t}$ and then subsequently validated onS v ${{S}_v}$ . The ML classifier (M g ${{M}_g}$ ) that yielded maximum AUC onS v ${{S}_v}$ was considered to be more generalized and stable for distinguishing anti-VEGF therapy treatment response as well as less sensitive to the effect of inter-site and inter-scanner variability. RESULTS The modelM g ${{M}_g}$ (based on both stability and discriminability criteria) achieved higher AUC compared to the criteria based off feature discrimination alone onS v ${{S}_v}$ (maximum AUCs of 0.9 versus 0.81; p-value = 0.048). The texture-based radiomic features pertaining to the retinal tissue compartment were found to be more stable compared to the fluid related features across the two datasets. CONCLUSIONS Our study suggests that incorporating both stable and discriminatory texture-based radiomic features extracted from fluid and retinal tissue compartments of OCT scans, a more generalized radiomic classifier can be developed to predict therapeutic response in DME. Also, the feature stability was found to be a function of the spatial location within the eye from where the features were extracted.
Collapse
Affiliation(s)
- Sudeshna Sil Kar
- Department of Biomedical EngineeringEmory UniversityAtlantaGeorgiaUSA
| | - Hasan Cetin
- The Tony and Leona Campane Center for Excellence in Image‐Guided Surgery and Advanced Imaging ResearchCole Eye InstituteCleveland ClinicClevelandOhioUSA
| | - Sunil K. Srivastava
- The Tony and Leona Campane Center for Excellence in Image‐Guided Surgery and Advanced Imaging ResearchCole Eye InstituteCleveland ClinicClevelandOhioUSA
- Novartis PharmaceuticalsEast HanoverNew JerseyUSA
| | - Anant Madabhushi
- Department of Biomedical EngineeringEmory UniversityAtlantaGeorgiaUSA
- Atlanta VA Medical CenterAtlantaGeorgiaUSA
| | - Justis P. Ehlers
- The Tony and Leona Campane Center for Excellence in Image‐Guided Surgery and Advanced Imaging ResearchCole Eye InstituteCleveland ClinicClevelandOhioUSA
- Vitreoretinal ServiceCole Eye InstituteCleveland ClinicClevelandOhioUSA
| |
Collapse
|
3
|
Delasos L, Khorrami M, Viswanathan VS, Jazieh K, Ding Y, Mutha P, Stephans K, Gupta A, Pennell NA, Patil PD, Higgins K, Madabhushi A. Novel radiogenomics approach to predict and characterize pneumonitis in stage III NSCLC. NPJ Precis Oncol 2024; 8:290. [PMID: 39719541 DOI: 10.1038/s41698-024-00790-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/17/2024] [Indexed: 12/26/2024] Open
Abstract
Unresectable stage III NSCLC is now treated with chemoradiation (CRT) followed by immune checkpoint inhibitors (ICI). Pneumonitis, a common CRT complication, has heightened risk with ICI, potentially causing severe outcomes. Currently, there are no biomarkers to predict pneumonitis risk or differentiate between radiation-induced pneumonitis (RTP) and ICI-induced pneumonitis (IIP). This study analyzed 293 patients from two institutions, with 140 experiencing pneumonitis (RTP: 84, IIP: 56). Two models were developed: M1 predicted pneumonitis risk using seven radiomic features, achieving high accuracy across internal and external datasets (AUCs: 0.76 and 0.85). M2 differentiated RTP from IIP, with strong performance (AUCs: 0.86 and 0.81). Gene set enrichment analysis linked high pneumonitis risk to pathways such as ECM-receptor interaction and T-cell signaling, while high IIP risk correlated with MAPK and JAK-STAT pathways. Radiomic models show promise in early pneumonitis risk stratification and distinguishing pneumonitis types, potentially guiding personalized NSCLC treatment.
Collapse
Affiliation(s)
- Lukas Delasos
- Cleveland Clinic Taussig Cancer Center, Cleveland, USA
| | | | | | - Khalid Jazieh
- Cleveland Clinic Taussig Cancer Center, Cleveland, USA
| | - Yifu Ding
- Department of Radiation Oncology, Winship Cancer Institute and Emory University, Atlanta, USA
| | - Pushkar Mutha
- Emory University and Georgia Institute of Technology, Atlanta, USA
| | | | - Amit Gupta
- Department of Radiology, University Hospital Cleveland Medical Center, Cleveland, USA
| | | | - Pradnya D Patil
- Department of hematology and medical oncology, Nuvance Health, New York, USA
| | - Kristin Higgins
- Department of Radiation Oncology, Winship Cancer Institute and Emory University, Atlanta, USA
| | - Anant Madabhushi
- Emory University and Georgia Institute of Technology, Atlanta, USA.
- Atlanta Veterans Affairs Medical Center, Atlanta, USA.
| |
Collapse
|
4
|
Deng L, Zhu K, Yang J, Zhang Y, Jing M, Zhang P, Han T, Zhang B, Zhou J. Tumour-pleura relationship on computed tomography (CT) provides effective risk stratification for peripheral pulmonary nodules with Lung Imaging Reporting and Data System (Lung-RADS) score of 4X. Quant Imaging Med Surg 2024; 14:7138-7150. [PMID: 39429614 PMCID: PMC11485353 DOI: 10.21037/qims-24-530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/31/2024] [Indexed: 10/22/2024]
Abstract
Background Pulmonary nodules with Lung Imaging Reporting and Data System (Lung-RADS) 4X are of greater clinical significance, and accurate differentiation of pathological types and visceral pleural invasion (VPI) of Lung-RADS 4X peripheral pulmonary nodules before treatment can aid in stratification. This study set out to investigate whether the tumour-pleura relationship on computed tomography (CT) can provide effective risk stratification for peripheral pulmonary nodules with Lung-RADS 4X. Methods This was a single institution, retrospective study of 482 consecutive patients with Lung-RADS score 4X, who were pathologically diagnosed with tuberculous granuloma and adenocarcinoma from January 2019 to December 2023. We assessed clinical factors (baseline characteristics and tumour markers) and CT findings. Univariate and multivariate logistic regression analyses were used to determine the classification of pulmonary nodules and predictors of VPI. Results Multivariate analysis revealed that gender [odds ratio (OR) =0.392; P<0.001], carcinoembryonic antigen (CEA) level (OR =8.331; P<0.001), type of nodules (OR =13.551 and 7.478; P<0.001 and P=0.016) and maximum base width of soft tissue component on the pleura side (OR =0.857; P=0.005) were significant independent factors for distinguishing tuberculous granuloma from adenocarcinoma. And the type of linear connection between lesion and pleura (OR =3.936; P<0.001), and the maximum base width of soft tissue components on the pleura side (OR =1.359; P=0.001) were correlated independently with VPI. The area under the curve (AUC) for predicting pulmonary nodules classification was 82.60% [95% confidence interval (CI): 78.85-86.35%), and the AUC for predicting VPI was 76.10% (95% CI: 69.83-82.38%). Conclusions The tumour-pleura relationship will be helpful in further risk stratification for peripheral pulmonary nodules with a score of Lung-RADS 4X.
