1
|
Gianmarco M, Carolina P, Gregorio M, Michela V, Monica P, Claire GG, Michele M, Giulia M, Roberta M, Cinzia A, Lorena B, Marcello T, Fabiana P, Roberta M. Circulating tumor DNA monitoring in advanced mutated melanoma (LIQUID-MEL). THE JOURNAL OF LIQUID BIOPSY 2025; 8:100295. [PMID: 40276578 PMCID: PMC12019447 DOI: 10.1016/j.jlb.2025.100295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025]
Abstract
Introduction Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of metastatic melanoma, but a percentage of patients did not show benefit. Circulating tumor DNA (ctDNA) has emerged as a potential non-invasive tool for monitoring disease evolution and treatment response. The present study aimed to evaluate the clinical utility of ctDNA dynamics in patients with metastatic melanoma receiving ICIs, while exploring its role in the oncological course. Materials and methods The LIQUID-MEL study is a prospective, single-centre pilot study including patients with BRAF/NRAS-mutant metastatic melanoma. ctDNA was quantified using digital droplet PCR (ddPCR) at four different time points. Uni- and multivariable Cox regression models were used to assess the correlation between shedding and progression-free survival (PFS), and overall survival (OS). Results Overall, 23 patients were included. At baseline, ctDNA was detectable in 5/23 (21.7 %) cases. Baseline ctDNA shedding was associated with shorter PFS (3.88 months vs. 0.69 months, p=0.012). A strong numerical trend was observed also in OS (12.66 months vs. 2.53 months, p=0.287). Shedding at baseline did not demonstrate independent prognostic or predictive value in the uni- and multivariable analysis. The longitudinal analysis revealed intriguing patterns of ctDNA shedding in individual patients. Conclusion ctDNA detectability and its dynamic changes during treatment may have potential clinical utility in patients with metastatic melanoma, offering a valuable non-invasive tool for monitoring disease and treatment response. The small sample size limited the statistical power of the analysis. Further studies with larger cohorts are needed to validate its role in routine clinical practice.
Collapse
Affiliation(s)
| | - Palazzi Carolina
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Monica Gregorio
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Verzè Michela
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Pluchino Monica
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Maffezzoli Michele
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Portsmouth Hospital University NHS Trust, Portsmouth, United Kingdom
| | - Mazzaschi Giulia
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Manuguerra Roberta
- Pathology Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Azzoni Cinzia
- Pathology Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Bottarelli Lorena
- Pathology Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Tiseo Marcello
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Perrone Fabiana
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Minari Roberta
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| |
Collapse
|
2
|
Hida T. Genomic profiling and personalized treatment strategies for skin malignancies: findings from the center for cancer genomics and advanced therapeutics database. Int J Clin Oncol 2025; 30:856-866. [PMID: 40156656 DOI: 10.1007/s10147-025-02755-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
Immune checkpoint inhibitors and molecular-targeted therapies have dominated recent cancer treatment. However, these treatments face challenges, such as primary and acquired resistance, indicating that not all patients benefit from them. Therefore, the search for new molecular targets is crucial. In addition, immune checkpoint inhibitors have exhibited racial differences in their effectiveness for certain neoplasms. Hence, understanding the genomic landscape of cancers in various racial groups is important. In Japan, health insurance has covered comprehensive genomic profiling since 2019, and the Center for Cancer Genomics and Advanced Therapeutics (C-CAT) has accumulated genetic abnormalities along with clinical data of patients with various cancers. These data are crucial for advancing cancer research and drug development. This review discusses the genetic abnormalities of the major skin malignancies including melanoma, cutaneous squamous cell carcinoma (cSCC), and extramammary Paget's disease (EMPD), and proposes potential treatment strategies by comparing C-CAT data analysis with other genetic studies. The C-CAT data have emphasized unique genetic alterations in tumors of the Japanese population, particularly racial differences in tumor mutational burden in cutaneous melanoma and cSCC, indicating the importance of personalized treatment strategies that consider racial differences.
Collapse
Affiliation(s)
- Tokimasa Hida
- Department of Dermatology, Sapporo Medical University School of Medicine, South 1, West 16, Chuo-Ku, Sapporo, 060-8543, Japan.
| |
Collapse
|
3
|
Ricci C, Altavilla MV, de Biase D, Corti B, Pasquini E, Molteni G, Tarsitano A, Baietti AM, Amorosa L, Ambrosi F, Balbi T, Baldovini C, Querzoli G, D'Errico A, Fiorentino M, Tallini G, De Leo A, Maloberti T, Massi D, Ihrler S, Foschini MP. Unveiling the molecular landscape and clinically relevant molecular heterogeneity of mucosal melanoma of the head and neck region. Histopathology 2025. [PMID: 40231352 DOI: 10.1111/his.15456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/16/2025] [Accepted: 03/29/2025] [Indexed: 04/16/2025]
Abstract
AIMS Mucosal melanoma of the head and neck (MM-H&N) is an aggressive disease known for its frequent residual tumours/relapses (RT/R) at the surgical site, as well as eventual metastases. Our understanding of the MM-H&N mutational landscape, together with the correlation of specific mutations with clinical-pathological features, is significantly less comprehensive compared to that of cutaneous melanoma. Additionally, the mutational status of consecutive samples collected from single patients has not been investigated, which limits our ability to characterise the prognosis and treatment options for this patient subset. METHODS AND RESULTS A total of 53 MM-H&N specimens from 27 patients were analysed using a laboratory-developed multigene next-generation sequencing (NGS) panel. Among these, material from 46 of 53 (86.8%) samples and from 25 of 27 patients (92.6%) was suitable for NGS. The most frequently detected mutations were found in the RAS genes family, specifically KRAS and NRAS (seven of 46, 15.2%), as well as TP53, KIT and BRAF (each in three of 46, 6.5%); 25 of 46 (54.3%) samples exhibited a wild-type (WT) status. A statistically significant association between BRAF/RAS mutations and mucosal lentiginous histology (P = 0.041) was observed. Additionally, four of 11 (36.4%) patients with consecutive specimens, with no pre-/intersurgery systemic therapies administered and all having at least two evaluable NGS results, demonstrated molecular heterogeneity in the analysed samples. CONCLUSIONS MM-H&N shows a significant percentage of WT cases and a limited number of targetable mutations, predominantly involving BRAF/RAS mutations, the latter of which are associated with mucosal lentiginous histology. A subset of patients with consecutive samples demonstrates discordant molecular results, indicating that NGS of all samples may be necessary to determine the most appropriate therapeutic approach.
Collapse
Affiliation(s)
- Costantino Ricci
- Pathology Unit, DIAP-Dipartimento Interaziendale di anatomia patologica di Bologna, Maggiore Hospital-AUSL, Bologna, Bologna, Italy
| | - Maria Vittoria Altavilla
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- School of Anatomic Pathology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Dario de Biase
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Barbara Corti
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Ernesto Pasquini
- ENT Unit, Surgical Department, Bellaria Hospital, University of Bologna, Bologna, Italy
| | - Gabriele Molteni
- Otolaryngology Unit, Head and Neck Surgery, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Achille Tarsitano
- Oral and Maxillofacial Surgery Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Anna Maria Baietti
- Maxillo-Facial Operative Unit, Bellaria and Maggiore Hospital-AUSL Bologna, Bologna, Italy
| | - Luca Amorosa
- ENT Unit, Surgical Department, Maggiore Hospital-AUSL Bologna, Bologna, Italy
| | - Francesca Ambrosi
- Pathology Unit, DIAP-Dipartimento Interaziendale di anatomia patologica di Bologna, Maggiore Hospital-AUSL, Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Tiziana Balbi
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Chiara Baldovini
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giulia Querzoli
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Antonia D'Errico
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Michelangelo Fiorentino
- Pathology Unit, DIAP-Dipartimento Interaziendale di anatomia patologica di Bologna, Maggiore Hospital-AUSL, Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Giovanni Tallini
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Antonio De Leo
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Thais Maloberti
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Daniela Massi
- Section of Anatomic Pathology Department of Health Sciences, University of Florence, Florence, Italy
- Department of Molecular Pathobiology, New York University (NYU) School of Dentistry, New York, NY, USA
| | - Stephan Ihrler
- DERMPATH Muenchen, Munich, Germany
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Maria Pia Foschini
- Pathology Unit at Bellaria Hospital, Department of Biomedical and Neuromotor Sciences, (DIBINEM), University of Bologna, Bologna, Italy
| |
Collapse
|
4
|
Poudel K, Ji Z, Njauw CN, Rajadurai A, Bhayana B, Sullivan RJ, Kim JO, Tsao H. Fabrication and functional validation of a hybrid biomimetic nanovaccine (HBNV) against Kit K641E -mutant melanoma. Bioact Mater 2025; 46:347-364. [PMID: 39834347 PMCID: PMC11742834 DOI: 10.1016/j.bioactmat.2024.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/03/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025] Open
Abstract
Cancer nanovaccines hold the promise for personalization, precision, and pliability by integrating all the elements essential for effective immune stimulation. An effective immune response requires communication and interplay between antigen-presenting cells (APCs), tumor cells, and immune cells to stimulate, extend, and differentiate antigen-specific and non-specific anti-tumor immune cells. The versatility of nanomedicine can be adapted to deliver both immunoadjuvant payloads and antigens from the key players in immunity (i.e., APCs and tumor cells). The imperative for novel cancer medicine is particularly pressing for less common but more devastating KIT-mutated acral and mucosal melanomas that are resistant to small molecule c-kit and immune checkpoint inhibitors. To overcome this challenge, we successfully engineered nanotechnology-enabled hybrid biomimetic nanovaccine (HBNV) comprised of membrane proteins (antigens to activate immunity and homing/targeting ligand to tumor microenvironment (TME) and lymphoid organs) from fused cells (of APCs and tumor cells) and immunoadjuvant. These HBNVs are efficiently internalized to the target cells, assisted in the maturation of APCs via antigens and adjuvant, activated the release of anti-tumor cytokines/inhibited the release of immunosuppressive cytokine, showed a homotypic effect on TME and lymph nodes, activated the anti-tumor immune cells/downregulated the immunosuppressive immune cells, reprogram the tumor microenvironment, and showed successful anti-tumor therapeutic and prophylactic effects.
