1
|
Michel A, Rauschenbach L, Karadachi H, Gümüs M, Ahmadipour Y, Darkwah Oppong M, Pöttgen C, Hense J, Özkan N, Wrede KH, Dammann P, Sure U, Jabbarli R. Surgical treatment of multiple breast cancer brain metastases: clinical characteristics and factors impacting postoperative survival. J Neurooncol 2025:10.1007/s11060-025-05048-3. [PMID: 40299246 DOI: 10.1007/s11060-025-05048-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Accepted: 04/11/2025] [Indexed: 04/30/2025]
Abstract
PURPOSE Breast cancer (BC) is one of the most common primary tumor entities that develop brain metastases (BM) during disease progression. Multiple BM are associated with poorer prognosis, but various surgical, radiotherapeutic and systemic treatment approaches improve survival. We aimed to identify prognostic factors and evaluate the overall survival following BM surgery in patients with multiple BCBM. METHODS All metachronous metastasized female patients with resected BCBM at our institution between 2008 and 2019 were included. Data on clinical, radiologic, and histopathologic parameters were recorded and analyzed using univariate and multivariate regression models. RESULTS Among the 93 patients included in the final analysis, 30 individuals presented with multiple BM. Compared to patients with single BM, those with multiple BM were more likely to have infratentorial BM (adjusted odds ratio [aOR] 3.35, 95% confidence interval [CI] 1.03-10.83, p = 0.044), HER2(human epidermal growth factor receptor 2)-positive BC (aOR 3.93, 95% CI 1.23-12.53, p = 0.021) and hepatic metastases (aOR 5.86, 95% CI 1.34-25.61, p = 0.019). There was no significant difference in postoperative survival between individuals with multiple (median: 12.5 months) and single BM (17.0 months, p = 0.186). In the multivariate Cox regression analysis, adjuvant radiotherapy (adjusted hazard ratio [aHR] 5.93, 95% CI 1.06-33.26, p = 0.043) and trastuzumab treatment (aHR 4.95, 95% CI 1.72-14.25, p = 0.003) were associated with longer postoperative survival multiple BCBM patients. CONCLUSION BC patients with multiple BM show remarkable postoperative survival, particularly if combined with adjuvant radiotherapy. Our data justify the surgery of multiple BCBM in patients with appropriate clinical condition and feasible location of BM.
Collapse
Affiliation(s)
- Anna Michel
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany.
- Center for Translational Neuro‑ & Behavioral Sciences (C‑TNBS), University Duisburg Essen, Essen, Germany.
- German Cancer Consortium (DKTK) Partner Site, University Hospital Essen, 45147, Essen, Germany.
| | - Laurèl Rauschenbach
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
- Center for Translational Neuro‑ & Behavioral Sciences (C‑TNBS), University Duisburg Essen, Essen, Germany
- German Cancer Consortium (DKTK) Partner Site, University Hospital Essen, 45147, Essen, Germany
- German Cancer Research Center (DKFZ) Division Translational Neurooncology at the West German Cancer Center (WTZ), DKTK Partner Site, University Hospital Essen, Essen, Germany
| | - Hanah Karadachi
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
- Center for Translational Neuro‑ & Behavioral Sciences (C‑TNBS), University Duisburg Essen, Essen, Germany
- German Cancer Consortium (DKTK) Partner Site, University Hospital Essen, 45147, Essen, Germany
| | - Meltem Gümüs
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
- Center for Translational Neuro‑ & Behavioral Sciences (C‑TNBS), University Duisburg Essen, Essen, Germany
- German Cancer Consortium (DKTK) Partner Site, University Hospital Essen, 45147, Essen, Germany
| | - Yahya Ahmadipour
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
- Center for Translational Neuro‑ & Behavioral Sciences (C‑TNBS), University Duisburg Essen, Essen, Germany
- German Cancer Consortium (DKTK) Partner Site, University Hospital Essen, 45147, Essen, Germany
| | - Marvin Darkwah Oppong
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
- Center for Translational Neuro‑ & Behavioral Sciences (C‑TNBS), University Duisburg Essen, Essen, Germany
- German Cancer Consortium (DKTK) Partner Site, University Hospital Essen, 45147, Essen, Germany
| | - Christoph Pöttgen
- German Cancer Consortium (DKTK) Partner Site, University Hospital Essen, 45147, Essen, Germany
- Department of Radiotherapy, University Hospital Essen, Essen, Germany
| | - Jörg Hense
- German Cancer Consortium (DKTK) Partner Site, University Hospital Essen, 45147, Essen, Germany
- Department of Medical Oncology, University Hospital Essen, Essen, Germany
| | - Neriman Özkan
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
- Center for Translational Neuro‑ & Behavioral Sciences (C‑TNBS), University Duisburg Essen, Essen, Germany
- German Cancer Consortium (DKTK) Partner Site, University Hospital Essen, 45147, Essen, Germany
| | - Karsten H Wrede
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
- Center for Translational Neuro‑ & Behavioral Sciences (C‑TNBS), University Duisburg Essen, Essen, Germany
- German Cancer Consortium (DKTK) Partner Site, University Hospital Essen, 45147, Essen, Germany
| | - Philipp Dammann
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
- Center for Translational Neuro‑ & Behavioral Sciences (C‑TNBS), University Duisburg Essen, Essen, Germany
- German Cancer Consortium (DKTK) Partner Site, University Hospital Essen, 45147, Essen, Germany
| | - Ulrich Sure
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
- Center for Translational Neuro‑ & Behavioral Sciences (C‑TNBS), University Duisburg Essen, Essen, Germany
- German Cancer Consortium (DKTK) Partner Site, University Hospital Essen, 45147, Essen, Germany
| | - Ramazan Jabbarli
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
- Center for Translational Neuro‑ & Behavioral Sciences (C‑TNBS), University Duisburg Essen, Essen, Germany
- German Cancer Consortium (DKTK) Partner Site, University Hospital Essen, 45147, Essen, Germany
| |
Collapse
|
2
|
Westphal M, Drexler R, Maire C, Ricklefs F, Lamszus K. Cancer neuroscience and glioma: clinical implications. Acta Neurochir (Wien) 2025; 167:2. [PMID: 39752006 PMCID: PMC11698767 DOI: 10.1007/s00701-024-06406-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025]
Abstract
In recent years, it has been increasingly recognized that tumor growth relies not only on support from the surrounding microenvironment but also on the tumors capacity to adapt to - and actively manipulate - its niche. While targeting angiogenesis and modulating the local immune environment have been explored as therapeutic approaches, these strategies have yet to yield effective treatments for brain tumors and remain under refinement. More recently, the nervous system itself has been explored as a critical environmental support for cancer, with extensive neuro-tumoral interactions observed both intracranially and in extracranial sites containing neural components. In the brain, interactions between glioma cells as well as metastatic lesions with neural components have clinical implications for diagnostics, risk assessments, neurological sequelae, and the development of innovative therapeutics. Here, we review these neuro-tumoral dynamics, emphasizing aspects relevant to neurosurgical practice.