Collapse
Affiliation(s)
- Liangna Deng
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Kaibo Zhu
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Jingjing Yang
- Department of Radiology, Zhangye People’s Hospital affiliated to Hexi University, Zhangye, China
| | - Yuting Zhang
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Mengyuan Jing
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Peng Zhang
- Department of Radiology, Zhangye People’s Hospital affiliated to Hexi University, Zhangye, China
- Department of Pathology, Lanzhou University Second Hospital, Lanzhou, China
| | - Tao Han
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Bin Zhang
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| |
Collapse
|
5
|
Hu G, Ding N, Wang Z, Jin Z. Unenhanced computed tomography radiomics help detect endoleaks after endovascular repair of abdominal aortic aneurysm. Eur Radiol 2024; 34:1647-1658. [PMID: 37658886 PMCID: PMC10873228 DOI: 10.1007/s00330-023-10000-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 05/03/2023] [Accepted: 06/05/2023] [Indexed: 09/05/2023]
Abstract
OBJECTIVES To explore the feasibility of unenhanced CT images for endoleak detection of abdominal aortic aneurysm (AAA) after endovascular repair (EVAR). METHODS Patients who visited our hospital after EVAR from July 2014 to September 2021 were retrospectively collected. Two radiologists evaluated the presence or absence of endoleaks using the combination of contrast-enhanced and unenhanced CT as the referenced standard. After segmenting the aneurysm sac of the unenhanced CT, the radiomic features were automatically extracted from the region of interest. Histogram features of patients with and without endoleak were statistically analyzed to explore the differences between the two groups. Twelve common machine learning (ML) models based on radiomic features were constructed to evaluate the performance of endoleak detection with unenhanced CT images. RESULTS The study included 216 patients (69 ± 8 years; 191 men) with AAA, including 64 patients with endoleaks. A total of 1955 radiomic features of unenhanced CT were extracted. Compared with patients without endoleak, the aneurysm sac outside the stent of patients with endoleak had higher CT attenuation (41.7 vs. 33.6, p < 0.001) with smaller dispersion (51.5 vs. 58.8, p < 0.001). The average area under the curve (AUC) of the ML models constructed with unenhanced CT radiomics was 0.86 ± 0.05, the accuracy was 81% ± 4, the sensitivity was 88% ± 10, and the specificity was 78% ± 5. When fixing the sensitivity to > 90% (92% ± 2), the models retained specificity at 72% ± 10. CONCLUSIONS Unenhanced CT features exhibit significant differences between patients with and without endoleak and can help detect endoleaks in AAA after EVAR with high sensitivity. CLINICAL RELEVANCE STATEMENT Unenhanced CT radiomics can help provide an alternative method of endoleak detection in patients who have adverse reactions to contrast media. This study further exploits the value of unenhanced CT examinations in the clinical management and surveillance of postoperative abdominal aortic aneurysm. KEY POINTS • Unenhanced CT features of the aneurysm sac outside the stent exhibit significant differences between patients with and without endoleak. The endoleak group showed higher unenhanced CT attenuation (41.7 vs 33.6, p < .001) with smaller dispersion (51.5 vs 58.8, p < .001) than the nonendoleak group. • Unenhanced CT radiomics can help detect endoleaks after intervention. The average area under the curve (AUC) of twelve common machine learning models constructed with unenhanced CT radiomics was 0.86 ± 0.05, the average accuracy was 81% ± 4. • When fixing the sensitivity to > 90% (92% ± 2), the machine learning models retained average specificity at 72% ± 10.
Collapse
Affiliation(s)
- Ge Hu
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng Dist, Beijing, 100730, China
| | - Ning Ding
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng Dist, Beijing, 100730, China
| | - Zhiwei Wang
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng Dist, Beijing, 100730, China.
| | - Zhengyu Jin
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng Dist, Beijing, 100730, China.
| |
Collapse
|
6
|
Li Y, Wang P, Xu J, Shi X, Yin T, Teng F. Noninvasive radiomic biomarkers for predicting pseudoprogression and hyperprogression in patients with non-small cell lung cancer treated with immune checkpoint inhibition. Oncoimmunology 2024; 13:2312628. [PMID: 38343749 PMCID: PMC10857548 DOI: 10.1080/2162402x.2024.2312628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/28/2024] [Indexed: 02/15/2024] Open
Abstract
This study aimed to develop a computed tomography (CT)-based radiomics model capable of precisely predicting hyperprogression and pseudoprogression (PP) in patients with non-small cell lung cancer (NSCLC) treated with immunotherapy. We retrospectively analyzed 105 patients with NSCLC, from three institutions, treated with immune checkpoint inhibitors (ICIs) and categorized them into training and independent testing set. Subsequently, we processed CT scans with a series of image-preprocessing techniques, and 6008 radiomic features capturing intra- and peritumoral texture patterns were extracted. We used the least absolute shrinkage and selection operator logistic regression model to select radiomic features and construct machine learning models. To further differentiate between progressive disease (PD) and hyperprogressive disease (HPD), we developed a new radiomics model. The logistic regression (LR) model showed optimal performance in distinguishing PP from HPD, with areas under the receiver operating characteristic curve (AUC) of 0.95 (95% confidence interval [CI]: 0.91-0.99) and 0.88 (95% CI: 0.66-1) in the training and testing sets, respectively. Additionally, the support vector machine model showed optimal performance in distinguishing PD from HPD, with AUC of 0.97 (95% CI: 0.93-1) and 0.87 (95% CI: 0.72-1) in the training and testing sets, respectively. Kaplan‒Meier survival curves showed clear stratification between PP predicted by the radiomics model and true progression (HPD and PD) (hazard ratio = 0.337, 95% CI: 0.200-0.568, p < 0.01) in overall survival. Our study demonstrates that radiomic features extracted from baseline CT scans are effective in predicting PP and HPD in patients with NSCLC treated with ICIs.
Collapse
Affiliation(s)
- Yikun Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Peiliang Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Junhao Xu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Xiaonan Shi
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Tianwen Yin
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Feifei Teng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
7
|
Cherezov D, Viswanathan VS, Fu P, Gupta A, Madabhushi A. Rank acquisition impact on radiomics estimation (AсquIRE) in chest CT imaging: A retrospective multi-site, multi-use-case study. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 244:107990. [PMID: 38194767 PMCID: PMC10872259 DOI: 10.1016/j.cmpb.2023.107990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND Radiomics is a method within medical image analysis that involves the extraction of quantitative data from radiologic scans, often in conjunction with machine learning algorithms to phenotype disease appearance, prognosticate disease outcome, and predict treatment response. However, variance in CT scanner acquisition parameters, such as convolution kernels or pixel spacing, can impact radiomics texture feature values. PURPOSE The extent to which the parameters influence radiomics features continues to be an active area of investigation. In this study, we describe a novel approach, Acquisition Impact on Radiomics Estimation (AcquIRE), to rank the impact of CT acquisition parameters on radiomic texture features. METHODS In this work, we used three chest CT imaging datasets (n = 749 patients) from nine sites comprising: i) lung granulomas and adenocarcinomas (D1) (10 and 52 patients, respectively); ii) minimal and frank invasive adenocarcinoma (D2) (74 and 145 patients); and iii) early-stage NSCLC patients (D3) (315 patients). Datasets D2 and D3 were collected from four sites each, and D1 from a single site. For each patient, 744 texture features and nine acquisition parameters were extracted and utilized to evaluate which parameters impact radiomic features the most. The AcquIRE method establishes a relative assessment between acquisition parameters and radiomic texture featuresa through the creation of a classification model, which is then utilized to assess the rank of the acquisition parameters. RESULTS Across the use cases, CT software version and convolution kernel parameters were found to have the most variance. In D1, it was observed that the Haralick texture feature family was the least affected by variations in acquisition parameters, while the Gabor feature family was the most impacted. However, in datasets D2 and D3, the Gabor features were found to be the least affected. Our findings suggest that the impact on radiomic parameters is as much a function of the problem in question as it is acquisition parameters. CONCLUSIONS The software version and convolution kernel parameters impacted the radiomics feature the most.