Collapse
Affiliation(s)
- Kishwor Poudel
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhenyu Ji
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ching-Ni Njauw
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anpuchchelvi Rajadurai
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Brijesh Bhayana
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ryan J. Sullivan
- Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Hensin Tsao
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Di Guardo A, Sernicola A, Cantisani C, Nisticò SP, Pellacani G. Malignant Melanoma of the Tongue: A Scoping Review. Life (Basel) 2025; 15:191. [PMID: 40003600 PMCID: PMC11856353 DOI: 10.3390/life15020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Malignant melanoma of the tongue is a rare and highly aggressive neoplasm, constituting less than 2% of oral melanomas. Due to its rarity and atypical clinical presentation, diagnosis and management pose significant challenges. This study provides a scoping review of research on melanoma of the tongue to determine the available data on the epidemiology, clinical features, histopathological characteristics, treatment strategies, and outcomes of this malignancy. Our literature search identified papers published from 1941 to 2024, and 47 individual cases were analyzed. The mean age at diagnosis was 58.6 years, with a male predominance (58.1%). Lesions were most frequently located on the body and lateral borders of the tongue. A high percentage (38.5%) presented with distant metastases at diagnosis, commonly involving the lungs and brain. Histopathological examination highlighted spindle cell morphology in many cases, with immunohistochemical markers such as HMB-45 and S-100 proving essential for diagnosis. Wide local excision with or without neck dissection was the primary treatment, though recurrence rates remained high (20.5%). Despite aggressive management, overall outcomes were poor, reflecting the melanoma's advanced stage at diagnosis in most cases. This scoping review underscores the need for heightened clinical suspicion, particularly for pigmented or ulcerative lesions of the tongue. Early diagnosis, multidisciplinary management, and further research into the genetic and molecular mechanisms underlying tongue melanoma are crucial to improve outcomes for this rare and aggressive disease.
Collapse
Affiliation(s)
- Antonio Di Guardo
- Dermatology Unit, Department of Clinical Internal Anesthesiological and Cardiovascular Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (A.D.G.); (C.C.); (S.P.N.); (G.P.)
| | - Alvise Sernicola
- Dermatology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padova, Italy
| | - Carmen Cantisani
- Dermatology Unit, Department of Clinical Internal Anesthesiological and Cardiovascular Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (A.D.G.); (C.C.); (S.P.N.); (G.P.)
| | - Steven Paul Nisticò
- Dermatology Unit, Department of Clinical Internal Anesthesiological and Cardiovascular Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (A.D.G.); (C.C.); (S.P.N.); (G.P.)
| | - Giovanni Pellacani
- Dermatology Unit, Department of Clinical Internal Anesthesiological and Cardiovascular Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (A.D.G.); (C.C.); (S.P.N.); (G.P.)
| |
Collapse
|
6
|
Garbe C, Amaral T, Peris K, Hauschild A, Arenberger P, Basset-Seguin N, Bastholt L, Bataille V, Brochez L, Del Marmol V, Dréno B, Eggermont AMM, Fargnoli MC, Forsea AM, Höller C, Kaufmann R, Kelleners-Smeets N, Lallas A, Lebbé C, Leiter U, Longo C, Malvehy J, Moreno-Ramirez D, Nathan P, Pellacani G, Saiag P, Stockfleth E, Stratigos AJ, Van Akkooi ACJ, Vieira R, Zalaudek I, Lorigan P, Mandala M. European consensus-based interdisciplinary guideline for melanoma. Part 2: Treatment - Update 2024. Eur J Cancer 2025; 215:115153. [PMID: 39709737 DOI: 10.1016/j.ejca.2024.115153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024]
Abstract
A unique collaboration of multi-disciplinary experts from the European Association of Dermato-Oncology (EADO), the European Dermatology Forum (EDF), and the European Organization of Research and Treatment of Cancer (EORTC) was formed to make recommendations on cutaneous melanoma diagnosis and treatment, based on systematic literature reviews and the experts' experience. Cutaneous melanomas are excised with one to two-centimeter safety margins. For a correct stage classification and treatment decision, a sentinel lymph node biopsy shall be offered in patients with tumor thickness ≥ 1.0 mm or ≥ 0.8 mm with additional histological risk factors, although there is as yet no clear survival benefit for this approach. Therapeutic decisions should be primarily made by an interdisciplinary oncology team ("Tumor Board"). Adjuvant therapies can be proposed in completely resected stage IIB-IV. In stage II only PD-1 inhibitors are approved. In stage III anti-PD-1 therapy or dabrafenib plus trametinib for patients with BRAFV600 mutated melanoma can be discussed. In resected stage IV, nivolumab can be offered, as well as ipilimumab and nivolumab, in selected, high-risk patients. In patients with clinically detected macroscopic, resectable disease, neoadjuvant therapy with ipilimumab plus nivolumab followed complete surgical resection and adjuvant therapy according to pathological response and BRAF status can be offered. Neoadjuvant therapy with pembrolizumab followed by complete surgical resection and adjuvant pembrolizumab is also recommended. For patients with disease recurrence after (neo) adjuvant therapy, further treatment should consider the type of (neo) adjuvant therapy received as well as the time of recurrence, i.e., on or off therapy. In patients with irresectable stage III/IV disease systemic treatment is always indicated. For first line treatment PD-1 antibodies alone or in combination with CTLA-4 or LAG-3 antibodies shall be considered. In stage IV melanoma with a BRAFV600 mutation, first-line therapy with BRAF/MEK inhibitors can be offered as an alternative to immunotherapy, in selected cases. In patients with primary resistance to immunotherapy and harboring a BRAFV600 mutation, this therapy shall be offered as second line. Other second line therapies include therapy with tumor infiltrating lymphocytes and combinations of immune checkpoint inhibitors not used in first line. This guideline is valid until the end of 2026.
Collapse
Affiliation(s)
- Claus Garbe
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University, Tuebingen, Germany.
| | - Teresa Amaral
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University, Tuebingen, Germany
| | - Ketty Peris
- Institute of Dermatology, Università Cattolica, Rome, and Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| | - Axel Hauschild
- Department of Dermatology, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, Kiel, Germany
| | - Petr Arenberger
- Department of Dermatovenereology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Nicole Basset-Seguin
- Université Paris Cite, AP-HP department of Dermatology INSERM U 976 Hôpital Saint Louis, Paris, France
| | - Lars Bastholt
- Department of Oncology, Odense University Hospital, Denmark
| | - Veronique Bataille
- Twin Research and Genetic Epidemiology Unit, School of Basic & Medical Biosciences, King's College London, London SE1 7EH, UK
| | - Lieve Brochez
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
| | - Veronique Del Marmol
- Department of Dermatology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Brigitte Dréno
- Nantes Université, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302/EMR6001, Nantes F-44000, France
| | - Alexander M M Eggermont
- University Medical Center Utrecht & Princess Maxima Center, Utrecht, Netherlands; Comprehensive Cancer Center Munich of the Technical University Munich and the Ludwig Maximilians University, Munich, Germany
| | | | - Ana-Maria Forsea
- Dermatology Department, Elias University Hospital, Carol Davila University of Medicine and Pharmacy Bucharest, Romania
| | - Christoph Höller
- Department of Dermatology, Medical University of Vienna, Austria
| | - Roland Kaufmann
- Department of Dermatology, Venereology and Allergology, Frankfurt University Hospital, Frankfurt, Germany
| | | | - Aimilios Lallas
- First Department of Dermatology, Aristotle University, Thessaloniki, Greece
| | - Celeste Lebbé
- Université Paris Cite, AP-HP department of Dermatology INSERM U 976 Hôpital Saint Louis, Paris, France
| | - Ulrike Leiter
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University, Tuebingen, Germany
| | - Caterina Longo
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, and Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Skin Cancer Centre, Reggio Emilia, Italy
| | - Josep Malvehy
- Melanoma Unit, Department of Dermatology, Hospital Clinic; IDIBAPS, Barcelona, Spain, University of Barcelona, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
| | - David Moreno-Ramirez
- Medical-&-Surgical Dermatology Service. Hospital Universitario Virgen Macarena, Sevilla, Spain
| | | | | | - Philippe Saiag
- University Department of Dermatology, Université de Versailles-Saint Quentin en Yvelines, APHP, Boulogne, France
| | - Eggert Stockfleth
- Skin Cancer Center, Department of Dermatology, Ruhr-University Bochum, Bochum 44791, Germany
| | - Alexander J Stratigos
- 1st Department of Dermatology, National and Kapodistrian University of Athens School of Medicine, Andreas Sygros Hospital, Athens, Greece
| | - Alexander C J Van Akkooi
- Melanoma Institute Australia, The University of Sydney, and Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Ricardo Vieira
- Department of Dermatology and Venereology, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Iris Zalaudek
- Dermatology Clinic, Maggiore Hospital, University of Trieste, Trieste, Italy
| | - Paul Lorigan
- The University of Manchester, Oxford Rd, Manchester M13 9PL, UK
| | - Mario Mandala
- University of Perugia, Unit of Medical Oncology, Santa Maria della Misericordia Hospital, Perugia, Italy
| |
Collapse
|
7
|
Kim SH, Tsao H. Acral Melanoma: A Review of Its Pathogenesis, Progression, and Management. Biomolecules 2025; 15:120. [PMID: 39858514 PMCID: PMC11763010 DOI: 10.3390/biom15010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Acral melanoma is a distinct subtype of cutaneous malignant melanoma that uniquely occurs on ultraviolet (UV)-shielded, glabrous skin of the palms, soles, and nail beds. While acral melanoma only accounts for 2-3% of all melanomas, it represents the most common subtype among darker-skinned, non-Caucasian individuals. Unlike other cutaneous melanomas, acral melanoma does not arise from UV radiation exposure and is accordingly associated with a relatively low tumor mutational burden. Recent advances in genomic, transcriptomic, and epigenomic sequencing have revealed genetic alterations unique to acral melanoma, including novel driver genes, high copy number variations, and complex chromosomal rearrangements. This review synthesizes the current knowledge on the clinical features, epidemiology, and treatment approaches for acral melanoma, with a focus on the genetic pathogenesis that gives rise to its unique tumor landscape. These findings highlight a need to deepen our genetic and molecular understanding to better target this challenging subtype of melanoma.