Collapse
Affiliation(s)
- Manfred Westphal
- Institute for Tumorbiology, University Hospital Hamburg Eppendorf, W29 - R34, Hamburg, 20246, Germany.
| | - Richard Drexler
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Cecile Maire
- Department of Neurosurgery, University Hospital Eppendorf, Hamburg, Germany
| | - Franz Ricklefs
- Department of Neurosurgery, University Hospital Eppendorf, Hamburg, Germany
| | - Katrin Lamszus
- Department of Neurosurgery, University Hospital Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
Le Rhun E, Albert NL, Hüllner M, Franceschi E, Galldiks N, Karschnia P, Minniti G, Weiss T, Preusser M, Ellingson BM, Weller M. Targeted radionuclide therapy for patients with central nervous system metastasis: Overlooked potential? Neuro Oncol 2024; 26:S229-S241. [PMID: 39351771 PMCID: PMC11631097 DOI: 10.1093/neuonc/noae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Targeted radionuclide therapy is an emerging therapeutic concept for metastatic cancer that can be considered if a tumor can be delineated by nuclear medicine imaging and also targeted based on the expression of a particular target (thera-nostics). This mode of treatment can also compete with or supplement conventional radiotherapy, for example, if MRI does not fully capture the extent of the disease, including microscopic metastases. Targeted radionuclide therapy for patients with thyroid cancer, with certain somatostatin receptor 2-expressing tumors and with prostate-specific membrane antigen-expressing prostate cancer is approved, and numerous approaches of targeted radionuclide therapy for patients with metastatic cancer are in development (eg, using fibroblast activation protein as a target). Although brain metastases are rare in cancers with approved targeted radionuclide therapies, there is no a priori reason to assume that such treatments would not be effective against brain metastases if the targets are expressed and not shielded by the blood-brain barrier. Here, we discuss the current state of the art and opportunities of targeted radionuclide therapies for patients with brain and leptomeningeal metastases.
Collapse
Affiliation(s)
- Emilie Le Rhun
- Department of Medical Oncology and Hematology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Nathalie L Albert
- Department of Nuclear Medicine, Ludwig Maximilians-University of Munich, Munich, Germany
| | - Martin Hüllner
- Department of Nuclear Medicine, University Hospital and University of Zurich, Zurich, Switzerland
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy
| | - Norbert Galldiks
- Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany
- Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Juelich, Germany
- Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philipp Karschnia
- German Cancer Consortium, Partner Site Munich, Munich, Germany
- Department of Neurosurgery, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Giuseppe Minniti
- IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University, Rome, Italy
| | - Tobias Weiss
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Matthias Preusser
- Department of Medicine I, Division of Oncology, and Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Weller M, Remon J, Rieken S, Vollmuth P, Ahn MJ, Minniti G, Le Rhun E, Westphal M, Brastianos PK, Soo RA, Kirkpatrick JP, Goldberg SB, Öhrling K, Hegi-Johnson F, Hendriks LEL. Central nervous system metastases in advanced non-small cell lung cancer: A review of the therapeutic landscape. Cancer Treat Rev 2024; 130:102807. [PMID: 39151281 DOI: 10.1016/j.ctrv.2024.102807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/19/2024]
Abstract
Up to 40% of patients with non-small cell lung cancer (NSCLC) develop central nervous system (CNS) metastases. Current treatments for this subgroup of patients with advanced NSCLC include local therapies (surgery, stereotactic radiosurgery, and, less frequently, whole-brain radiotherapy), targeted therapies for oncogene-addicted NSCLC (small molecules, such as tyrosine kinase inhibitors, and antibody-drug conjugates), and immune checkpoint inhibitors (as monotherapy or combination therapy), with multiple new drugs in development. However, confirming the intracranial activity of these treatments has proven to be challenging, given that most lung cancer clinical trials exclude patients with untreated and/or progressing CNS metastases, or do not include prespecified CNS-related endpoints. Here we review progress in the treatment of patients with CNS metastases originating from NSCLC, examining local treatment options, systemic therapies, and multimodal therapeutic strategies. We also consider challenges regarding assessment of treatment response and provide thoughts around future directions for managing CNS disease in patients with advanced NSCLC.
Collapse
Affiliation(s)
- Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland.
| | - Jordi Remon
- Paris-Saclay University, Department of Cancer Medicine, Gustave Roussy, Villejuif, France.
| | - Stefan Rieken
- Department of Radiation Oncology, University Hospital Göttingen (UMG), Göttingen, Germany; Comprehensive Cancer Center Lower Saxony (CCC-N), University Hospital Göttingen (UMG), Göttingen, Germany.
| | - Philipp Vollmuth
- Division for Computational Radiology & Clinical AI, Clinic for Neuroradiology, University Hospital Bonn, Bonn, Germany; Division for Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Myung-Ju Ahn
- Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Giuseppe Minniti
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy.
| | - Emilie Le Rhun
- Departments of Neurosurgery and Neurology, University Hospital and University of Zurich, Zurich, Switzerland.
| | - Manfred Westphal
- Department of Neurosurgery and Institute for Tumor Biology, University Hospital Hamburg-Eppendorf, Hamburg, Germany.
| | | | - Ross A Soo
- Department of Hematology-Oncology, National University Hospital, Singapore, Singapore.
| | - John P Kirkpatrick
- Departments of Radiation Oncology and Neurosurgery, Duke University, Durham, NC, USA.
| | - Sarah B Goldberg
- Department of Medicine (Medical Oncology), Yale School of Medicine, Yale Cancer Center, New Haven, CT, USA.