Collapse
Affiliation(s)
- Dmitry Cherezov
- Department of Biomedical Engineering, Emory University, Atlanta, GA, USA
| | | | - Pingfu Fu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Amit Gupta
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Anant Madabhushi
- Department of Biomedical Engineering, Emory University, Atlanta, GA, USA; Atlanta Veterans Administration Medical Center, Atlanta, GA, USA.
| |
Collapse
|
8
|
Yang Z, Dong H, Fu C, Zhang Z, Hong Y, Shan K, Ma C, Chen X, Xu J, Pang Z, Hou M, Zhang X, Zhu W, Liu L, Li W, Sun J, Zhao F. A nomogram based on CT intratumoral and peritumoral radiomics features preoperatively predicts poorly differentiated invasive pulmonary adenocarcinoma manifesting as subsolid or solid lesions: a double-center study. Front Oncol 2024; 14:1289555. [PMID: 38313797 PMCID: PMC10834705 DOI: 10.3389/fonc.2024.1289555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/02/2024] [Indexed: 02/06/2024] Open
Abstract
Background The novel International Association for the Study of Lung Cancer (IASLC) grading system suggests that poorly differentiated invasive pulmonary adenocarcinoma (IPA) has a worse prognosis. Therefore, prediction of poorly differentiated IPA before treatment can provide an essential reference for therapeutic modality and personalized follow-up strategy. This study intended to train a nomogram based on CT intratumoral and peritumoral radiomics features combined with clinical semantic features, which predicted poorly differentiated IPA and was tested in independent data cohorts regarding models' generalization ability. Methods We retrospectively recruited 480 patients with IPA appearing as subsolid or solid lesions, confirmed by surgical pathology from two medical centers and collected their CT images and clinical information. Patients from the first center (n =363) were randomly assigned to the development cohort (n = 254) and internal testing cohort (n = 109) in a 7:3 ratio; patients (n = 117) from the second center served as the external testing cohort. Feature selection was performed by univariate analysis, multivariate analysis, Spearman correlation analysis, minimum redundancy maximum relevance, and least absolute shrinkage and selection operator. The area under the receiver operating characteristic curve (AUC) was calculated to evaluate the model performance. Results The AUCs of the combined model based on intratumoral and peritumoral radiomics signatures in internal testing cohort and external testing cohort were 0.906 and 0.886, respectively. The AUCs of the nomogram that integrated clinical semantic features and combined radiomics signatures in internal testing cohort and external testing cohort were 0.921 and 0.887, respectively. The Delong test showed that the AUCs of the nomogram were significantly higher than that of the clinical semantic model in both the internal testing cohort(0.921 vs 0.789, p< 0.05) and external testing cohort(0.887 vs 0.829, p< 0.05). Conclusion The nomogram based on CT intratumoral and peritumoral radiomics signatures with clinical semantic features has the potential to predict poorly differentiated IPA manifesting as subsolid or solid lesions preoperatively.
Collapse
Affiliation(s)
- Zebin Yang
- Department of Radiology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
| | - Hao Dong
- Department of Radiology, Affiliated Xiaoshan Hospital of Wenzhou Medical University, Hangzhou, China
| | - Chunlong Fu
- Department of Radiology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
| | - Zening Zhang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Hong
- Department of Radiology, Fourth Affiliated Hospital, College of Medicine, Zhejiang University, Yiwu, China
| | - Kangfei Shan
- Department of Radiology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
| | - Chijun Ma
- Department of Radiology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
| | - Xiaolu Chen
- Department of Radiology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
| | - Jieping Xu
- Department of Radiology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
| | - Zhenzhu Pang
- Department of Radiology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
| | - Min Hou
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaowei Zhang
- Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
| | - Weihua Zhu
- Department of Radiology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
| | - Linjiang Liu
- Medical Imaging Department, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Weihua Li
- Medical Imaging Department, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Radiology, Fourth Affiliated Hospital, College of Medicine, Zhejiang University, Yiwu, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Fenhua Zhao
- Department of Radiology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
| |
Collapse
|
9
|
Shi L, Sheng M, Wei Z, Liu L, Zhao J. CT-Based Radiomics Predicts the Malignancy of Pulmonary Nodules: A Systematic Review and Meta-Analysis. Acad Radiol 2023; 30:3064-3075. [PMID: 37385850 DOI: 10.1016/j.acra.2023.05.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 07/01/2023]
Abstract
RATIONALE AND OBJECTIVES More pulmonary nodules (PNs) have been detected with the wide application of computed tomography (CT) in lung cancer screening. Radiomics is a noninvasive approach to predict the malignancy of PNs. We aimed to systematically evaluate the methodological quality of the eligible studies regarding CT-based radiomics models in predicting the malignancy of PNs and evaluate the model performance of the available studies. MATERIALS AND METHODS PubMed, Embase, and Web of Science were searched to retrieve relevant studies. The methodological quality of the included studies was assessed using the Radiomics Quality Score (RQS) and Prediction model Risk of Bias Assessment Tool. A meta-analysis was conducted to evaluate the performance of CT-based radiomics model. Meta-regression and subgroup analyses were employed to investigate the source of heterogeneity. RESULTS In total, 49 studies were eligible for qualitative analysis and 27 studies were included in quantitative synthesis. The median RQS of 49 studies was 13 (range -2 to 20). The overall risk of bias was found to be high, and the overall applicability was of low concern in all included studies. The pooled sensitivity, specificity, and diagnostic odds ratio were 0.86 95% confidence interval (CI): 0.79-0.91, 0.84 95% CI: 0.78-0.88, and 31.55 95% CI: 21.31-46.70, respectively. The overall area under the curve was 0.91 95% CI: 0.89-0.94. Meta-regression showed the type of PNs on heterogeneity. CT-based radiomics models performed better in studies including only solid PNs. CONCLUSION CT-based radiomics models exhibited excellent diagnostic performance in predicting the malignancy of PNs. Prospective, large sample size, and well-devised studies are desired to verify the prediction capabilities of CT-based radiomics model.