Collapse
Affiliation(s)
| | - Hensin Tsao
- Department of Dermatology, Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
8
|
Shah A, Decoste R, Vanderbeck K, Sharma A, Roy SF, Naert K, Osmond A. Molecular-Guided Therapy for Melanoma in Canada: Overview of Current Practices and Recommendations. J Cutan Med Surg 2024:12034754241303057. [PMID: 39661469 DOI: 10.1177/12034754241303057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
The emergence of pathologist-driven molecular reflex testing for tumoural biomarkers is a significant advancement in cancer diagnostics, facilitating targeted cancer therapy for our patients. Based on our experience, the Canadian landscape of pathologist-driven reflex biomarker testing for melanoma lacks standardization and is plagued by a lack of awareness by pathologists and clinicians. This paper comprehensively examines the approaches to reflex biomarker testing for melanoma patients across Canada, highlighting the regional variations in the criteria for initiating molecular testing, the biomarkers tested, and the molecular techniques employed. We also discuss the clinical relevance of biomarkers, emphasizing their alignment with the National Comprehensive Cancer Network® (NCCN®) Clinical Practice Guidelines in Oncology (NCCN Guidelines®) as well as ancillary tests such as BRAF VE1 immunohistochemistry to detect BRAF V600E mutation and molecular techniques such as real-time polymerase chain reaction, matrix-assisted laser desorption ionization-time of flight mass spectrometry and next-generation sequencing. Our proposed standardized minimum criteria for reflex testing prioritize melanomas with Breslow thickness >4 mm or disseminated disease, who will most benefit from enhanced delivery of biomarkers and expedited access to targeted therapies while attempting to balance cost-effectiveness and utilization of public healthcare resources with patient outcomes.
Collapse
Affiliation(s)
- Ahmed Shah
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Precision Laboratories, Calgary, AB, Canada
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Ryan Decoste
- Department of Pathology, Nova Scotia Health (Central Zone) and Dalhousie University, Halifax, NS, Canada
| | - Kaitlin Vanderbeck
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Anurag Sharma
- Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Simon F Roy
- Department of Dermatology, Yale University, New Haven, CT, USA
| | - Karen Naert
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Precision Laboratories, Calgary, AB, Canada
| | - Allison Osmond
- Department of Diagnostic and Molecular Pathology, Memorial University of Newfoundland, Health Sciences Centre, St. John's, NL, Canada
| |
Collapse
|
9
|
Hida T, Kato J, Idogawa M, Tokino T, Uhara H. Genomic landscape of cutaneous, acral, mucosal, and uveal melanoma in Japan: analysis of clinical comprehensive genomic profiling data. Int J Clin Oncol 2024; 29:1984-1998. [PMID: 39249554 DOI: 10.1007/s10147-024-02615-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Cutaneous melanoma (CM) is the most common type in Caucasians, while acral melanoma (AM) and mucosal melanoma (MM), which are resistant to immunotherapies and BRAF/MEK-targeted therapies, are more common in East Asians. Genomic profiling is essential for treating melanomas, but such data are lacking in Japan. METHODS Comprehensive genomic profiling data compiled in the Center for Cancer Genomics and Advanced Therapeutics (C-CAT) were analyzed. RESULTS A total of 380 melanomas was analyzed, including 136 CM, 46 AM, 168 MM, and 30 uveal melanoma (UM). MM included conjunctival, sinonasal, oral, esophageal, anorectal, and vulvovaginal melanomas. No significant difference in the median tumor mutational burden (TMB) of CM (3.39 mutations/megabase), AM (2.76), and MM (3.78) was the key finding. Microsatellite instability-high status was found in one case. BRAF V600E/K was found in only 45 patients (12%). Key driver mutations in CM were BRAF (38%), NRAS (21%), NF1 (8%), and KIT (10%), with frequent copy number alterations (CNAs) of CDKN2A, CDKN2B, and MYC. AM was characterized by altered KIT (30%), NRAS (26%), and NF1 (11%) and CDKN2A, CDKN2B, CDK4, MDM2, and CCND1 CNAs. MM was characterized by altered NRAS (24%), KIT (21%), and NF1 (17%) and MYC, KIT, and CDKN2A CNAs, with differences based on anatomical locations. UM bore GNAQ or GNA11 driver mutations (87%) and frequent mutations in SF3B1 or BAP1. CONCLUSION The distinct genomic profiling in Japanese patients, including lower TMB, compared to Caucasians, is associated with poorer treatment outcomes. This result underscores the need for more effective therapeutic agents.
Collapse
Affiliation(s)
- Tokimasa Hida
- Department of Dermatology, Sapporo Medical University School of Medicine, South 1, West 16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Junji Kato
- Department of Dermatology, Sapporo Medical University School of Medicine, South 1, West 16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Masashi Idogawa
- Department of Medical Genome Sciences, Cancer Research Institute, Sapporo Medical University School of Medicine, South 1, West 17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Takashi Tokino
- Department of Medical Genome Sciences, Cancer Research Institute, Sapporo Medical University School of Medicine, South 1, West 17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Hisashi Uhara
- Department of Dermatology, Sapporo Medical University School of Medicine, South 1, West 16, Chuo-ku, Sapporo, 060-8543, Japan.
| |
Collapse
|
10
|
Gien LT, Song Z, Poklepovic A, Collisson EA, Zwiebel JA, Gray RJ, Wang V, McShane LM, Rubinstein LV, Patton DR, Williams PM, Hamilton SR, Tricoli JV, Conley BA, Arteaga CL, Harris LN, O’Dwyer PJ, Chen AP, Flaherty KT. Phase II Study of Sunitinib in Tumors With c-KIT Mutations: Results From the NCI MATCH ECOG-ACRIN Trial (EAY131) Subprotocol V. JCO Precis Oncol 2024; 8:e2400514. [PMID: 39666929 PMCID: PMC11643086 DOI: 10.1200/po-24-00514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/21/2024] [Accepted: 11/13/2024] [Indexed: 12/14/2024] Open
Abstract
PURPOSE The NCI-MATCH study is a tumor-agnostic platform trial enrolling patients to targeted therapies on the basis of genomic alterations. Subprotocol V investigated sunitinib in patients with tumors harboring c-KIT mutations. METHODS EAY131-V, is an open-label, single-arm, phase II study. Eligible patients had malignancies containing somatic c-KIT mutation on exons 9, 11, 13, or 14. Exclusions were mutations on exons 17 and 18, gastrointestinal stromal tumors, renal cell carcinoma, and pancreatic neuroendocrine tumors. Patients received sunitinib 50 mg orally once daily for 4 weeks with 2-week rest per cycle, until disease progression or unacceptable toxicity. Primary end point was objective response rate (ORR); secondary end points were progression-free survival (PFS) at 6 months, PFS, overall survival, and toxicities. RESULTS Between November 1, 2016, and May 21, 2020, 10 patients were enrolled and nine were eligible and started treatment. The median age was 62 years (range, 30-76), 77.8% received two previous lines of systemic therapy, and 22.2% received >3 lines. The most common histology was melanoma (44%) and then squamous cell carcinoma of the lung or thymus (33%). There were two partial responses with an ORR of 22.2% (90% CI, 4.1 to 55) and stable disease in 44%. All patients demonstrated tumor shrinkage of target lesions. The estimated 6-month PFS was 33.3% (90% CI, 15.4 to 72.4). Grade 3-4 toxicities occurred in five patients (55.6%). This arm was closed in 2022 on the basis of low accrual. Prevalence of eligible c-KIT mutations after screening 5,540 patients was 0.45%. CONCLUSION Sunitinib for c-KIT mutations did not meet the primary end point, but in this small sample size, a potential signal cannot be ruled out. Rate of eligible c-KIT mutations was low, affecting accrual to this arm.