| | | | - Fiona Hegi-Johnson
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Australia; Sir Peter MacCallum Department of Clinical Oncology, University of Melbourne, Melbourne, Australia.
| | - Lizza E L Hendriks
- Department of Respiratory Medicine, Maastricht University Medical Centre, GROW School for Oncology and Reproduction, Maastricht, Netherlands.
| |
Collapse
|
5
|
Bellomo J, Zeitlberger AM, Padevit L, Stumpo V, Gönel M, Fierstra J, Nierobisch N, Reimann R, Witzel I, Weller M, Le Rhun E, Bozinov O, Regli L, Neidert MC, Serra C, Voglis S. Role of microsurgical tumor burden reduction in patients with breast cancer brain metastases considering molecular subtypes: a two-center volumetric survival analysis. J Neurooncol 2024; 169:379-390. [PMID: 38829577 PMCID: PMC11341656 DOI: 10.1007/s11060-024-04728-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Advancements in metastatic breast cancer (BC) treatment have enhanced overall survival (OS), leading to increased rates of brain metastases (BM). This study analyzes the association between microsurgical tumor reduction and OS in patients with BCBM, considering tumor molecular subtypes and perioperative treatment approaches. METHODS Retrospective analysis of surgically treated patients with BCBM from two tertiary brain tumor Swiss centers. The association of extent of resection (EOR), gross-total resection (GTR) achievement, and postoperative residual tumor volume (RV) with OS and intracranial progression-free survival (IC-PFS) was evaluated using Cox proportional hazard model. RESULTS 101 patients were included in the final analysis, most patients (38%) exhibited HER2-/HR + BC molecular subtype, followed by HER2 + /HR + (25%), HER2-/HR- (21%), and HER2 + /HR- subtypes (13%). The majority received postoperative systemic treatment (75%) and radiotherapy (84%). Median OS and intracranial PFS were 22 and 8 months, respectively. The mean pre-surgery intracranial tumor volume was 26 cm3, reduced to 3 cm3 post-surgery. EOR, GTR achievement and RV were not significantly associated with OS or IC-PFS, but higher EOR and lower RV correlated with extended OS in patients without extracranial metastases. HER2-positive tumor status was associated with longer OS, extracranial metastases at BM diagnosis and symptomatic lesions with shorter OS and IC-PFS. CONCLUSIONS Our study found that BC molecular subtypes, extracranial disease status, and BM-related symptoms were associated with OS in surgically treated patients with BCBM. Additionally, while extensive resection to minimize residual tumor volume did not significantly affect OS across the entire cohort, it appeared beneficial for patients without extracranial metastases.
Collapse
Affiliation(s)
- Jacopo Bellomo
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland
| | | | - Luis Padevit
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland
| | - Vittorio Stumpo
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland
| | - Meltem Gönel
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland
| | - Jorn Fierstra
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland
| | - Nathalie Nierobisch
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Regina Reimann
- Institute of Neuropathology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Isabell Witzel
- Department of Gynecology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Emilie Le Rhun
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Oliver Bozinov
- Department of Neurosurgery, Cantonal Hospital St, Gallen, St. Gallen, Switzerland
| | - Luca Regli
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland
| | | | - Carlo Serra
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland
| | - Stefanos Voglis
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland.
| |
Collapse
|
6
|
Liu Y, Liu J, Wu X, Jiang E. Risk Factors for Central Nervous System Infections After Craniotomy. J Multidiscip Healthc 2024; 17:3637-3648. [PMID: 39100899 PMCID: PMC11296514 DOI: 10.2147/jmdh.s476125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/14/2024] [Indexed: 08/06/2024] Open
Abstract
The central nervous system (CNS) is less prone to infection owing to protection from the brain-blood barrier. However, craniotomy destroys this protection and increases the risk of infection in the brain of patients who have undergone craniotomy. CNS infection after craniotomy significantly increases the patient's mortality rate and disability. Controlling the occurrence of intracranial infection is very important for post-craniotomy patients. CNS infection after craniotomy is caused by several factors such as preoperative, intraoperative, and post-operative factors. Craniotomy may lead to postsurgical intracranial infection, which is mainly associated with surgery duration, infratentorial (posterior fossa) surgery, cerebrospinal fluid leakage, drainage tube placement, unregulated use of antibiotics, glucocorticoid use, age, diabetes, and other systemic infections. Understanding the risk factors of CNS infection after craniotomy can benefit reducing the incidence of intracranial infectious diseases. This will also provide the necessary guidance and evidence in clinical practice for planning to control intracranial infection in patients with craniotomy.
Collapse
Affiliation(s)
- Yufeng Liu
- Department of Cardiovascular Medicine, Luoyang Central Hospital affiliated to Zhengzhou University, Luoyang, Henan, 471000, People’s Republic of China
| | - Jie Liu
- Department of Cardiovascular Medicine, Luoyang Central Hospital affiliated to Zhengzhou University, Luoyang, Henan, 471000, People’s Republic of China
| | - Xiaoyan Wu
- Department of Cardiovascular Medicine, Luoyang Central Hospital affiliated to Zhengzhou University, Luoyang, Henan, 471000, People’s Republic of China
| | - Enshe Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Henan University, Kaifeng, Henan, 475004, People’s Republic of China
- Institute of Nursing and Health, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| |
Collapse
|
7
|
Liu X, Du P, Dai Z, Yi R, Liu W, Wu H, Geng D, Liu J. SRTRP-Net: A multi-task learning network for segmentation and prediction of stereotactic radiosurgery treatment response in brain metastases. Comput Biol Med 2024; 175:108503. [PMID: 38688125 DOI: 10.1016/j.compbiomed.2024.108503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/30/2024] [Accepted: 04/21/2024] [Indexed: 05/02/2024]
Abstract
Before the Stereotactic Radiosurgery (SRS) treatment, it is of great clinical significance to avoid secondary genetic damage and guide the personalized treatment plans for patients with brain metastases (BM) by predicting the response to SRS treatment of brain metastatic lesions. Thus, we developed a multi-task learning model termed SRTRP-Net to provide prior knowledge of BM ROI and predict the SRS treatment response of the lesion. In dual-encoder tumor segmentation Network (DTS-Net), two parallel encoders encode the original and mirrored multi-modal MRI images. The differences in the dual-encoder features between foreground and background are enhanced by the symmetrical visual difference block (SVDB). In the bottom layer of the encoder, a transformer is used to extract local contextual features in the spatial and depth dimensions of low-resolution images. Then, the decoder of DTS-Net provides the prior knowledge for predicting the response to SRS treatment by performing BM segmentation. SRS response prediction network (SRP-Net) directly utilizes shared multi-modal MRI features weighted by the signed distance map (SDM) of the masks. The bidirectional multi-dimensional feature fusion module (BMDF) fuses the shared features and the clinical text information features to obtain comprehensive tumor information for characterizing tumors and predicting SRS treatment response. Experiments based on internal and external clinical datasets have shown that SRTRP-Net achieves comparable or better results. We believe that SRTRP-Net can help clinicians accurately develop personalized first-time treatment regimens for BM patients and improve their survival.