Collapse
Affiliation(s)
- Lili Shi
- Medical School, Nantong University, Nantong, China (L.S., Z.W.)
| | - Meihong Sheng
- Department of Radiology, The Second Affiliated Hospital of Nantong University and Nantong First People's Hospital, Nantong, China (M.S.)
| | - Zhichao Wei
- Medical School, Nantong University, Nantong, China (L.S., Z.W.)
| | - Lei Liu
- Institutes of Intelligence Medicine, Fudan University, Shanghai, China (L.L.)
| | - Jinli Zhao
- Department of Radiology, Affiliated Hospital of Nantong University, Nantong, China (J.Z.).
| |
Collapse
|
10
|
Prosper AE, Kammer MN, Maldonado F, Aberle DR, Hsu W. Expanding Role of Advanced Image Analysis in CT-detected Indeterminate Pulmonary Nodules and Early Lung Cancer Characterization. Radiology 2023; 309:e222904. [PMID: 37815447 PMCID: PMC10623199 DOI: 10.1148/radiol.222904] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 10/11/2023]
Abstract
The implementation of low-dose chest CT for lung screening presents a crucial opportunity to advance lung cancer care through early detection and interception. In addition, millions of pulmonary nodules are incidentally detected annually in the United States, increasing the opportunity for early lung cancer diagnosis. Yet, realization of the full potential of these opportunities is dependent on the ability to accurately analyze image data for purposes of nodule classification and early lung cancer characterization. This review presents an overview of traditional image analysis approaches in chest CT using semantic characterization as well as more recent advances in the technology and application of machine learning models using CT-derived radiomic features and deep learning architectures to characterize lung nodules and early cancers. Methodological challenges currently faced in translating these decision aids to clinical practice, as well as the technical obstacles of heterogeneous imaging parameters, optimal feature selection, choice of model, and the need for well-annotated image data sets for the purposes of training and validation, will be reviewed, with a view toward the ultimate incorporation of these potentially powerful decision aids into routine clinical practice.
Collapse
Affiliation(s)
- Ashley Elizabeth Prosper
- From the Department of Radiological Sciences, David Geffen School of
Medicine at UCLA, 924 Westwood Blvd, Suite 420, Los Angeles, CA 90024 (A.E.P.,
D.R.A., W.H.); Division of Allergy, Pulmonary and Critical Care Medicine,
Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn
(M.N.K., F.M.); and Department of Bioengineering, UCLA Samueli School of
Engineering, Los Angeles, Calif (D.R.A., W.H.)
| | - Michael N. Kammer
- From the Department of Radiological Sciences, David Geffen School of
Medicine at UCLA, 924 Westwood Blvd, Suite 420, Los Angeles, CA 90024 (A.E.P.,
D.R.A., W.H.); Division of Allergy, Pulmonary and Critical Care Medicine,
Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn
(M.N.K., F.M.); and Department of Bioengineering, UCLA Samueli School of
Engineering, Los Angeles, Calif (D.R.A., W.H.)
| | - Fabien Maldonado
- From the Department of Radiological Sciences, David Geffen School of
Medicine at UCLA, 924 Westwood Blvd, Suite 420, Los Angeles, CA 90024 (A.E.P.,
D.R.A., W.H.); Division of Allergy, Pulmonary and Critical Care Medicine,
Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn
(M.N.K., F.M.); and Department of Bioengineering, UCLA Samueli School of
Engineering, Los Angeles, Calif (D.R.A., W.H.)
| | - Denise R. Aberle
- From the Department of Radiological Sciences, David Geffen School of
Medicine at UCLA, 924 Westwood Blvd, Suite 420, Los Angeles, CA 90024 (A.E.P.,
D.R.A., W.H.); Division of Allergy, Pulmonary and Critical Care Medicine,
Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn
(M.N.K., F.M.); and Department of Bioengineering, UCLA Samueli School of
Engineering, Los Angeles, Calif (D.R.A., W.H.)
| | - William Hsu
- From the Department of Radiological Sciences, David Geffen School of
Medicine at UCLA, 924 Westwood Blvd, Suite 420, Los Angeles, CA 90024 (A.E.P.,
D.R.A., W.H.); Division of Allergy, Pulmonary and Critical Care Medicine,
Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn
(M.N.K., F.M.); and Department of Bioengineering, UCLA Samueli School of
Engineering, Los Angeles, Calif (D.R.A., W.H.)
| |
Collapse
|
11
|
Hu B, Xia W, Piao S, Xiong J, Tang Y, Yu H, Tao G, Sun L, Shen M, Wagh A, Jaykel TJ, Zhang D, Li Y, Zhu L. A CT-based radiomics integrated model for discriminating pulmonary cryptococcosis granuloma from lung adenocarcinoma-a diagnostic test. Transl Lung Cancer Res 2023; 12:1790-1801. [PMID: 37691867 PMCID: PMC10483083 DOI: 10.21037/tlcr-23-389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023]
Abstract
Background Chest computed tomography (CT) is a critical tool in the diagnosis of pulmonary cryptococcosis as approximately 30% of normal immunity individuals may not exhibit any significant symptoms or laboratory findings. Pulmonary cryptococcosis granuloma and lung adenocarcinoma can appear similar on noncontrast chest CT. This study evaluates the use of an integrated model that was developed based on radiomic features combined with demographic and radiological features to differentiate pulmonary cryptococcosis nodules from lung adenocarcinomas. Methods Preoperative chest CT images for 215 patients with solid pulmonary nodules with histopathologically confirmed lung adenocarcinoma and cryptococcosis infection were collected from two clinical centers (108 cases in the training set and 107 cases in the test set divided by the different hospitals). Radiomics models were constructed based on nodular lesion volume (LV), 5-mm extended lesion volume (ELV), and perilesion volume (PLV). A demoradiological model was constructed using logistic regression based on demographic information (age, sex) and 12 radiological features (location, number, shape and specific imaging signs). Both models were used to build an integrated model, the performance of which was assessed using the test set. A junior and a senior radiologist evaluated the nodules. Receiver operating characteristic (ROC) curve analysis was conducted, and areas under the curve (AUCs), sensitivity (SEN), and specificity (SPE) of the models were calculated and compared. Results Among the radiomics models, AUCs of the LV, ELV, and PLV were 0.558, 0.757, and 0.470, respectively. Age, lesion number, and lobular sign were identified as independent discriminative features providing an AUC of 0.77 in the demoradiological model (SEN 0.815, SPE 0.642). The integrated model achieved the highest AUC of 0.801 (SEN 0.759, SPE 0.755), which was significantly higher than that obtained by a junior radiologist (AUC =0.689, P=0.024) but showed no significant difference from that of the senior radiologist (AUC =0.784, P=0.388). Conclusions An integrated model with radiomics and demoradiological features improves discrimination of cryptococcosis granulomas from solid adenocarcinomas on noncontrast CT. This model may be an effective strategy for machine complementation to discrimination by radiologists, and whole-lung automated recognition methods might dominate in the future.
Collapse
Affiliation(s)
- Bin Hu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Wei Xia
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Sirong Piao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ji Xiong
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Tang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hong Yu
- Department of Radiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guangyu Tao
- Department of Radiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Linlin Sun
- Department of Radiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Minhui Shen
- College of Medical Instrument, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Ajay Wagh
- Section of Pulmonary and Critical Care Medicine/Interventional Pulmonology, The University of Chicago, Chicago, IL, USA
| | | | - Ding Zhang
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxin Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Li Zhu
- Department of Radiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Khorrami M, Viswanathan VS, Reddy P, Braman N, Kunte S, Gupta A, Abraham J, Montero AJ, Madabhushi A. Radiomic predicts early response to CDK4/6 inhibitors in hormone receptor positive metastatic breast cancer. NPJ Breast Cancer 2023; 9:67. [PMID: 37567880 PMCID: PMC10421862 DOI: 10.1038/s41523-023-00574-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
The combination of Cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) and endocrine therapy (ET) is the standard of care for hormone receptor-positive (HR + ), human epidermal growth factor receptor 2-negative (HER2-) metastatic breast cancer (MBC). Currently, there are no robust biomarkers that can predict response to CDK4/6i, and it is not clear which patients benefit from this therapy. Since MBC patients with liver metastases have a poorer prognosis, developing predictive biomarkers that could identify patients likely to respond to CDK4/6i is clinically important. Here we show the ability of imaging texture biomarkers before and a few cycles after CDK4/6i therapy, to predict early response and overall survival (OS) on 73 MBC patients with known liver metastases who received palbociclib plus ET from two sites. The delta radiomic model was associated with OS in validation set (HR: 2.4; 95% CI, 1.06-5.6; P = 0.035; C-index = 0.77). Compared to RECIST response, delta radiomic features predicted response with area under the curve (AUC) = 0.72, 95% confidence interval (CI) 0.67-0.88. Our study revealed that radiomics features can predict a lack of response earlier than standard anatomic/RECIST 1.1 assessment and warrants further study and clinical validation.