Collapse
Affiliation(s)
- Lilian T. Gien
- Odette Cancer Centre-Sunnybrook Health Sciences Centre, Toronto, ON, CA
| | - Zihe Song
- Dana Farber Cancer Institute, ECOG-ACRIN Biostatistics Center, Boston, MA, USA
| | - Andrew Poklepovic
- Virginia Commonwealth University/Massey Cancer Center, Richmond, VA, USA
| | | | - James A. Zwiebel
- Investigational Drug Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland, USA
| | - Robert J. Gray
- Dana Farber Cancer Institute, ECOG-ACRIN Biostatistics Center, Boston, MA, USA
| | - Victoria Wang
- Dana Farber Cancer Institute, ECOG-ACRIN Biostatistics Center, Boston, MA, USA
| | - Lisa M. McShane
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland, USA
| | - Larry V. Rubinstein
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland, USA
| | - David R. Patton
- Center for Biomedical Informatics & Information Technology, National Cancer Institute, Bethesda, Maryland, USA
| | | | | | - James V. Tricoli
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Barbara A. Conley
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Carlos L. Arteaga
- UT Southwestern Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Lyndsay N. Harris
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | | | - Alice P. Chen
- Early Clinical Trials Development Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | | |
Collapse
|
11
|
Teo AYT, Yau CE, Low CE, Pereira JVB, Ng JYX, Soong TK, Lo JYT, Yang VS. Effectiveness of immune checkpoint inhibitors and other treatment modalities in patients with advanced mucosal melanomas: a systematic review and individual patient data meta-analysis. EClinicalMedicine 2024; 77:102870. [PMID: 39416390 PMCID: PMC11474374 DOI: 10.1016/j.eclinm.2024.102870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Background Mucosal melanomas (MM) are an aggressive subtype of melanoma. Given the rarity of this disease, the conduct of clinical trials is challenging and has been limited. Current treatment options have been extrapolated from the more common cutaneous melanoma even though MM is distinct in pathogenesis, etiology and prognosis. This is the first meta-analysis to comprehensively assess the efficacy of immune checkpoint inhibitors (anti-PD1 and anti-CTLA4) and other treatment modalities (targeted therapy such as KIT inhibitors and VEGF inhibitors, as well as radiotherapy) on survival outcomes in MM to develop clinical guidelines for evidence-based management. Methods The protocol was prospectively registered on PROSPERO (PROSPERO ID: CRD42023411195). PubMed, Embase, Cochrane Central Register of Controlled Trials (CENTRAL), Web of Science and Google Scholar were searched from inception until 25 July 2024, for all cohort and observational studies. Eligible studies included those with five or more participants with locally advanced or metastatic MM treated with anti-PD1, anti-CTLA4, VEGF inhibitors and/or KIT inhibitors. Titles and abstracts of potential articles were screened and full texts of all potentially eligible studies were retrieved and reviewed by two independent reviewers. Individual patient data (IPD) from published Kaplan-Meier curves were reconstructed using a graphical reconstruction method and pooled as a one-stage meta-analysis. A sensitivity analysis using a two-stage meta-analysis approach was conducted. Extracted outcomes included overall survival (OS) and progression-free survival (PFS). For each treatment arm, median survival time and 12-month survival proportion were estimated. Data from double-arm trials was pooled to estimate hazard ratios (HRs), ratios of restricted mean time lost (RMTL) and restricted mean survival time (RMST). Findings From a total of 7402 studies, 35 eligible studies comprising a total of 2833 participants were included. Combined anti-PD1 and anti-CTLA4 therapy had the highest 12-month OS and 12-month PFS at 71.8% (95% CI: 67.6%, 76.2%, n = 476) and 35.1% (95% CI: 30.5%, 40.4%, n = 401) respectively, followed by anti-PD1 therapy alone (OS: 64.0% (95% CI: 61.4%, 66.7%, n = 1399); PFS: was 28.3% (95% CI: 25.8%, 31.2%, n = 1142), anti-PD1 and VEGF inhibitor combination therapy (OS: 57.1% (95% CI: 51.0%, 63.9%)), KIT inhibitors (OS: 48.2% (95% CI: 37.6%, 61.8%); PFS: 8.3% (95% CI: 3.7%, 18.7%)) and anti-CTLA4 therapy alone (OS: 33.3% (95% CI: 28.4%, 39.1%); PFS: 9.8% (95% CI: 5.9%, 16.5%)). In the double-arm studies, combination therapy with anti-PD1 and anti-CTLA4 had similar OS and PFS with anti-PD1 alone (OS: HR 0.856 (95% CI: 0.704, 1.04); RMTL ratio 0.932 (95% CI: 0.832, 1.044, P = 0.225); RMST ratio 1.102 (95% CI: 0.948, 1.281, P = 0.204); PFS: HR 0.919 (95% CI: 0.788, 1.07); RMTL ratio 0.936 (95% CI: 0.866, 1.013, P = 0.100); RMST ratio 1.21 (95% CI: 0.979, 1.496, P = 0.078)), however, anti-PD1 therapy alone had significantly better PFS than anti-CTLA4 alone (HR 0.548 (95% CI: 0.376, 0.799); RMTL ratio 0.715 (95% CI: 0.606, 0.844, P < 0.001); RMST ratio 1.659 (95% CI: 1.316, 2.092, P < 0.001)). Anti-PD1 therapy with radiotherapy versus anti-PD1 alone showed no significant difference (OS: HR 0.854 (95% CI: 0.567, 1.29); RMTL ratio 0.855 (95% CI: 0.675, 1.083, P = 0.193); RMST ratio 1.194 (95% CI: 0.928, 1.536, P = 0.168; PFS: HR 0.994 (95% CI: 0.710, 1.39); RMTL ratio 1.006 (95% CI: 0.87, 1.162, P = 0.939); RMST ratio 0.984 (95% CI: 0.658, 1.472, P = 0.939)). Interpretation For the systemic treatment of MM, anti-PD1 is the best monotherapy. While combining anti-PD1 with other treatment options such as anti-CTLA4, VEGF inhibitors or radiotherapy might achieve better outcomes, these improvements did not reach statistical significance when evaluated by HR, RMTL and RMST ratios. Funding This work was supported by the National Medical Research Council Transition Award (TA20nov-0020), SingHealth Duke-NUS Oncology Academic Clinical Programme (08/FY2020/EX/67-A143 and 08/FY2021/EX/17-A47), the Khoo Pilot Collaborative Award (Duke-NUS-KP(Coll)/2022/0020A), the National Medical Research Council Clinician Scientist-Individual Research Grant-New Investigator Grant (CNIGnov-0025), the Terry Fox Grant (I1056) and the Khoo Bridge Funding Award (Duke-NUS-KBrFA/2024/0083I).
Collapse
Affiliation(s)
- Andrea York Tiang Teo
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Singapore General Hospital, Singapore, 169608, Singapore
| | - Chun En Yau
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Chen Ee Low
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | | | | | | | - Jack Yu Tung Lo
- Department of Neurosurgery, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Valerie Shiwen Yang
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Translational Precision Oncology Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore, 138673, Singapore
- Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore, 169857, Singapore
| |
Collapse
|
12
|
Hida T, Idogawa M, Kato J, Kiniwa Y, Horimoto K, Sato S, Sawada M, Tange S, Okura M, Okuyama R, Tokino T, Uhara H. Genetic Characteristics of Cutaneous, Acral, and Mucosal Melanoma in Japan. Cancer Med 2024; 13:e70360. [PMID: 39564955 PMCID: PMC11577301 DOI: 10.1002/cam4.70360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/08/2024] [Accepted: 10/11/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Acral and mucosal melanomas are more prevalent in Asians than in Caucasians, unlike cutaneous melanomas, which are predominant in Caucasians. Recent studies have suggested that non-Caucasian cutaneous melanomas responded less to immune checkpoint inhibitors, highlighting the need for genetic profiling across ethnicities. This study aimed to elucidate the genetic characteristics of Japanese melanomas, which is an under-researched topic. METHODS Single-nucleotide variants, indels, and copy number alterations in 104 Japanese melanoma patients (37 cutaneous, 52 acral, and 15 mucosal) were analyzed using custom panel sequencing. RESULTS Driver events were detected in 94% of the cases. Among cutaneous melanoma cases, 76% had BRAF mutations, and 8% had NRAS mutations. In acral melanoma, BRAF (9%), NRAS (17%), KRAS (8%), KIT (19%), and NF1 (7%) mutations were detected. Major driver mutations in mucosal melanoma were detected in NRAS, KRAS, NF1, PTEN, GNAQ, and KIT. The median tumor mutational burden across all melanoma types was 4.6 mutations/Mb, with no significant difference between the cutaneous and acral/mucosal types. Of the 21 patients with both primary and metastatic lesions, 11 showed distinct mutations in each. Potentially actionable mutations were detected in 58 patients in addition to BRAF V600E/K mutations in 31. CONCLUSIONS This study highlights distinct genetic abnormalities and actionable alterations in Japanese melanoma patients. This suggests a lower tumor mutational burden in East Asian cutaneous melanoma, which may affect the efficacy of immune checkpoint inhibitors. The heterogeneity of driver mutations across and within individuals highlights the need for personalized treatment approaches.