Collapse
Affiliation(s)
- Xiao Liu
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100089, China.
| | - Peng Du
- Department of Radiology, the Second Affiliated Hospital of Xuzhou Medical University, Jiangsu, 221000, China.
| | - Zhiguang Dai
- CSSC Systems Engineering Research Institute, Beijing, 100094, China.
| | - Rumeng Yi
- CSSC Systems Engineering Research Institute, Beijing, 100094, China.
| | - Weifan Liu
- College of Science, Beijing Forestry University, Beijing, 100089, China.
| | - Hao Wu
- Huashan Hospital, Fudan University, Shanghai, 200020, China.
| | - Daoying Geng
- Huashan Hospital, Fudan University, Shanghai, 200020, China.
| | - Jie Liu
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100089, China.
| |
Collapse
|
8
|
Du P, Liu X, Xiang R, Lv K, Chen H, Liu W, Cao A, Chen L, Wang X, Yu T, Ding J, Li W, Li J, Li Y, Yu Z, Zhu L, Liu J, Geng D. Development and validation of a radiomics-based prediction pipeline for the response to stereotactic radiosurgery therapy in brain metastases. Eur Radiol 2023; 33:8925-8935. [PMID: 37505244 DOI: 10.1007/s00330-023-09930-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 03/31/2023] [Accepted: 05/02/2023] [Indexed: 07/29/2023]
Abstract
OBJECTIVES The first treatment strategy for brain metastases (BM) plays a pivotal role in the prognosis of patients. Among all strategies, stereotactic radiosurgery (SRS) is considered a promising therapy method. Therefore, we developed and validated a radiomics-based prediction pipeline to prospectively identify BM patients who are insensitive to SRS therapy, especially those who are at potential risk of progressive disease. METHODS A total of 337 BM patients (277, 30, and 30 in the training set, internal validation set, and external validation set, respectively) were enrolled in the study. 19,377 radiomics features (3 masks × 3 MRI sequences × 2153 features) extracted from 9 ROIs were filtered through LASSO and Max-Relevance and Min-Redundancy (mRMR) algorithms. The selected radiomics features were combined with 4 clinical features to construct a two-stage cascaded model for the prediction of BM patients' response to SRS therapy using SVM and an ensemble learning classifier. The performance of the model was evaluated by its accuracy, specificity, sensitivity, and AUC curve. RESULTS Radiomics features were integrated with the clinical features of patients in our optimal model, which showed excellent discriminative performance in the training set (AUC: 0.95, 95% CI: 0.88-0.98). The model was also verified in the internal validation set and external validation set (AUC 0.93, 95% CI: 0.76-0.95 and AUC 0.90, 95% CI: 0.73-0.93, respectively). CONCLUSIONS The proposed prediction pipeline could non-invasively predict the response to SRS therapy in patients with brain metastases thus assisting doctors to precisely designate individualized first treatment decisions. CLINICAL RELEVANCE STATEMENT The proposed prediction pipeline combines the radiomics features of multi-modal MRI with clinical features to construct machine learning models that noninvasively predict the response of patients with brain metastases to stereotactic radiosurgery therapy, assisting neuro-oncologists to develop personalized first treatment plans. KEY POINTS • The proposed prediction pipeline can non-invasively predict the response to SRS therapy. • The combination of multi-modality and multi-mask contributes significantly to the prediction. • The edema index also shows a certain predictive value.
Collapse
Affiliation(s)
- Peng Du
- Department of Radiology, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China
- Center for Shanghai Intelligent Imaging for Critical Brain Diseases Engineering and Technology Research, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiao Liu
- School of Computer and Information Technology, Beijing Jiaotong University, No.3 Shangyuancun, Haidian District, Beijing, 100044, China
| | - Rui Xiang
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Kun Lv
- Department of Radiology, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Hongyi Chen
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Weifan Liu
- Department of Mathematics, Syracuse University, Syracuse, NY, USA
| | - Aihong Cao
- Department of Radiology, the Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lang Chen
- Department of Radiology, the Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xuefeng Wang
- Department of Radiotherapy, the Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Tonggang Yu
- Department of Radiology, Shanghai Gamma Hospital, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Ding
- Department of Radiology, Shanghai Gamma Hospital, Huashan Hospital, Fudan University, Shanghai, China
| | - Wuchao Li
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Jie Li
- Department of Gynecology, Jinan Central Hospital, Jinan, China
| | - Yuxin Li
- Department of Radiology, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China
- Center for Shanghai Intelligent Imaging for Critical Brain Diseases Engineering and Technology Research, Huashan Hospital, Fudan University, Shanghai, China
- Department of Mathematics, Syracuse University, Syracuse, NY, USA
| | - Zekuan Yu
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Department of Mathematics, Syracuse University, Syracuse, NY, USA
| | - Li Zhu
- Department of Radiology, Shanghai Chest Hospital, Shanghai Jiaotong University, 241 West Huaihai Road, Shanghai, 200030, China.
| | - Jie Liu
- Center for Shanghai Intelligent Imaging for Critical Brain Diseases Engineering and Technology Research, Huashan Hospital, Fudan University, Shanghai, China.
| | - Daoying Geng
- Department of Radiology, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China.
- Center for Shanghai Intelligent Imaging for Critical Brain Diseases Engineering and Technology Research, Huashan Hospital, Fudan University, Shanghai, China.