Collapse
Affiliation(s)
| | | | - Priyanka Reddy
- Department of Medicine, Division of Hematology and Oncology, University Hospitals/Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Nathaniel Braman
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Siddharth Kunte
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Amit Gupta
- Department of Medicine, Division of Hematology and Oncology, University Hospitals/Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Jame Abraham
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Alberto J Montero
- Department of Medicine, Division of Hematology and Oncology, University Hospitals/Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Anant Madabhushi
- Department of Biomedical Engineering, Emory University, Atlanta, GA, USA.
- Atlanta VA Medical Center, Atlanta, GA, USA.
| |
Collapse
|
13
|
Pan X, Liu C, Feng T, Qi XS. A multi-objective based radiomics feature selection method for response prediction following radiotherapy. Phys Med Biol 2023; 68. [PMID: 36758241 DOI: 10.1088/1361-6560/acbadf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/09/2023] [Indexed: 02/11/2023]
Abstract
Objective.Radiomics contains a large amount of mineable information extracted from medical images, which has important significance in treatment response prediction for personalized treatment. Radiomics analyses generally involve high dimensions and redundant features, feature selection is essential for construction of prediction models.Approach.We proposed a novel multi-objective based radiomics feature selection method (MRMOPSO), where the number of features, sensitivity, and specificity are jointly considered as optimization objectives in feature selection. The MRMOPSO innovated in the following three aspects: (1) Fisher score to initialize the population to speed up the convergence; (2) Min-redundancy particle generation operations to reduce the redundancy between radiomics features, a truncation strategy was introduced to further reduce the number of features effectively; (3) Particle selection operations guided by elitism strategies to improve local search ability of the algorithm. We evaluated the effectiveness of the MRMOPSO by using a multi-institution oropharyngeal cancer dataset from The Cancer Imaging Archive. 357 patients were used for model training and cross validation, an additional 64 patients were used for evaluation.Main results.The area under the curve (AUC) of our method achieved AUCs of 0.82 and 0.84 for cross validation and independent dataset, respectively. Compared with classical feature selection methods, the AUC of MRMOPSO is significantly higher than the Lasso (AUC = 0.74,p-value = 0.02), minimal-redundancy-maximal-relevance criterion (mRMR) (AUC = 0.73,p-value = 0.05), F-score (AUC = 0.48,p-value < 0.01), and mutual information (AUC = 0.69,p-value < 0.01) methods. Compared to single-objective methods, the AUC of MRMOPSO is 12% higher than those of the genetic algorithm (GA) (AUC = 0.68,p-value = 0.02) and particle swarm optimization algorithm (AUC = 0.72,p-value = 0.05) methods. Compared to other multi-objective feature selection methods, the AUC of MRMOPSO is 14% higher than those of multiple objective particle swarm optimization (MOPSO) (AUC = 0.68,p-value = 0.02) and nondominated sorting genetic algorithm II (NSGA2) (AUC = 0.70,p-value = 0.03).Significance.We proposed a multi-objective based radiomics feature selection method. Compared to conventional feature reduction algorithms, the proposed algorithm effectively reduced feature dimension, and achieved superior performance, with improved sensitivity and specificity, for response prediction in radiotherapy.
Collapse
Affiliation(s)
- XiaoYing Pan
- School of Computer Science and Technology, Xi'an University of Posts and Telecommunications, Xi'an Shaanxi 710121, People's Republic of China.,Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing, Xi'an, Shaanxi 710121, People's Republic of China
| | - Chen Liu
- School of Computer Science and Technology, Xi'an University of Posts and Telecommunications, Xi'an Shaanxi 710121, People's Republic of China
| | - TianHao Feng
- School of Computer Science and Technology, Xi'an University of Posts and Telecommunications, Xi'an Shaanxi 710121, People's Republic of China
| | - X Sharon Qi
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA 90095, United States of America
| |
Collapse
|
14
|
Impact of Aggregation Methods for Texture Features on Their Robustness Performance: Application to Nasopharyngeal 18F-FDG PET/CT. Cancers (Basel) 2023; 15:cancers15030932. [PMID: 36765889 PMCID: PMC9913076 DOI: 10.3390/cancers15030932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
PURPOSE This study aims to investigate the impact of aggregation methods used for the generation of texture features on their robustness of nasopharyngeal carcinoma (NPC) based on 18F-FDG PET/CT images. METHODS 128 NPC patients were enrolled and 95 texture features were extracted for each patient including six feature families under different aggregation methods. For GLCM and GLRLM features, six aggregation methods were considered. For GLSZM, GLDZM, NGTDM and NGLDM features, three aggregation methods were considered. The robustness of the features affected by aggregation methods was assessed by the pair-wise intra-class correlation coefficient (ICC). Furthermore, the effects of discretization and partial volume correction (PVC) on the percent of ICC categories of all texture features were evaluated by overall ICC instead of the pair-wise ICC. RESULTS There were 12 features with excellent pair-wise ICCs varying aggregation methods, namely joint average, sum average, autocorrelation, long run emphasis, high grey level run emphasis, short run high grey level emphasis, long run high grey level emphasis, run length variance, SZM high grey level emphasis, DZM high grey level emphasis, high grey level count emphasis and dependence count percentage. For GLCM and GLRLM features, 19/25 and 14/16 features showed excellent pair-wise ICCs varying aggregation methods (averaged and merged) on the same dimensional features (2D, 2.5D or 3D). Different discretization levels and partial volume corrections lead to consistent robustness of textural features affected by aggregation methods. CONCLUSION Different dimensional features with the same aggregation methods showed worse robustness compared with the same dimensional features with different aggregation methods. Different discretization levels and PVC algorithms had a negligible effect on the percent of ICC categories of all texture features.
Collapse
|
15
|
Radiomics based on enhanced CT for differentiating between pulmonary tuberculosis and pulmonary adenocarcinoma presenting as solid nodules or masses. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04256-y. [PMID: 35939114 DOI: 10.1007/s00432-022-04256-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/02/2022] [Indexed: 10/15/2022]
Abstract
PURPOSE To investigate the incremental value of enhanced CT-based radiomics in discriminating between pulmonary tuberculosis (PTB) and pulmonary adenocarcinoma (PAC) presenting as solid nodules or masses and to develop an optimal radiomics model. METHODS A total of 128 lesions (from 123 patients) from three hospitals were retrospectively analyzed and were randomly divided into training and test datasets at a ratio of 7:3. Independent predictors in subjective image features were used to develop the subjective image model (SIM). The plain CT-based and enhanced CT-based radiomics features were screened by the correlation coefficient method, univariate analysis, and the least absolute shrinkage and selection operator, then used to build the plain CT radiomics model (PRM) and enhanced CT radiomics model (ERM), respectively. Finally, the combined model (CM) combining PRM and ERM was established. In addition, the performance of three radiologists and one respiratory physician was evaluated. The areas under the receiver operating characteristic curve (AUCs) were used to assess the performance of each model. RESULTS The differential diagnostic capability of the ERM (training: AUC = 0.933; test: AUC = 0.881) was better than that of the PRM (training: AUC = 0.861; test: AUC = 0.756) and the SIM (training: AUC = 0.760; test: AUC = 0.611). The CM was optimal (training: AUC = 0.948; test: AUC = 0.917) and outperformed the respiratory physician and most radiologists. CONCLUSIONS The ERM was more helpful than the PRM for identifying PTB and PAC that present as solid nodules or masses, and the CM was the best.