Collapse
Affiliation(s)
- Tokimasa Hida
- Department of DermatologySapporo Medical University School of MedicineSapporoJapan
| | - Masashi Idogawa
- Department of Medical Genome SciencesCancer Research Institute, Sapporo Medical University School of MedicineSapporoJapan
| | - Junji Kato
- Department of DermatologySapporo Medical University School of MedicineSapporoJapan
| | - Yukiko Kiniwa
- Department of DermatologyShinshu University School of MedicineNaganoJapan
| | - Kohei Horimoto
- Department of DermatologySapporo Medical University School of MedicineSapporoJapan
| | - Sayuri Sato
- Department of DermatologySapporo Medical University School of MedicineSapporoJapan
| | - Masahide Sawada
- Department of DermatologySapporo Medical University School of MedicineSapporoJapan
| | - Shoichiro Tange
- Department of Medical Genome SciencesCancer Research Institute, Sapporo Medical University School of MedicineSapporoJapan
| | - Masae Okura
- Department of DermatologySapporo Medical University School of MedicineSapporoJapan
| | - Ryuhei Okuyama
- Department of DermatologyShinshu University School of MedicineNaganoJapan
| | - Takashi Tokino
- Department of Medical Genome SciencesCancer Research Institute, Sapporo Medical University School of MedicineSapporoJapan
| | - Hisashi Uhara
- Department of DermatologySapporo Medical University School of MedicineSapporoJapan
| |
Collapse
|
13
|
Amarillo D, Flaherty KT, Sullivan RJ. Targeted Therapy Innovations for Melanoma. Hematol Oncol Clin North Am 2024; 38:973-995. [PMID: 38971651 DOI: 10.1016/j.hoc.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Melanoma, a malignant tumor of melanocytes, poses a significant clinical challenge due to its aggressive nature and high potential for metastasis. The advent of targeted therapy has revolutionized the treatment landscape of melanoma, particularly for tumors harboring specific genetic alterations such as BRAF V600E mutations. Despite the initial success of targeted agents, resistance inevitably arises, underscoring the need for novel therapeutic strategies. This review explores the latest advances in targeted therapy for melanoma, focusing on new molecular targets, combination therapies, and strategies to overcome resistance.
Collapse
Affiliation(s)
- Dahiana Amarillo
- Oncóloga Médica, Departamento Básico de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Keith T Flaherty
- Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Ryan J Sullivan
- Mass General Cancer Center, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
14
|
Choi ME, Choi EJ, Jung JM, Lee WJ, Jo YS, Won CH. A Narrative Review of the Evolution of Diagnostic Techniques and Treatment Strategies for Acral Lentiginous Melanoma. Int J Mol Sci 2024; 25:10414. [PMID: 39408752 PMCID: PMC11477219 DOI: 10.3390/ijms251910414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Acral melanoma (AM) is a subtype of cutaneous melanoma located on the palms, soles, and nails. The pathogenesis of AM involves mechanical stimulation and characteristic tumor-promoting mutations, such as those in the KIT proto-oncogene. Dermoscopy is useful for diagnosing AM, which is characterized by parallel ridge patterns and irregular diffuse pigmentation. Although histopathological confirmation is the gold standard for diagnosing AM, lesions showing minimal histopathological changes should be considered early-stage AM if they clinically resemble it. Recently, immunohistochemical staining of preferentially expressed antigen in melanoma has been recognized as a useful method to distinguish benign from malignant melanocytic tumors. Research reveals that AM is associated with an immunosuppressive microenvironment characterized by increased numbers of M2 macrophages and regulatory T cells, alongside a decreased number of tumor-infiltrating lymphocytes. Mohs micrographic surgery or digit-sparing wide local excision has been explored to improve quality of life and replace wide local excision or proximal amputation. AM has a worse prognosis than other subtypes, even in the early stages, indicating its inherent aggressiveness.
Collapse
Affiliation(s)
| | | | | | | | | | - Chong Hyun Won
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (M.E.C.); (E.J.C.); (J.M.J.); (W.J.L.); (Y.-S.J.)
| |
Collapse
|
15
|
Zhao L, Ren Y, Zhang G, Zheng K, Wang J, Sha H, Zhao M, Huang R, Kang D, Su X, Wu Y, Zhang W, Lai R, Li L, Mei R, Wang Y, Tian Y, Wang F, Liu B, Zou Z. Single-arm study of camrelizumab plus apatinib for patients with advanced mucosal melanoma. J Immunother Cancer 2024; 12:e008611. [PMID: 38908858 PMCID: PMC11328654 DOI: 10.1136/jitc-2023-008611] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Previous studies have suggested the potential synergistic antitumor activity when combining immune checkpoint inhibitors with anti-angiogenic agents in various solid tumors. We aimed to assess the efficacy and safety of camrelizumab (a humanized programmed cell death-1 antibody) plus apatinib (a vascular endothelial growth factor receptor tyrosine kinase inhibitor) for patients with advanced mucosal melanoma (MM), and explore-related biomarkers. METHODS We conducted a single-center, open-label, single-arm, phase II study. Patients with unresectable or recurrent/metastatic MM received camrelizumab and apatinib. The primary endpoint was the confirmed objective response rate (ORR). RESULTS Between April 2019 and June 2022, 32 patients were enrolled, with 50.0% previously received systemic therapy. Among 28 patients with evaluable response, the confirmed ORR was 42.9%, the disease control rate was 82.1%, and the median progression-free survival (PFS) was 8.05 months. The confirmed ORR was 42.9% (6/14) in both treatment-naïve and previously treated patients. Notably, treatment-naïve patients had a median PFS of 11.89 months, and those with prior treatment had a median PFS of 6.47 months. Grade 3 treatment-related adverse events were transaminase elevation, rash, hyperbilirubinemia, proteinuria, hypertension, thrombocytopenia, hand-foot syndrome and diarrhea. No treatment-related deaths were observed. Higher tumor mutation burden (TMB), increased T-cell receptor (TCR) diversity, and altered receptor tyrosine kinase (RTK)/RAS pathway correlated with better tumor response. CONCLUSION Camrelizumab plus apatinib provided promising antitumor activity with acceptable toxicity in patients with advanced MM. TMB, TCR diversity and RTK/RAS pathway genes were identified as potential predictive biomarkers and warrant further validation. TRIAL REGISTRATION NUMBER Chinese Clinical Trial Registry, ChiCTR1900023277.
Collapse
Affiliation(s)
- Lianjun Zhao
- The Comprehensive Cancer Center of Nanjing Drum
Tower Hospital, Affiliated Hospital of Medical School, Nanjing University,
Nanjing, China
- Clinical Cancer Institute of Nanjing
University, Nanjing,
China
| | - Yu Ren
- The Comprehensive Cancer Center of Nanjing Drum
Tower Hospital, Affiliated Hospital of Medical School, Nanjing University,
Nanjing, China
- Clinical Cancer Institute of Nanjing
University, Nanjing,
China
| | - Guiying Zhang
- The Comprehensive Cancer Center of Nanjing Drum
Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing
University of Chinese Medicine, Nanjing, China
| | - Kelin Zheng
- The Comprehensive Cancer Center of Nanjing Drum
Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing
University of Chinese Medicine, Nanjing, China
| | - Jiayu Wang
- The Comprehensive Cancer Center of Nanjing Drum
Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing
University of Chinese Medicine, Nanjing, China
| | - Huizi Sha
- The Comprehensive Cancer Center of Nanjing Drum
Tower Hospital, Affiliated Hospital of Medical School, Nanjing University,
Nanjing, China
- Clinical Cancer Institute of Nanjing
University, Nanjing,
China
| | - Mengke Zhao
- The Comprehensive Cancer Center of Nanjing Drum
Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Rong Huang
- The Comprehensive Cancer Center of Nanjing Drum
Tower Hospital, Affiliated Hospital of Medical School, Nanjing University,
Nanjing, China
| | - Donglin Kang
- The Comprehensive Cancer Center of Nanjing Drum
Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Xinyu Su
- The Comprehensive Cancer Center of Nanjing Drum
Tower Hospital, Affiliated Hospital of Medical School, Nanjing University,
Nanjing, China
| | - Yirong Wu
- The Comprehensive Cancer Center of Nanjing Drum
Tower Hospital, Affiliated Hospital of Medical School, Nanjing University,
Nanjing, China
| | - Wangling Zhang
- The Comprehensive Cancer Center of Nanjing Drum
Tower Hospital, Affiliated Hospital of Medical School, Nanjing University,
Nanjing, China
| | - Ruihe Lai
- Department of Nuclear Medicine of Nanjing Drum
Tower Hospital, Affiliated Hospital of Medical School, Nanjing University,
Nanjing, China
| | - Lin Li
- Department of Pathology of Nanjing Drum Tower
Hospital, Affiliated Hospital of Medical School, Nanjing University,
Nanjing, China
| | - Rui Mei
- Jiangsu Hengrui Pharmaceuticals Co.,
Ltd, Shanghai,
China
| | - Yitao Wang
- Jiangsu Hengrui Pharmaceuticals Co.,
Ltd, Shanghai,
China
| | - You Tian
- Jiangsu Hengrui Pharmaceuticals Co.,
Ltd, Shanghai,
China
| | - Fufeng Wang
- Geneseeq Research institute, Nanjing Geneseeq
Technology Inc, Nanjing,
China
| | - Baorui Liu
- The Comprehensive Cancer Center of Nanjing Drum
Tower Hospital, Affiliated Hospital of Medical School, Nanjing University,
Nanjing, China
- Clinical Cancer Institute of Nanjing
University, Nanjing,
China
| | - Zhengyun Zou
- The Comprehensive Cancer Center of Nanjing Drum
Tower Hospital, Affiliated Hospital of Medical School, Nanjing University,
Nanjing, China
- Clinical Cancer Institute of Nanjing
University, Nanjing,
China
| |
Collapse
|
16
|
Hassel JC, Zimmer L. [Side effects of dermato-oncologic therapies]. DERMATOLOGIE (HEIDELBERG, GERMANY) 2024; 75:466-475. [PMID: 38802653 DOI: 10.1007/s00105-024-05354-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) such as PD(L)1 and CTLA4 antibodies as well as targeted therapies such as BRAF and MEK inhibitors have significantly improved the systemic treatment of skin cancer in adjuvant and advanced therapy settings. All these drugs differ in their spectrum of side effects. MATERIALS AND METHODS The aim of this article is to provide an overview of the spectrum of side effects of dermato-oncological therapies and their management, taking into account the current literature. RESULTS The most important side effects of ICIs, the CCR4 inhibitor mogamulizumab, the ImmTAC tebentafusp, the BRAF and MEK inhibitors and the multityrosine kinase inhibitor imatinib are considered. CONCLUSIONS Side effects can manifest themselves in all organ systems. Chronic side effects and long-term harm are possible, especially with ICIs, and require close therapy monitoring and patient education. Knowledge of the side effects and the temporal, sometimes delayed course of their occurrence are essential for diagnosis and prompt initiation of therapy.