- Academy for Engineering and Technology, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Nieder C, Andratschke NH, Grosu AL. How we treat octogenarians with brain metastases. Front Oncol 2023; 13:1213122. [PMID: 37614511 PMCID: PMC10442834 DOI: 10.3389/fonc.2023.1213122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/25/2023] [Indexed: 08/25/2023] Open
Abstract
Biologically younger, fully independent octogenarians are able to tolerate most oncological treatments. Increasing frailty results in decreasing eligibility for certain treatments, e.g., chemotherapy and surgery. Most brain metastases are not an isolated problem, but part of widespread cancer dissemination, often in combination with compromised performance status. Multidisciplinary assessment is key in this vulnerable patient population where age, frailty, comorbidity and even moderate additional deficits from brain metastases or their treatment may result in immobilization, hospitalization, need for nursing home care, termination of systemic anticancer treatment etc. Here, we provide examples of successful treatment (surgery, radiosurgery, systemic therapy) and best supportive care, and comment on the limitations of prognostic scores, which often were developed in all-comers rather than octogenarians. Despite selection bias in retrospective studies, survival after radiosurgery was more encouraging than after whole-brain radiotherapy. Prospective research with focus on octogenarians is warranted to optimize outcomes.
Collapse
Affiliation(s)
- Carsten Nieder
- Department of Oncology and Palliative Medicine, Nordland Hospital, Bodø, Norway
- Department of Clinical Medicine, Faculty of Health Sciences, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Nicolaus H. Andratschke
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Anca L. Grosu
- Department of Radiation Oncology, Medical Center, Medical Faculty, University Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Baskaran AB, Buerki RA, Khan OH, Gondi V, Stupp R, Lukas RV, Villaflor VM. Building Team Medicine in the Management of CNS Metastases. J Clin Med 2023; 12:3901. [PMID: 37373596 DOI: 10.3390/jcm12123901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/30/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
CNS metastases are often terminal for cancer patients and occur at an approximately 10-fold higher rate than primary CNS tumors. The incidence of these tumors is approximately 70,000-400,000 cases annually in the US. Advances that have occurred over the past two decades have led to more personalized treatment approaches. Newer surgical and radiation techniques, as well as targeted and immune therapies, have enanled patient to live longer, thus increasing the risk for the development of CNS, brain, and leptomeningeal metastases (BM and LM). Patients who develop CNS metastases have often been heavily treated, and options for future treatment could best be addressed by multidisciplinary teams. Studies have indicated that patients with brain metastases have improved survival outcomes when cared for in high-volume academic institutions using multidisciplinary teams. This manuscript discusses a multidisciplinary approach for both parenchymal brain metastases as well as leptomeningeal metastases implemented in three academic institutions. Additionally, with the increasing development of healthcare systems, we discuss optimizing the management of CNS metastases across healthcare systems and integrating basic and translational science into our clinical care to further improve outcomes. This paper summarizes the existing therapeutic approaches to the treatment of BM and LM and discusses novel and emerging approaches to optimizing access to neuro-oncologic care while simultaneously integrating multidisciplinary teams in the care of patients with BM and LM.
Collapse
Affiliation(s)
- Archit B Baskaran
- Department of Neurology, The University of Chicago, Chicago, IL 60637, USA
| | - Robin A Buerki
- Health System Clinician of Neurology (Neuro-Oncology), Northwestern Medicine Regional Medical Group, Warrenville, IL 60555, USA
| | - Osaama H Khan
- Surgical Neuro-Oncology, Northwestern Medicine Central DuPage Hospital, Winfield, IL 60190, USA
| | - Vinai Gondi
- Department of Radiation Oncology, Nothwestern Medicine West Region, Lou & Jean Malnati Brain Tumor Institute, Northwestern University, Warrenville, IL 60555, USA
| | - Roger Stupp
- Neuro-Oncology Division, Neurological Surgery, Medicine (Hematology and Oncology), Neurology, Department of Neurology, Lou & Jean Malnati Brain Tumor Institute Northwestern University, Chicago, IL 60611, USA
| | - Rimas V Lukas
- Neuro-Oncology Division, Department of Neurology, Lou & Jean Malnati Brain Tumor Institute, Northwestern University, Chicago, IL 60611, USA
| | - Victoria M Villaflor
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
11
|
Bschorer M, Ricklefs FL, Sauvigny T, Westphal M, Dührsen L. Multiple craniotomies in a single surgery - the resection of scattered brain metastases. Neurosurg Rev 2023; 46:70. [PMID: 36920624 PMCID: PMC10017615 DOI: 10.1007/s10143-023-01976-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023]
Abstract
Patients with brain metastases (BM), who can benefit from resection of multiple scattered lesions, often will not be offered a procedure involving multiple craniotomies in one session due to the overall poor prognosis. However, carefully selected candidates may well benefit from the resection of multiple lesions using multiple craniotomies through a significantly shortened hospital stay, aggressive decompression, and rapid eligibility for adjuvant therapies. In this retrospective analysis, the records of patients, who were treated for multiple BM using one surgical session involving multiple craniotomies, were reviewed. A group of patients with multiple BM, whose surgery only involved one craniotomy, were assigned to a control group. Clinical and surgical characteristics, preoperative and postoperative Karnofsky Performance Scale (KPS), complication rate, preoperative tumor size, number of lesions, number of craniotomies, skin incisions, and intraoperative repositioning of patients were recorded. Thirty-three patients were included in the multiple-craniotomy group. Thirty patients underwent two craniotomies, while three cases involved three craniotomies. Seven patients (21%) were intraoperatively repositioned from a prone to a supine position, which required an average of 23.3 ± 9.3 min from wound closure to the following skin incision. Thirty-six patients with multiple BM and matching characteristics, who received only one craniotomy for the dominant lesion, served as the control group. No difference was detected in postoperative KPS (p = 0.269), complication rate (p = 0.612), rate of new postoperative neurological deficits (p = 0.278), length of intensive care unit (ICU) (p = 0.991), and hospital stay (p = 0.913). There was a significant difference in average preoperative tumor size (p = 0.002), duration of surgery (p < 0.001), and extent of resection (p = 0.002). In the age of personalized medicine, selected patient may benefit from a single surgery for BM using multiple craniotomies. This study shows no significant increase of the perioperative complication rate for surgeries with multiple craniotomies.