Collapse
|
16
|
Viswanathan VS, Khorrami M, Jazieh K, Fu P, Pennell N, Madabhushi A. Response to: Correspondence on 'Novel imaging biomarkers predict outcomes in stage III unresectable non-small cell lung cancer treated with chemoradiation and durvalumab' by Zheng et al. J Immunother Cancer 2022; 10:jitc-2022-005086. [PMID: 35640931 PMCID: PMC9157364 DOI: 10.1136/jitc-2022-005086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
| | | | - Khalid Jazieh
- Department of Internal Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Pingfu Fu
- Population and Quantitattive Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Nathan Pennell
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Anant Madabhushi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
17
|
Jazieh K, Khorrami M, Saad A, Gad M, Gupta A, Patil P, Viswanathan VS, Rajiah P, Nock CJ, Gilkey M, Fu P, Pennell NA, Madabhushi A. Novel imaging biomarkers predict outcomes in stage III unresectable non-small cell lung cancer treated with chemoradiation and durvalumab. J Immunother Cancer 2022; 10:e003778. [PMID: 35256515 PMCID: PMC8905876 DOI: 10.1136/jitc-2021-003778] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The landmark study of durvalumab as consolidation therapy in NSCLC patients (PACIFIC trial) demonstrated significantly longer progression-free survival (PFS) in patients with locally advanced, unresectable non-small cell lung cancer (NSCLC) treated with durvalumab (immunotherapy, IO) therapy after chemoradiotherapy (CRT). In clinical practice in the USA, durvalumab continues to be used in patients across all levels of programmed cell death ligand-1 (PD-L1) expression. While immune therapies have shown promise in several cancers, some patients either do not respond to the therapy or have cancer recurrence after an initial response. It is not clear so far who will benefit of this therapy or what the mechanisms behind treatment failure are. METHODS A total of 133 patients with unresectable stage III NSCLC who underwent durvalumab after CRT or CRT alone were included. Patients treated with durvalumab IO after CRT were randomly split into training (D1=59) and test (D2=59) sets and the remaining 15 patients treated with CRT alone were grouped in D3. Radiomic textural patterns from within and around the target nodules were extracted. A radiomic risk score (RRS) was built and was used to predict PFS and overall survival (OS). Patients were divided into high-risk and low-risk groups based on median RRS. RESULTS RRS was found to be significantly associated with PFS in D1 (HR=2.67, 95% CI 1.85 to 4.13, p<0.05, C-index=0.78) and D2 (HR=2.56, 95% CI 1.63 to 4, p<0.05, C-index=0.73). Similarly, RRS was associated with OS in D1 (HR=1.89, 95% CI 1.3 to 2.75, p<0.05, C-index=0.67) and D2 (HR=2.14, 95% CI 1.28 to 3.6, p<0.05, C-index=0.69), respectively. RRS was found to be significantly associated with PFS in high PD-L1 (HR=3.01, 95% CI 1.41 to 6.45, p=0.0044) and low PD-L1 (HR=2.74, 95% CI 1.8 to 4.14, p=1.77e-06) groups. Moreover, RRS was not significantly associated with OS in the high PD-L1 group (HR=2.08, 95% CI 0.98 to 4.4, p=0.054) but was significantly associated with OS in the low PD-L1 group (HR=1.61, 95% CI 1.14 to 2.28, p=0.0062). In addition, RRS was significantly associated with PFS (HR=2.77, 95% CI 1.17 to 6.52, p=0.019, C-index=0.77) and OS (HR=2.62, 95% CI 1.25 to 5.51, p=0.01, C-index=0.77) in D3, respectively. CONCLUSIONS Tumor radiomics of pretreatment CT images from patients with stage III unresectable NSCLC were prognostic of PFS and OS to CRT followed by durvalumab IO and CRT alone.
Collapse
Affiliation(s)
- Khalid Jazieh
- Department of Internal Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Mohammadhadi Khorrami
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Anas Saad
- Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Mohamed Gad
- Department of Internal Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Amit Gupta
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Pradnya Patil
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | - Charles J Nock
- Louis Stokes Cleveland VA Medical Center Mental Health Services, Cleveland, Ohio, USA
| | - Michael Gilkey
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Pingfu Fu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Nathan A Pennell
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Anant Madabhushi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Louis Stokes Cleveland VA Medical Center Mental Health Services, Cleveland, Ohio, USA
| |
Collapse
|
18
|
Kong J, Zheng J, Wu J, Wu S, Cai J, Diao X, Xie W, Chen X, Yu H, Huang L, Fang H, Fan X, Qin H, Li Y, Wu Z, Huang J, Lin T. Development of a radiomics model to diagnose pheochromocytoma preoperatively: a multicenter study with prospective validation. J Transl Med 2022; 20:31. [PMID: 35033104 PMCID: PMC8760711 DOI: 10.1186/s12967-022-03233-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/05/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Preoperative diagnosis of pheochromocytoma (PHEO) accurately impacts preoperative preparation and surgical outcome in PHEO patients. Highly reliable model to diagnose PHEO is lacking. We aimed to develop a magnetic resonance imaging (MRI)-based radiomic-clinical model to distinguish PHEO from adrenal lesions. METHODS In total, 305 patients with 309 adrenal lesions were included and divided into different sets. The least absolute shrinkage and selection operator (LASSO) regression model was used for data dimension reduction, feature selection, and radiomics signature building. In addition, a nomogram incorporating the obtained radiomics signature and selected clinical predictors was developed by using multivariable logistic regression analysis. The performance of the radiomic-clinical model was assessed with respect to its discrimination, calibration, and clinical usefulness. RESULTS Seven radiomics features were selected among the 1301 features obtained as they could differentiate PHEOs from other adrenal lesions in the training (area under the curve [AUC], 0.887), internal validation (AUC, 0.880), and external validation cohorts (AUC, 0.807). Predictors contained in the individualized prediction nomogram included the radiomics signature and symptom number (symptoms include headache, palpitation, and diaphoresis). The training set yielded an AUC of 0.893 for the nomogram, which was confirmed in the internal and external validation sets with AUCs of 0.906 and 0.844, respectively. Decision curve analyses indicated the nomogram was clinically useful. In addition, 25 patients with 25 lesions were recruited for prospective validation, which yielded an AUC of 0.917 for the nomogram. CONCLUSION We propose a radiomic-based nomogram incorporating clinically useful signatures as an easy-to-use, predictive and individualized tool for PHEO diagnosis.