Collapse
Affiliation(s)
- Jessica C Hassel
- Medizinische Fakultät, Hautklinik und Nationales Centrum für Tumorerkrankungen (NCT), NCT Heidelberg, eine Partnerschaft zwischen DKFZ und dem Universitätsklinikum Heidelberg, Universität Heidelberg, Im Neuenheimer Feld 460, 69120, Heidelberg, Deutschland.
| | - Lisa Zimmer
- Klinik für Dermatologie, Universitätsklinikum Essen, Universität Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Deutschland.
| |
Collapse
|
17
|
Haugh A, Daud AI. Therapeutic Strategies in BRAF V600 Wild-Type Cutaneous Melanoma. Am J Clin Dermatol 2024; 25:407-419. [PMID: 38329690 DOI: 10.1007/s40257-023-00841-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 02/09/2024]
Abstract
There have been many recent advances in melanoma therapy. While 50% of melanomas have a BRAF mutation and are a target for BRAF inhibitors, the remaining 50% are BRAF wild-type. Immune checkpoint inhibitors targeting PD-1, cytotoxic T-lymphocyte-associated protein 4 (CTLA4) and lymphocyte activated gene-3 (Lag-3) are all approved for the treatment of patients with advanced BRAF wild-type melanoma; however, treatment of this patient population following initial immune checkpoint blockade is a current therapeutic challenge given the lack of other efficacious options. Here, we briefly review available US FDA-approved therapies for BRAF wild-type melanoma and focus on developing treatment avenues for this heterogeneous group of patients. We review the basics of genomic features of both BRAF mutant and BRAF wild-type melanoma as well as efforts underway to develop new targeted therapies involving the mitogen-activated protein kinase (MAPK) pathway for patients with BRAF wild-type tumors. We then focus on novel immunotherapies, including developing checkpoint inhibitors and agonists, cytokine therapies, oncolytic viruses and tumor-infiltrating lymphocytes, all of which represent potential therapeutic avenues for patients with BRAF wild-type melanoma who progress on currently approved immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Alexandra Haugh
- Department of Medicine, University of California San Francisco, 550 16th Street, 6809, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Adil I Daud
- Department of Medicine, University of California San Francisco, 550 16th Street, 6809, San Francisco, CA, 94158, USA.
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
18
|
Dedeilia A, Lwin T, Li S, Tarantino G, Tunsiricharoengul S, Lawless A, Sharova T, Liu D, Boland GM, Cohen S. Factors Affecting Recurrence and Survival for Patients with High-Risk Stage II Melanoma. Ann Surg Oncol 2024; 31:2713-2726. [PMID: 38158497 PMCID: PMC10908640 DOI: 10.1245/s10434-023-14724-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND In the current era of effective adjuvant therapies and de-escalation of surgery, distinguishing which patients with high-risk stage II melanoma are at increased risk of recurrence after excision of the primary lesion is essential to determining appropriate treatment and surveillance plans. METHODS A single-center retrospective study analyzed patients with stage IIB or IIC melanoma. Demographic and tumor data were collected, and genomic analysis of formalin-fixed, paraffin-embedded tissue samples was performed via an internal next-generation sequencing (NGS) platform (SNaPshot). The end points examined were relapse-free survival (RFS), distant metastasis-free survival (DMFS), overall survival (OS), and melanoma-specific survival (MSS). Uni- and multivariable Cox regressions were performed to calculate the hazard ratios. RESULTS The study included 92 patients with a median age of 69 years and a male/female ratio of 2:1. A Breslow depth greater than 4 mm, a higher mitotic rate, an advanced T stage, and a KIT mutation had a negative impact on RFS. A primary lesion in the head and neck, a mitotic rate exceeding 10 mitoses per mm2, a CDH1 mutation, or a KIT mutation was significantly associated with a shorter DMFS. Overall survival was significantly lower with older age at diagnosis and a higher mitotic rate. An older age at diagnosis also had a negative impact on MSS. CONCLUSION Traditional histopathologic factors and specific tumor mutations displayed a significant correlation with disease recurrence and survival for patients with high-risk stage II melanoma. This study supported the use of genomic testing of high-risk stage II melanomas for prognostic prediction and risk stratification.
Collapse
Affiliation(s)
- Aikaterini Dedeilia
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Thinzar Lwin
- Division of Surgical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Siming Li
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Giuseppe Tarantino
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Aleigha Lawless
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Tatyana Sharova
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - David Liu
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Genevieve M Boland
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Sonia Cohen
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
| |
Collapse
|
19
|
Hadfield MJ, Sullivan RJ. What Is the Timing and Role of Targeted Therapy in Metastatic Melanoma? Cancer J 2024; 30:84-91. [PMID: 38527261 DOI: 10.1097/ppo.0000000000000712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
ABSTRACT Melanoma is the most lethal cutaneous malignancy worldwide. The last 15 years have ushered in several regulatory approvals that have dramatically altered the landscape of treatment options for patients with melanoma. Many patients with melanoma harbor activating mutations in the BRAF proto-oncogene, a key component of the mitogen-activated protein kinase (MAPK) intracellular signaling pathway. Therapies targeting BRAF have led to remarkable improvements in both response rates and survival in patients with metastatic disease. In parallel with these developments in MAPK-targeted therapy has been the clinical development of immune checkpoint inhibitors, which also have improved response rates and survival in patients with metastatic disease including randomized trials compared with MAPK-targeted therapy in patients with advanced, BRAF-mutant melanoma. Immune checkpoint inhibitors have become the preferred first-line standard-of-care treatment for patients with newly diagnosed metastatic disease in patients irrespective of BRAF mutational status. Given these developments, it is now less clear how to optimize the use of MAPK-targeted therapy regarding treatment setting and in sequence with immune checkpoint inhibitor.
Collapse
|
20
|
Dugan MM, Perez MC, Karapetyan L, Zager JS. Management of acral lentiginous melanoma: current updates and future directions. Front Oncol 2024; 14:1323933. [PMID: 38390259 PMCID: PMC10882087 DOI: 10.3389/fonc.2024.1323933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Acral lentiginous melanoma is a rare subtype of melanoma generally associated with poor outcomes, even when diagnosed at an early stage. The tumor genetic profile remains poorly understood, but it is known to have a suppressed immune environment compared to that of non-acral cutaneous melanomas, which limits therapy options. There is significant attention on the development of novel therapeutic approaches, although studies are limited due to disease rarity. For local disease, wide local excision remains the standard of care. Due to frequent under-staging on preoperative biopsy, wider margins and routine sentinel lymph node biopsy may be considered if morbidity would not be increased. For advanced disease, anti-PD1 monotherapy or combination therapy with anti-PD1 and anti-CTLA4 agents have been used as first-line treatment modalities. Anti-PD1 and anti-CTLA4 combination therapies have been shown to be particularly beneficial for patients with BRAF-mutant acral lentiginous melanoma. Other systemic combination regimens and targeted therapy options may be considered, although large studies with consistent results are lacking. Regional and intralesional therapies have shown promise for cutaneous melanomas, but studies generally have not reported results for specific histologic subtypes, especially for acral melanoma. Overall, the unique histologic and genetic characteristics of acral lentiginous melanoma make therapy options significantly more challenging. Furthermore, studies are limited, and data reporting has been inconsistent. However, more prospective studies are emerging, and alternative therapy pathways specific to acral lentiginous melanoma are being investigated. As further evidence is discovered, reliable treatment guidelines may be developed.
Collapse
Affiliation(s)
- Michelle M Dugan
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL, United States
| | - Matthew C Perez
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL, United States
| | - Lilit Karapetyan
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL, United States
- Department of Oncologic Sciences, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Jonathan S Zager
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL, United States
- Department of Oncologic Sciences, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| |
Collapse
|
21
|
Abstract
Abstract
Mucosal melanoma (MM) is extremely rare in Caucasians, whereas it is the second predominant melanoma subtype in Asian and other non-Caucasian populations. Distinct from cutaneous melanoma in terms of epidemiology, biology, and molecular characteristics, MM is characterized by more aggressive biological behavior, lower mutational burden, more chromosomal structure variants, and poorer prognosis. Because of the rarity of MM, its biological features are not fully understood, and potential novel therapies are less well depicted. Whereas immunotherapy has shown encouraging efficacy for cutaneous melanoma, its efficacy in MM is unclear due to limited sample sizes in clinical trials. Thus, in this review, we describe the epidemiological, clinical, and molecular features of MM and summarize the efficacies of different immunotherapies for MM, including immune checkpoint inhibitors, vaccines, oncolytic virus therapy, adoptive T-cell therapy, and various combination therapies.