Collapse
Affiliation(s)
- Maximilian Bschorer
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Franz L Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Sauvigny
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lasse Dührsen
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
12
|
Du P, Liu X, Shen L, Wu X, Chen J, Chen L, Cao A, Geng D. Prediction of treatment response in patients with brain metastasis receiving stereotactic radiosurgery based on pre-treatment multimodal MRI radiomics and clinical risk factors: A machine learning model. Front Oncol 2023; 13:1114194. [PMID: 36994193 PMCID: PMC10040663 DOI: 10.3389/fonc.2023.1114194] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
ObjectivesStereotactic radiosurgery (SRS), a therapy that uses radiation to treat brain tumors, has become a significant treatment procedure for patients with brain metastasis (BM). However, a proportion of patients have been found to be at risk of local failure (LF) after treatment. Hence, accurately identifying patients with LF risk after SRS treatment is critical to the development of successful treatment plans and the prognoses of patients. To accurately predict BM patients with the occurrence of LF after SRS therapy, we develop and validate a machine learning (ML) model based on pre-treatment multimodal magnetic resonance imaging (MRI) radiomics and clinical risk factors.Patients and methodsIn this study, 337 BM patients were included (247, 60, and 30 in the training set, internal validation set, and external validation set, respectively). Four clinical features and 223 radiomics features were selected using least absolute shrinkage and selection operator (LASSO) and Max-Relevance and Min-Redundancy (mRMR) filters. We establish the ML model using the selected features and the support vector machine (SVM) classifier to predict the treatment response of BM patients to SRS therapy.ResultsIn the training set, the SVM classifier that uses a combination of clinical and radiomics features demonstrates outstanding discriminative performance (AUC=0.95, 95% CI: 0.93-0.97). Moreover, this model also achieves satisfactory results in the validation sets (AUC=0.95 in the internal validation set and AUC=0.93 in the external validation set), demonstrating excellent generalizability.ConclusionsThis ML model enables a non-invasive prediction of the treatment response of BM patients receiving SRS therapy, which can in turn assist neurologist and radiation oncologists in the development of more precise and individualized treatment plans for BM patients.
Collapse
Affiliation(s)
- Peng Du
- The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Huashan Hospital, Fudan University, Shanghai, China
| | - Xiao Liu
- School of Computer and Information Technology, Beijing, China
| | - Li Shen
- Department of Radiology, Jiahui International Hospital, Shanghai, China
| | - Xuefan Wu
- Department of Radiology, Shanghai Gamma Hospital, Shanghai, China
| | - Jiawei Chen
- Huashan Hospital, Fudan University, Shanghai, China
| | - Lang Chen
- The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Aihong Cao
- The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- *Correspondence: Aihong Cao, ; Daoying Geng,
| | - Daoying Geng
- Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Aihong Cao, ; Daoying Geng,
| |
Collapse
|
13
|
Xu T, Karschnia P, Cadilha BL, Dede S, Lorenz M, Seewaldt N, Nikolaishvili E, Müller K, Blobner J, Teske N, Herold JJ, Rejeski K, Langer S, Obeck H, Lorenzini T, Mulazzani M, Zhang W, Ishikawa-Ankerhold H, Buchholz VR, Subklewe M, Thon N, Straube A, Tonn JC, Kobold S, von Baumgarten L. In vivo dynamics and anti-tumor effects of EpCAM-directed CAR T-cells against brain metastases from lung cancer. Oncoimmunology 2023; 12:2163781. [PMID: 36687005 PMCID: PMC9851202 DOI: 10.1080/2162402x.2022.2163781] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Lung cancer patients are at risk for brain metastases and often succumb to their intracranial disease. Chimeric Antigen Receptor (CAR) T-cells emerged as a powerful cell-based immunotherapy for hematological malignancies; however, it remains unclear whether CAR T-cells represent a viable therapy for brain metastases. Here, we established a syngeneic orthotopic cerebral metastasis model in mice by combining a chronic cranial window with repetitive intracerebral two-photon laser scanning-microscopy. This approach enabled in vivo-characterization of fluorescent CAR T-cells and tumor cells on a single-cell level over weeks. Intraparenchymal injection of Lewis lung carcinoma cells (expressing the tumor cell-antigen EpCAM) was performed, and EpCAM-directed CAR T-cells were injected either intravenously or into the adjacent brain parenchyma. In mice receiving EpCAM-directed CAR T-cells intravenously, we neither observed substantial CAR T-cell accumulation within the tumor nor relevant anti-tumor effects. Local CAR T-cell injection, however, resulted in intratumoral CAR T-cell accumulation compared to controls treated with T-cells lacking a CAR. This finding was accompanied by reduced tumorous growth as determined per in vivo-microscopy and immunofluorescence of excised brains and also translated into prolonged survival. However, the intratumoral number of EpCAM-directed CAR T-cells decreased during the observation period, pointing toward insufficient persistence. No CNS-specific or systemic toxicities of EpCAM-directed CAR T-cells were observed in our fully immunocompetent model. Collectively, our findings indicate that locally (but not intravenously) injected CAR T-cells may safely induce relevant anti-tumor effects in brain metastases from lung cancer. Strategies improving the intratumoral CAR T-cell persistence may further boost the therapeutic success.