Collapse
Affiliation(s)
- Jianqiu Kong
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Junjiong Zheng
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Jieying Wu
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Shaoxu Wu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Jinhua Cai
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Xiayao Diao
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Weibin Xie
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Xiong Chen
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Hao Yu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Lifang Huang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Hongpeng Fang
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Xinxiang Fan
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Haide Qin
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Yong Li
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Zhuo Wu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Jian Huang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China.
- State Key Laboratory of Oncology in South China, Guangzhou, 510120, Guangdong, People's Republic of China.
| | - Tianxin Lin
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China.
- State Key Laboratory of Oncology in South China, Guangzhou, 510120, Guangdong, People's Republic of China.
| |
Collapse
|
19
|
Labarbera MA, Atta-Fosu T, Feeny AK, Firouznia M, Mchale M, Cantlay C, Roach T, Axtell A, Schoenhagen P, Barnard J, Smith JD, Van Wagoner DR, Madabhushi A, Chung MK. New Radiomic Markers of Pulmonary Vein Morphology Associated With Post-Ablation Recurrence of Atrial Fibrillation. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2021; 10:1800209. [PMID: 34976444 PMCID: PMC8716081 DOI: 10.1109/jtehm.2021.3134160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/08/2021] [Accepted: 11/22/2021] [Indexed: 11/30/2022]
Abstract
Objective: To identify radiomic and clinical features associated with post-ablation recurrence of AF, given that cardiac morphologic changes are associated with persistent atrial fibrillation (AF), and initiating triggers of AF often arise from the pulmonary veins which are targeted in ablation. Methods: Subjects with pre-ablation contrast CT scans prior to first-time catheter ablation for AF between 2014-2016 were retrospectively identified. A training dataset (D1) was constructed from left atrial and pulmonary vein morphometric features extracted from equal numbers of consecutively included subjects with and without AF recurrence determined at 1 year. The top-performing combination of feature selection and classifier methods based on C-statistic was evaluated on a validation dataset (D2), composed of subjects retrospectively identified between 2005-2010. Clinical models ([Formula: see text]) were similarly evaluated and compared to radiomic ([Formula: see text]) and radiomic-clinical models ([Formula: see text]), each independently validated on D2. Results: Of 150 subjects in D1, 108 received radiofrequency ablation and 42 received cryoballoon. Radiomic features of recurrence included greater right carina angle, reduced anterior-posterior atrial diameter, greater atrial volume normalized to height, and steeper right inferior pulmonary vein angle. Clinical features predicting recurrence included older age, greater BMI, hypertension, and warfarin use; apixaban use was associated with reduced recurrence. AF recurrence was predicted with radio-frequency ablation models on D2 subjects with C-statistics of 0.68, 0.63, and 0.70 for radiomic, clinical, and combined feature models, though these were not prognostic in patients treated with cryoballoon. Conclusions: Pulmonary vein morphology associated with increased likelihood of AF recurrence within 1 year of catheter ablation was identified on cardiac CT. Significance: Radiomic and clinical features-based predictive models may assist in identifying atrial fibrillation ablation candidates with greatest likelihood of successful outcome.
Collapse
Affiliation(s)
- Michael A. Labarbera
- Cleveland Clinic Lerner College of MedicineCase Western Reserve UniversityClevelandOH44106USA
| | - Thomas Atta-Fosu
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOH44106USA
| | - Albert K. Feeny
- Cleveland Clinic Lerner College of MedicineCase Western Reserve UniversityClevelandOH44106USA
| | - Marjan Firouznia
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOH44106USA
| | - Meghan Mchale
- Department of Cardiovascular and Metabolic SciencesLerner Research Institute, Cleveland ClinicClevelandOH44106USA
| | - Catherine Cantlay
- Department of Cardiovascular and Metabolic SciencesLerner Research Institute, Cleveland ClinicClevelandOH44106USA
| | - Tyler Roach
- Department of Cardiovascular and Metabolic SciencesLerner Research Institute, Cleveland ClinicClevelandOH44106USA
| | - Alexis Axtell
- Department of Cardiovascular and Metabolic SciencesLerner Research Institute, Cleveland ClinicClevelandOH44106USA
| | - Paul Schoenhagen
- Department of Cardiovascular Medicine, Heart, VascularThoracic Institute, Cleveland ClinicClevelandOH44106USA
| | - John Barnard
- Department of Quantitative Health SciencesLerner Research Institute, Cleveland ClinicClevelandOH44106USA
| | - Jonathan D. Smith
- Department of Cardiovascular and Metabolic SciencesLerner Research Institute, Cleveland ClinicClevelandOH44106USA
| | - David R. Van Wagoner
- Department of Cardiovascular and Metabolic SciencesLerner Research Institute, Cleveland ClinicClevelandOH44106USA
| | - Anant Madabhushi
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOH44106USA
- Louis Stokes Cleveland Veterans Administration Medical CenterClevelandOH44106USA
| | - Mina K. Chung
- Department of Cardiovascular and Metabolic SciencesLerner Research Institute, Cleveland ClinicClevelandOH44106USA
- Department of Cardiovascular Medicine, Heart, VascularThoracic Institute, Cleveland ClinicClevelandOH44106USA
| |
Collapse
|
20
|
Jain P, Khorrami M, Gupta A, Rajiah P, Bera K, Viswanathan VS, Fu P, Dowlati A, Madabhushi A. Novel Non-Invasive Radiomic Signature on CT Scans Predicts Response to Platinum-Based Chemotherapy and Is Prognostic of Overall Survival in Small Cell Lung Cancer. Front Oncol 2021; 11:744724. [PMID: 34745966 PMCID: PMC8564480 DOI: 10.3389/fonc.2021.744724] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/29/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Small cell lung cancer (SCLC) is an aggressive malignancy characterized by initial chemosensitivity followed by resistance and rapid progression. Presently, there are no predictive biomarkers that can accurately guide the use of systemic therapy in SCLC patients. This study explores the role of radiomic features from both within and around the tumor lesion on pretreatment CT scans to a) prognosticate overall survival (OS) and b) predict response to chemotherapy. METHODS One hundred fifty-three SCLC patients who had received chemotherapy were included. Lung tumors were contoured by an expert reader. The patients were divided randomly into approximately equally sized training (Str = 77) and test sets (Ste = 76). Textural descriptors were extracted from the nodule (intratumoral) and parenchymal regions surrounding the nodule (peritumoral). The clinical endpoints of this study were OS, progression-free survival (PFS), and best objective response to chemotherapy. Patients with complete or partial response were defined as "responders," and those with stable or progression of disease were defined as "non-responders." The radiomic risk score (RRS) was generated by using the least absolute shrinkage and selection operator (LASSO) with the Cox regression model. Patients were classified into the high-risk or low-risk groups based on the median of RRS. Association of the radiomic signature with OS was evaluated on Str and then tested on Ste. The features identified by LASSO were then used to train a linear discriminant analysis (LDA) classifier (MRad) to predict response to chemotherapy. A prognostic nomogram (NRad+Clin) was also developed on Str by combining clinical and prognostic radiomic features and validated on Ste. The Kaplan-Meier survival analysis and log-rank statistical tests were performed to assess the discriminative ability of the features. The discrimination performance of the NRad+Clin was assessed by Harrell's C-index. To estimate the clinical utility of the nomogram, decision curve analysis (DCA) was performed by calculating the net benefits for a range of threshold probabilities in predicting which high-risk patients should receive more aggressive treatment as compared with the low-risk patients. RESULTS A univariable Cox regression analysis indicated that RRS was significantly associated with OS in Str (HR: 1.53; 95% CI, [1.1-2.2; p = 0.021]; C-index = 0.72) and Ste (HR: 1.4, [1.1-1.82], p = 0.0127; C-index = 0.69). The RRS was also significantly associated with PFS in Str (HR: 1.89, [1.4-4.61], p = 0.047; C-index = 0.7) and Ste (HR: 1.641, [1.1-2.77], p = 0.04; C-index = 0.67). MRad was able to predict response to chemotherapy with an area under the receiver operating characteristic curve (AUC) of 0.76 ± 0.03 within Str and 0.72 within Ste. Predictors, including the RRS, gender, age, stage, and smoking status, were used in the prognostic nomogram. The discrimination ability of the NRad+Clin model on Str and Ste was C-index [95% CI]: 0.68 [0.66-0.71] and 0.67 [0.63-0.69], respectively. DCA indicated that the NRad+Clin model was clinically useful. CONCLUSIONS Radiomic features extracted within and around the lung tumor on CT images were both prognostic of OS and predictive of response to chemotherapy in SCLC patients.