Collapse
|
22
|
Carvalho LAD, Aguiar FC, Smalley KSM, Possik PA. Acral melanoma: new insights into the immune and genomic landscape. Neoplasia 2023; 46:100947. [PMID: 37913653 PMCID: PMC10637990 DOI: 10.1016/j.neo.2023.100947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
Acral melanoma is a rare subtype of melanoma that arises on the non-hair bearing skin of the nail bed, palms of the hand and soles of the feet. It is unique among melanomas in not being linked to ultraviolet radiation (UVR) exposure from the sun, and, as such, its incidence is similar across populations who are of Asian, Hispanic, African and European origin. Although research into acral melanoma has lagged behind that of sun-exposed cutaneous melanoma, recent studies have begun to address the unique genetics and immune features of acral melanoma. In this review we will discuss the latest progress in understanding the biology of acral melanoma across different ethnic populations and will outline how these new discoveries can help to guide the therapeutic management of this rare tumor.
Collapse
Affiliation(s)
| | - Flavia C Aguiar
- Division of Basic and Experimental Research, Brazilian National Cancer Institute, Rua Andre Cavalcanti 37, Rio de Janeiro, RJ, 20231-050, Brazil
| | - Keiran S M Smalley
- Department of Tumor Biology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612 USA.
| | - Patricia A Possik
- Division of Basic and Experimental Research, Brazilian National Cancer Institute, Rua Andre Cavalcanti 37, Rio de Janeiro, RJ, 20231-050, Brazil
| |
Collapse
|
23
|
Katkat E, Demirci Y, Heger G, Karagulle D, Papatheodorou I, Brazma A, Ozhan G. Canonical Wnt and TGF-β/BMP signaling enhance melanocyte regeneration but suppress invasiveness, migration, and proliferation of melanoma cells. Front Cell Dev Biol 2023; 11:1297910. [PMID: 38020918 PMCID: PMC10679360 DOI: 10.3389/fcell.2023.1297910] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Melanoma is the deadliest form of skin cancer and develops from the melanocytes that are responsible for the pigmentation of the skin. The skin is also a highly regenerative organ, harboring a pool of undifferentiated melanocyte stem cells that proliferate and differentiate into mature melanocytes during regenerative processes in the adult. Melanoma and melanocyte regeneration share remarkable cellular features, including activation of cell proliferation and migration. Yet, melanoma considerably differs from the regenerating melanocytes with respect to abnormal proliferation, invasive growth, and metastasis. Thus, it is likely that at the cellular level, melanoma resembles early stages of melanocyte regeneration with increased proliferation but separates from the later melanocyte regeneration stages due to reduced proliferation and enhanced differentiation. Here, by exploiting the zebrafish melanocytes that can efficiently regenerate and be induced to undergo malignant melanoma, we unravel the transcriptome profiles of the regenerating melanocytes during early and late regeneration and the melanocytic nevi and malignant melanoma. Our global comparison of the gene expression profiles of melanocyte regeneration and nevi/melanoma uncovers the opposite regulation of a substantial number of genes related to Wnt signaling and transforming growth factor beta (TGF-β)/(bone morphogenetic protein) BMP signaling pathways between regeneration and cancer. Functional activation of canonical Wnt or TGF-β/BMP pathways during melanocyte regeneration promoted melanocyte regeneration but potently suppressed the invasiveness, migration, and proliferation of human melanoma cells in vitro and in vivo. Therefore, the opposite regulation of signaling mechanisms between melanocyte regeneration and melanoma can be exploited to stop tumor growth and develop new anti-cancer therapies.
Collapse
Affiliation(s)
- Esra Katkat
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Izmir, Türkiye
| | - Yeliz Demirci
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Izmir, Türkiye
| | | | - Doga Karagulle
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Türkiye
| | - Irene Papatheodorou
- European Molecular Biology Laboratory—European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom
| | - Alvis Brazma
- European Molecular Biology Laboratory—European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Türkiye
| |
Collapse
|
24
|
Qin Z, Zheng M. Advances in targeted therapy and immunotherapy for melanoma (Review). Exp Ther Med 2023; 26:416. [PMID: 37559935 PMCID: PMC10407994 DOI: 10.3892/etm.2023.12115] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/28/2023] [Indexed: 08/11/2023] Open
Abstract
Melanoma is the most aggressive and deadly type of skin cancer and is known for its poor prognosis as soon as metastasis occurs. Since 2011, new and effective therapies for metastatic melanoma have emerged, with US Food and Drug Administration approval of multiple targeted agents, such as V-Raf murine sarcoma viral oncogene homolog B1/mitogen-activated protein kinase kinase inhibitors and multiple immunotherapy agents, such as cytotoxic T lymphocyte-associated protein 4 and anti-programmed cell death protein 1/ligand 1 blockade. Based on insight into the respective advantages of the above two strategies, the present article provided a review of clinical trials of the application of targeted therapy and immunotherapy, as well as novel approaches of their combinations for the treatment of metastatic melanoma in recent years, with a focus on upcoming initiatives to improve the efficacy of these treatment approaches for metastatic melanoma.
Collapse
Affiliation(s)
- Ziyao Qin
- No. 4 Research Laboratory, Shanghai Institute of Biological Products Co., Ltd., Shanghai 200051, P.R. China
| | - Mei Zheng
- No. 4 Research Laboratory, Shanghai Institute of Biological Products Co., Ltd., Shanghai 200051, P.R. China
| |
Collapse
|
25
|
Mao L, Lian B, Li C, Bai X, Zhou L, Cui C, Chi Z, Sheng X, Wang X, Tang B, Yan X, Li S, Kong Y, Dai J, Wei X, Li J, Duan R, Xu H, Wu X, Yang Y, Cheng F, Zhang C, Xia F, Pang Z, Guo J, Si L. Camrelizumab Plus Apatinib and Temozolomide as First-Line Treatment in Patients With Advanced Acral Melanoma: The CAP 03 Phase 2 Nonrandomized Clinical Trial. JAMA Oncol 2023; 9:1099-1107. [PMID: 37261804 PMCID: PMC10236335 DOI: 10.1001/jamaoncol.2023.1363] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/13/2023] [Indexed: 06/02/2023]
Abstract
Importance Acral melanoma, known for low tumor mutation burden, responds poorly to immunotherapy. A standard therapy is still lacking. Objective To investigate the activity and safety of camrelizumab (an anti-programmed cell death-1 antibody) plus apatinib (a vascular endothelial growth factor receptor 2 inhibitor) and temozolomide as first-line treatment in patients with advanced acral melanoma. Design, Setting, and Participants In this single-arm, single-center, phase 2 nonrandomized clinical trial, patients with treatment-naive unresectable stage III or IV acral melanoma were enrolled at Peking University Cancer Hospital and Institute between June 4, 2020, and August 24, 2021. The data cutoff date was April 10, 2022. Interventions Patients received 4-week cycles of intravenous camrelizumab, 200 mg, every 2 weeks; oral apatinib 250 mg, once daily; and intravenous temozolomide, 200 mg/m2, once daily on days 1 to 5 until disease progression or unacceptable toxic effects. Main Outcomes and Measures The primary end point was objective response rate as assessed by investigators according to the Response Evaluation Criteria In Solid Tumors (version 1.1). Secondary end points included progression-free survival, time to response, duration of response, disease control rate, overall survival, and safety. Results A total of 50 patients (32 men [64%]; median age, 57 years [IQR, 52-62 years]) were enrolled and received treatment. The median follow-up duration was 13.4 months (IQR, 9.6-16.2 months). The objective response rate was 64.0% (32 of 50; 95% CI, 49.2%-77.1%). The median time to response and duration of response were 2.7 months (IQR, 0.9-2.9 months) and 17.5 months (95% CI, 12.0 to not reached), respectively. The disease control rate was 88.0% (44 of 50; 95% CI, 75.7%-95.5%). The estimated median progression-free survival was 18.4 months (95% CI, 10.6 to not reached). The median overall survival was not reached. The most common grade 3 or 4 treatment-related adverse events were increased gamma-glutamyltransferase levels (15 [30%]), decreased neutrophil count (11 [22%]), increased conjugated bilirubin levels (10 [20%]), and increased aspartate aminotransferase levels (10 [20%]). No treatment-related deaths occurred. Conclusions and Relevance The findings of this nonrandomized clinical trial suggest that camrelizumab plus apatinib and temozolomide may be a potential first-line treatment option for patients with advanced acral melanoma, which warrants further validation in a randomized clinical trial. Trial Registration ClinicalTrials.gov Identifier: NCT04397770.