Collapse
Affiliation(s)
- Tao Xu
- Department of Neurology, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Philipp Karschnia
- Department of Neurosurgery, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany,CONTACT Philipp Karschnia
| | - Bruno Loureiro Cadilha
- Department of Medicine IV, Division of Clinical Pharmacology and Center of Integrated Protein Science Munich, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sertac Dede
- Department of Neurology, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Michael Lorenz
- Department of Medicine I, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Niklas Seewaldt
- Department of Neurosurgery, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Elene Nikolaishvili
- Department of Neurosurgery, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Katharina Müller
- Department of Neurology, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jens Blobner
- Department of Neurosurgery, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Nico Teske
- Department of Neurosurgery, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Julika J. Herold
- Department of Neurosurgery, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kai Rejeski
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany,Department of Medicine III, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sigrid Langer
- Department of Neurology, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Hannah Obeck
- Department of Medicine IV, Division of Clinical Pharmacology and Center of Integrated Protein Science Munich, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Theo Lorenzini
- Department of Medicine IV, Division of Clinical Pharmacology and Center of Integrated Protein Science Munich, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Matthias Mulazzani
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Wenlong Zhang
- Department of Neurology, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Hellen Ishikawa-Ankerhold
- Department of Medicine I, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Veit R. Buchholz
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universitaet Muenchen (TUM), Munich, Germany
| | - Marion Subklewe
- Department of Medicine III, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Niklas Thon
- Department of Neurosurgery, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Andreas Straube
- Department of Neurology, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Joerg-Christian Tonn
- Department of Neurosurgery, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Sebastian Kobold
- Department of Medicine IV, Division of Clinical Pharmacology and Center of Integrated Protein Science Munich, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Louisa von Baumgarten
- Department of Neurology, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany,Department of Neurosurgery, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany,Louisa von Baumgarten Department of Neurosurgery, Division of Neuro-Oncology, University Hospital of the Ludwig-Maximilians-University Munich, Marchioninistrasse 15/81377, Munich, Germany
| |
Collapse
|
14
|
Katzendobler S, Do A, Weller J, Rejeski K, Dorostkar MM, Albert NL, Forbrig R, Niyazi M, Egensperger R, Tonn JC, Baumgarten LV, Quach S, Thon N. The value of stereotactic biopsy of primary and recurrent brain metastases in the era of precision medicine. Front Oncol 2022; 12:1014711. [PMID: 36605448 PMCID: PMC9808072 DOI: 10.3389/fonc.2022.1014711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Background Brain metastases (BM) represent the most frequent intracranial tumors with increasing incidence. Many primary tumors are currently treated in protocols that incorporate targeted therapies either upfront or for progressive metastatic disease. Hence, molecular markers are gaining increasing importance in the diagnostic framework of BM. In cases with diagnostic uncertainty, both in newly diagnosed or recurrent BM, stereotactic biopsy serves as an alternative to microsurgical resection particularly whenever resection is not deemed to be safe or feasible. This retrospective study aimed to analyze both diagnostic yield and safety of an image-guided frame based stereotactic biopsy technique (STX). Material and methods Our institutional neurosurgical data base was searched for any surgical procedure for suspected brain metastases between January 2016 and March 2021. Of these, only patients with STX were included. Clinical parameters, procedural complications, and tissue histology and concomitant molecular signature were assessed. Results Overall, 467 patients were identified including 234 (50%) with STX. Median age at biopsy was 64 years (range 29 - 87 years). MRI was used for frame-based trajectory planning in every case with additional PET-guidance in 38 cases (16%). In total, serial tumor probes provided a definite diagnosis in 230 procedures (98%). In 4 cases (1.7%), the pathological tissue did not allow a definitive neuropathological diagnosis. 24 cases had to be excluded due to non-metastatic histology, leaving 206 cases for further analyses. 114 patients (49%) exhibited newly diagnosed BM, while 46 patients (20%) displayed progressive BM. Pseudoprogression was seen in 46 patients, a median of 12 months after prior therapy. Pseudoprogression was always confirmed by clinical course. Metastatic tissue was found most frequently from lung cancer (40%), followed by breast cancer (9%), and malignant melanoma (7%). Other entities included gastrointestinal cancer, squamous cell cancer, renal cell carcinoma, and thyroid cancer, respectively. In 9 cases (4%), the tumor origin could not be identified (cancer of unknown primary). Molecular genetic analyses were successful in 137 out of 144 analyzed cases (95%). Additional next-generation sequencing revealed conclusive results in 12/18 (67%) cases. Relevant peri-procedural complications were observed in 5 cases (2.4%), which were all transient. No permanent morbidity or mortality was noted. Conclusion In patients with BM, frame-based stereotactic biopsy constitutes a safe procedure with a high diagnostic yield. Importantly, this extended to discerning pseudoprogression from tumor relapse after prior therapy. Thus, comprehensive molecular characterization based on minimal-invasive stereotactic biopsies lays the foundation for precision medicine approaches in the treatment of primary and recurrent BM.
Collapse
Affiliation(s)
- Sophie Katzendobler
- Department of Neurosurgery, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Anna Do
- Department of Neurosurgery, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Jonathan Weller
- Department of Neurosurgery, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Kai Rejeski
- Department of Medicine III, Hematology and Oncology, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany,German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mario M. Dorostkar
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Nathalie L. Albert
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany,Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Robert Forbrig
- Institute of Neuroradiology, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Maximilian Niyazi
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany,Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Rupert Egensperger
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Joerg-Christian Tonn
- Department of Neurosurgery, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany,German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Louisa v. Baumgarten
- Department of Neurosurgery, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany,German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefanie Quach
- Department of Neurosurgery, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Niklas Thon
- Department of Neurosurgery, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany,German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany,*Correspondence: Niklas Thon,
| |
Collapse
|
15
|
Westphal, M, Pantel K, Ricklefs FL, Maire C, Riethdorf S, Mohme M, Wikman H, Lamszus K. Circulating tumor cells and extracellular vesicles as liquid biopsy markers in neuro-oncology: prospects and limitations. Neurooncol Adv 2022; 4:ii45-ii52. [PMID: 36380859 PMCID: PMC9650476 DOI: 10.1093/noajnl/vdac015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
For many tumor entities, tumor biology and response to therapy are reflected by components that can be detected and captured in the blood stream. The so called “liquid biopsy” has been stratified over time into the analysis of circulating tumor cells (CTC), extracellular vesicles (EVs), and free circulating components such as cell-free nucleic acids or proteins. In neuro-oncology, two distinct areas need to be distinguished, intrinsic brain tumors and tumors metastatic to the brain. For intrinsic brain tumors, specifically glioblastoma, CTCs although present in low abundance, contain highly relevant, yet likely incomplete biological information for the whole tumor. For brain metastases, CTCs can have clinical relevance for patients especially with oligometastatic disease and brain metastasis in cancers like breast and lung cancer. EVs shed from the tumor cells and the tumor environment provide complementary information. Sensitive technologies have become available that are able to detect both, CTCs and EVs in the peripheral blood of patients with intrinsic and metastatic brain tumors despite the blood brain barrier. In reference to glioblastoma EVs, being shed by tumor cells and microenvironment and being more diffusible than CTCs may yield a more complete reflection of the whole tumor compared to low-abundance CTCs representing only a fraction of the multiclonal tumor heterogeneity. We here review the emerging aspects of CTCs and EVs as liquid biopsy biomarkers in neuro-oncology.