Collapse
Affiliation(s)
- Prantesh Jain
- Department of Hematology and Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Mohammadhadi Khorrami
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Amit Gupta
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Prabhakar Rajiah
- Department of Radiology, Mayo Clinic Minnesota, Rochester, MN, United States
| | - Kaustav Bera
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Vidya Sankar Viswanathan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Pingfu Fu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University (CWRU), Cleveland, OH, United States
| | - Afshin Dowlati
- Department of Hematology and Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Anant Madabhushi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Louis Stokes Cleveland Veterans Administration Medical Center, Cleveland, OH, United States
| |
Collapse
|
21
|
Caruso D, Polici M, Zerunian M, Pucciarelli F, Guido G, Polidori T, Landolfi F, Nicolai M, Lucertini E, Tarallo M, Bracci B, Nacci I, Rucci C, Eid M, Iannicelli E, Laghi A. Radiomics in Oncology, Part 2: Thoracic, Genito-Urinary, Breast, Neurological, Hematologic and Musculoskeletal Applications. Cancers (Basel) 2021; 13:cancers13112681. [PMID: 34072366 PMCID: PMC8197789 DOI: 10.3390/cancers13112681] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/08/2023] Open
Abstract
Simple Summary This Part II is an overview of the main applications of Radiomics in oncologic imaging with a focus on diagnosis, prognosis prediction and assessment of response to therapy in thoracic, genito-urinary, breast, neurologic, hematologic and musculoskeletal oncology. In this part II we describe the radiomic applications, limitations and future perspectives for each pre-eminent tumor. In the future, Radiomics could have a pivotal role in management of cancer patients as an imaging tool to support clinicians in decision making process. However, further investigations need to obtain some stable results and to standardize radiomic analysis (i.e., image acquisitions, segmentation and model building) in clinical routine. Abstract Radiomics has the potential to play a pivotal role in oncological translational imaging, particularly in cancer detection, prognosis prediction and response to therapy evaluation. To date, several studies established Radiomics as a useful tool in oncologic imaging, able to support clinicians in practicing evidence-based medicine, uniquely tailored to each patient and tumor. Mineable data, extracted from medical images could be combined with clinical and survival parameters to develop models useful for the clinicians in cancer patients’ assessment. As such, adding Radiomics to traditional subjective imaging may provide a quantitative and extensive cancer evaluation reflecting histologic architecture. In this Part II, we present an overview of radiomic applications in thoracic, genito-urinary, breast, neurological, hematologic and musculoskeletal oncologic applications.
Collapse
Affiliation(s)
- Damiano Caruso
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (D.C.); (M.P.); (M.Z.); (F.P.); (G.G.); (T.P.); (F.L.); (M.N.); (E.L.); (B.B.); (I.N.); (C.R.); (E.I.)
| | - Michela Polici
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (D.C.); (M.P.); (M.Z.); (F.P.); (G.G.); (T.P.); (F.L.); (M.N.); (E.L.); (B.B.); (I.N.); (C.R.); (E.I.)
| | - Marta Zerunian
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (D.C.); (M.P.); (M.Z.); (F.P.); (G.G.); (T.P.); (F.L.); (M.N.); (E.L.); (B.B.); (I.N.); (C.R.); (E.I.)
| | - Francesco Pucciarelli
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (D.C.); (M.P.); (M.Z.); (F.P.); (G.G.); (T.P.); (F.L.); (M.N.); (E.L.); (B.B.); (I.N.); (C.R.); (E.I.)
| | - Gisella Guido
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (D.C.); (M.P.); (M.Z.); (F.P.); (G.G.); (T.P.); (F.L.); (M.N.); (E.L.); (B.B.); (I.N.); (C.R.); (E.I.)
| | - Tiziano Polidori
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (D.C.); (M.P.); (M.Z.); (F.P.); (G.G.); (T.P.); (F.L.); (M.N.); (E.L.); (B.B.); (I.N.); (C.R.); (E.I.)
| | - Federica Landolfi
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (D.C.); (M.P.); (M.Z.); (F.P.); (G.G.); (T.P.); (F.L.); (M.N.); (E.L.); (B.B.); (I.N.); (C.R.); (E.I.)
| | - Matteo Nicolai
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (D.C.); (M.P.); (M.Z.); (F.P.); (G.G.); (T.P.); (F.L.); (M.N.); (E.L.); (B.B.); (I.N.); (C.R.); (E.I.)
| | - Elena Lucertini
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (D.C.); (M.P.); (M.Z.); (F.P.); (G.G.); (T.P.); (F.L.); (M.N.); (E.L.); (B.B.); (I.N.); (C.R.); (E.I.)
| | - Mariarita Tarallo
- Department of Surgery “Pietro Valdoni”, Sapienza University of Rome, 00161 Rome, Italy;
| | - Benedetta Bracci
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (D.C.); (M.P.); (M.Z.); (F.P.); (G.G.); (T.P.); (F.L.); (M.N.); (E.L.); (B.B.); (I.N.); (C.R.); (E.I.)
| | - Ilaria Nacci
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (D.C.); (M.P.); (M.Z.); (F.P.); (G.G.); (T.P.); (F.L.); (M.N.); (E.L.); (B.B.); (I.N.); (C.R.); (E.I.)
| | - Carlotta Rucci
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (D.C.); (M.P.); (M.Z.); (F.P.); (G.G.); (T.P.); (F.L.); (M.N.); (E.L.); (B.B.); (I.N.); (C.R.); (E.I.)
| | - Marwen Eid
- Internal Medicine, Northwell Health Staten Island University Hospital, Staten Island, New York, NY 10305, USA;
| | - Elsa Iannicelli
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (D.C.); (M.P.); (M.Z.); (F.P.); (G.G.); (T.P.); (F.L.); (M.N.); (E.L.); (B.B.); (I.N.); (C.R.); (E.I.)
| | - Andrea Laghi
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (D.C.); (M.P.); (M.Z.); (F.P.); (G.G.); (T.P.); (F.L.); (M.N.); (E.L.); (B.B.); (I.N.); (C.R.); (E.I.)
- Correspondence: ; Tel.: +39-0633775285
| |
Collapse
|