Collapse
Affiliation(s)
- Manfred Westphal,
- Department of Neurosurgery, Hans-Dietrich Herrmann Laboratory for Brain Tumor Research , Hamburg , Germany
| | - Klaus Pantel
- Institute for Tumor Biology, University of Hamburg Medical Center Eppendorf , Hamburg , Germany
| | - Franz L Ricklefs
- Department of Neurosurgery, Hans-Dietrich Herrmann Laboratory for Brain Tumor Research , Hamburg , Germany
| | - Cecile Maire
- Department of Neurosurgery, Hans-Dietrich Herrmann Laboratory for Brain Tumor Research , Hamburg , Germany
| | - Sabine Riethdorf
- Institute for Tumor Biology, University of Hamburg Medical Center Eppendorf , Hamburg , Germany
| | - Malte Mohme
- Department of Neurosurgery, Hans-Dietrich Herrmann Laboratory for Brain Tumor Research , Hamburg , Germany
| | - Harriet Wikman
- Institute for Tumor Biology, University of Hamburg Medical Center Eppendorf , Hamburg , Germany
| | - Katrin Lamszus
- Department of Neurosurgery, Hans-Dietrich Herrmann Laboratory for Brain Tumor Research , Hamburg , Germany
| |
Collapse
|
16
|
Voglis S, Schaller V, Müller T, Gönel M, Winklhofer S, Mangana J, Dummer R, Serra C, Weller M, Regli L, Le Rhun E, Neidert MC. Maximal surgical tumour load reduction in immune-checkpoint inhibitor naïve patients with melanoma brain metastases correlates with prolonged survival. Eur J Cancer 2022; 175:158-168. [PMID: 36126476 DOI: 10.1016/j.ejca.2022.08.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/04/2022] [Accepted: 08/16/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Recent therapeutic advances in metastatic melanoma have led to improved overall survival (OS) rates, with consequently an increased incidence of brain metastases (BM). The role of BM resection in the era of targeted and immunotherapy should be reassessed. In the current study we analysed the role of residual intracranial tumour load in a cohort of melanoma BM patients. METHODS Retrospective single-centre analysis of a prospective registry of resected melanoma BM from 2013 to 2021. Correlations of residual tumour volume and outcome were determined with respect to patient, tumour and treatment regimens characteristics. RESULTS 121 individual patients (66% male, mean age 59.9 years) were identified and included in the study. Pre- and postoperative systemic treatments included BRAF/MEK inhibitors, as well as combination or monotherapy of immune-checkpoint inhibitors (ICIs). Median OS of the entire cohort was 20 months. Cox proportional-hazard analysis revealed postoperative anti-CTLA4+anti-PD-1 therapy (HR 0.07, p = .01) and postoperative residual intracranial tumour burden (HR 1.4, p = .027) as significant predictors for OS. Further analysis revealed that ICI-naïve patients with residual tumour volume ≤3.5 cm3 and postoperative ICI showed significantly prolonged OS compared to patients with residual volume >3.5 cm3 (p < .0001). Subgroup analysis of ICI-naïve patients showed steroid intake postoperatively to be negatively associated with OS, however residual tumour volume ≤3.5 cm3 remained independently correlated with superior OS (HR 0.14, p < .001). CONCLUSION Besides known predictive factors like postoperative ICI, a maximal intracranial tumour burden reduction seems to be beneficial, especially in ICI-naïve patients. This highlights the importance of local CNS control and the need to further investigating the role of initial surgical tumour load reduction in randomised clinical trials.
Collapse
Affiliation(s)
- Stefanos Voglis
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland.
| | - Valentina Schaller
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Timothy Müller
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Meltem Gönel
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Sebastian Winklhofer
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Joana Mangana
- Department of Dermatology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Carlo Serra
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Luca Regli
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Emilie Le Rhun
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland; Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Marian C Neidert
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland; Department of Neurosurgery, Cantonal Hospital St.Gallen, University of St.Gallen Medical School, St.Gallen, Switzerland
| |
Collapse
|
17
|
Analysis of Key Clinical Variables and Radiological Manifestations Associated with the Treatment Response of Patients with Brain Metastases to Stereotactic Radiosurgery. J Clin Med 2022; 11:jcm11154529. [PMID: 35956144 PMCID: PMC9369562 DOI: 10.3390/jcm11154529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Stereotactic radiosurgery (SRS) is considered a promising treatment for brain metastases (BM) with better healing efficacy, relatively faster treatment time, and lower neurotoxicity, which can achieve local control rates above 70%. Although SRS improves the local control of BM, this may not translate into improvements in survival time. Thus, screening out the key factors influencing the treatment response to SRS, instead of the survival time following SRS, might be of more significance. This may assist doctors when making adjustments to treatment strategies for patients with BM. Methods: This is a retrospective review of 696 patients with BM who were treated with SRS at Huashan Hospital, Fudan University between June 2015 and February 2020. According to the patients’ treatment response to SRS, the patients were divided into an improved group (IG) and a progressive group (PG). The clinical data and magnetic resonance imaging (MRI) performed pre- and post-treatment were collected for the two groups. Five clinical variables (gender, age, Karnofsky performance status (KPS), primary tumor type, and extracranial lesion control) and seven radiological manifestations (location, number, volume, maximum diameter, edema index (EI), diffusion weighted imaging (DWI) sequence signal, and enhanced pattern) were selected and compared. A stepwise regression analysis was performed in order to obtain the best prediction effect of a group of variables and their regression coefficients, and finally to build an SRS treatment response scoring model based on the coefficients. The performance of the model was evaluated by calculating the AUC and performing the Hosmer–Lemeshow test. Results: A total of 323 patients were enrolled in the study based on the inclusion and exclusion criteria, including 209 patients in the IG and 114 patients in the PG. In the Chi-square test and t-test analysis, the significant p values of KPS, extracranial lesion control, volume, and EI were less than 0.05. Moreover, the cut-off values for volume and EI were 1801.145 mm3 and 3.835, respectively. The scoring model that was based on multivariate logistic regression coefficients performed better, achieving AUCs of 0.755 ± 0.062 and 0.780 ± 0.061 for the internal validation and validation cohorts, with p values of 0.168 and 0.073 for the Hosmer–Lemeshow test. Conclusions: KPS, extracranial lesion control, tumor volume, and EI had a certain correlation with the treatment response to SRS. Scoring models that are based on these variables can accurately predict the treatment response of patients with BM to SRS, thereby assisting doctors to make an appropriate first treatment strategy for patients with BM to a certain degree.
Collapse
|