Collapse
Affiliation(s)
- Lili Mao
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Bin Lian
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Caili Li
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xue Bai
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Li Zhou
- Department of Genitourinary Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Chuanliang Cui
- Department of Genitourinary Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhihong Chi
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xinan Sheng
- Department of Genitourinary Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xuan Wang
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Bixia Tang
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xieqiao Yan
- Department of Genitourinary Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Siming Li
- Department of Genitourinary Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yan Kong
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jie Dai
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiaoting Wei
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Juan Li
- Department of Genitourinary Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Rong Duan
- Department of Genitourinary Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Huayan Xu
- Department of Genitourinary Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiaowen Wu
- Department of Genitourinary Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yue Yang
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Fengzhuo Cheng
- Department of Medical Affairs, Jiangsu Hengrui Pharmaceuticals Co, Ltd, Shanghai, China
| | - Cheng Zhang
- Department of Medical Affairs, Jiangsu Hengrui Pharmaceuticals Co, Ltd, Shanghai, China
| | - Fangzhou Xia
- Department of Medical Affairs, Jiangsu Hengrui Pharmaceuticals Co, Ltd, Shanghai, China
| | - Zheng Pang
- Department of Medical Affairs, Jiangsu Hengrui Pharmaceuticals Co, Ltd, Shanghai, China
| | - Jun Guo
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Lu Si
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
26
|
Sun W, Xu Y, Yan W, Wang C, Hu T, Luo Z, Zhang X, Liu X, Chen Y. A real-world study of adjuvant anti-PD -1 immunotherapy on stage III melanoma with BRAF, NRAS, and KIT mutations. Cancer Med 2023; 12:15945-15954. [PMID: 37403699 PMCID: PMC10469738 DOI: 10.1002/cam4.6234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 04/23/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Melanoma frequently harbors BRAF, NRAS, or KIT mutations which influence both tumor development and treatment strategies. For example, it is still controversial whether adjuvant anti-PD-1 monotherapy or BRAF/MEK inhibitors may better improve the survival for resected BRAF-mutant melanoma. Furthermore, outcomes for melanoma with NRAS and KIT mutation receiving adjuvant immunotherapy remain unclear. METHODS One hundred seventy-four stage III melanoma patients who underwent radical surgery in Fudan University Shanghai Cancer Center (FUSCC) during January 2017 to December 2021 were included in this real-world study. Patients were followed up until death or May 30th, 2022. Pearson's chi-squared test or Fisher's exact test was performed for univariable analysis of the different category groups. Log-rank analysis was used to identify the prognostic factors for disease-free survival (DFS). RESULTS There were 41 (23.6%) patients with BRAF mutation, 31 (17.8%) with NRAS mutation, 17 (9.8%) with KIT mutation, and 85 (48.9%) wild-type patients without either genomic alteration of those three genes. Most ( n = 118, 67.8%) of them were acral melanoma, while 45 (25.9%) were cutaneous subtype, and 11 were (6.3%) primary unknown. Among them, 115 (66.1%) patients received pembrolizumab or toripalimab monotherapy as adjuvant therapy; 22 (12.6%) patients received high-dose interferon (IFN), and 37 (21.3%) patients were just for observation. There was no statistical difference in clinicopathologic factors between anti-PD-1 group and IFN/OBS group. Of all the enrolled patients, anti-PD-1 group had a better DFS than IFN/OBS group ( p = 0.039). In anti-PD-1 group, patients with BRAF or NRAS mutations had poorer DFS than wild-type group. No survival difference was found among patients harboring different gene mutations in IFN/OBS group. In wild-type patients, anti-PD-1 group had a better DFS than IFN/OBS group ( p = 0.003), while no survival benefits were found for patients with BRAF, NRAS, or KIT mutations. CONCLUSION Although anti-PD-1 adjuvant therapy provides a better DFS in the general population and in wild-type patients, patients with BRAF, KIT or, especially, NRAS mutation may not benefit further from immunotherapy than conventional IFN treatment or observation.
Collapse
Affiliation(s)
- Wei Sun
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yu Xu
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - WangJun Yan
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - ChunMeng Wang
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Tu Hu
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - ZhiGuo Luo
- Department of gastrointestinal medical oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - XiaoWei Zhang
- Department of gastrointestinal medical oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Xin Liu
- Department of Head&Neck tumors and Neuroendocrine tumors, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yong Chen
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
27
|
Caksa S, Baqai U, Aplin AE. The future of targeted kinase inhibitors in melanoma. Pharmacol Ther 2022; 239:108200. [PMID: 35513054 PMCID: PMC10187889 DOI: 10.1016/j.pharmthera.2022.108200] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 12/13/2022]
Abstract
Melanoma is a cancer of the pigment-producing cells of the body and its incidence is rising. Targeted inhibitors that act against kinases in the MAPK pathway are approved for BRAF-mutant metastatic cutaneous melanoma and increase patients' survival. Response to these therapies is limited by drug resistance and is less durable than with immune checkpoint inhibition. Conversely, rare melanoma subtypes have few therapeutic options for advanced disease and MAPK pathway targeting agents show minimal anti-tumor effects. Nevertheless, there is a future for targeted kinase inhibitors in melanoma: in new applications such as adjuvant or neoadjuvant therapy and in novel combinations with immunotherapies or other targeted therapies. Pre-clinical studies continue to identify tumor dependencies and their corresponding actionable drug targets, paving the way for rational targeted kinase inhibitor combinations as a personalized medicine approach for melanoma.
Collapse
Affiliation(s)
- Signe Caksa
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Usman Baqai
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrew E Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
28
|
Jung S, Armstrong E, Wei AZ, Ye F, Lee A, Carlino MS, Sullivan RJ, Carvajal RD, Shoushtari AN, Johnson DB. Clinical and genomic correlates of imatinib response in melanomas with KIT alterations. Br J Cancer 2022; 127:1726-1732. [PMID: 35999272 PMCID: PMC9596433 DOI: 10.1038/s41416-022-01942-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/19/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Imatinib is an active agent for some patients with melanoma harbouring c-KIT alterations. However, the genetic and clinical features that correlate with imatinib sensitivity are not well-defined. METHODS We retrospectively evaluated 38 KIT-altered melanoma patients from five medical centres who received imatinib, and pooled data from prospective studies of imatinib in 92 KIT-altered melanoma patients. Baseline patient and disease characteristics, and clinical outcomes were assessed. RESULTS In the pooled analysis (N = 130), alterations in exons 11/13 had the highest response rates (38% and 33%); L576P (N = 23) and K642E (N = 12) mutations had ORR of 52% and 42%, respectively. ORR was 38% (mucosal), 25% (acral), and 8% (unknown-primary). PFS appeared longer in exon 11/13 vs. exon 17 alterations (median 4.3 and 4.5 vs. 1.1 months; p = 0.19), with similar superiority in OS (median 19.7 and 15.4 vs. 12.1 months; p = 0.20). By histology, median PFS was 4.5 months (mucosal), 2.7 (acral), and 5.0 (unknown-primary) [p = 0.36]. Median OS was 18.0 months (mucosal), 21.8 (acral), 11.5 (unknown-primary) [p = 0.26]. In multivariate analyses, mucosal melanoma was associated with higher PFS and exon 17 mutations were associated with reduced PFS. CONCLUSION This multicenter study highlights KIT-alterations sensitive to imatinib and augments evidence for imatinib in subsets of KIT-altered melanoma.
Collapse
Affiliation(s)
- Seungyeon Jung
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Emma Armstrong
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander Z Wei
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Fei Ye
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Aaron Lee
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matteo S Carlino
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Ryan J Sullivan
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Richard D Carvajal
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Douglas B Johnson
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt Ingram Cancer Center, Nashville, TN, USA.
| |
Collapse
|
29
|
Novel Biomarkers and Therapeutic Targets for Melanoma. Int J Mol Sci 2022; 23:ijms231911656. [PMID: 36232957 PMCID: PMC9570448 DOI: 10.3390/ijms231911656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022] Open
Abstract
Malignant melanoma is one of the most common cancers in the world. In the disease’s early stages, treatment involves surgery, in advanced stages however, treatment options were once scarce. There has been a paradigm shift in advanced melanoma treatment with the introduction of immunotherapy and targeted therapies. Understanding the molecular pathways and their pathologic counterparts helped identifying specific biomarkers that lead to the development of specific targeted therapies. In this review we briefly present some of these markers and their relevance to melanoma treatment.
Collapse
|
30
|
van Not OJ, de Meza MM, van den Eertwegh AJM, Haanen JB, Blank CU, Aarts MJB, van den Berkmortel FWPJ, van Breeschoten J, de Groot JWB, Hospers GAP, Ismail RK, Kapiteijn E, Piersma D, van Rijn RS, Stevense-den Boer MAM, van der Veldt AAM, Vreugdenhil G, Bonenkamp HJ, Boers-Sonderen MJ, Blokx WAM, Wouters MWJM, Suijkerbuijk KPM. Response to immune checkpoint inhibitors in acral melanoma: A nationwide cohort study. Eur J Cancer 2022; 167:70-80. [PMID: 35395553 DOI: 10.1016/j.ejca.2022.02.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/11/2022] [Accepted: 02/24/2022] [Indexed: 01/14/2023]
Abstract
BACKGROUND Recent reports suggest the limited efficacy of immune checkpoints inhibitors in advanced acral melanoma (AM). This study aims to investigate the clinical outcomes of immune checkpoint inhibitors in patients with stage III and IV AM and compare them to cutaneous melanoma (CM). METHODS We included patients with advanced AM and CM treated with first-line anti-programmed cell death (PD)-1 monotherapy or ipilimumab-nivolumab registered in the prospective nationwide Dutch Melanoma Treatment Registry. Objective response rates, progression-free survival (PFS) and overall survival (OS) were calculated. A Cox proportional hazard model was used to assess the prognostic factors with PFS and OS. RESULTS In total, 2058 patients (88 AM and 1970 CM) with advanced melanoma were included. First-line objective response rates were 34% for AM versus 54% for CM in the advanced anti-PD-1 cohort and 33% for AM versus 53% for CM in the advanced ipilimumab-nivolumab cohort. The Median PFS was significantly shorter for anti-PD-1 treated AM patients (3.1 months; 95%CI: 2.8-5.6) than patients with CM (10.1 months; 95%CI: 8.5-12.2) (P < 0.001). In patients with advanced melanoma, AM was significantly associated with a higher risk of progression (HRadj 1.63; 95%CI: 1.26-2.11; P < 0.001) and death (HRadj 1.54; 95%CI: 1.15-2.06; P = 0.004) than CM. CONCLUSIONS This study shows lower effectiveness of anti-PD -1 monotherapy and ipilimumab-nivolumab in AM, with lower response rates, PFS and OS than CM. This group of patients should be prioritised in the development of alternative treatment strategies.
Collapse
Affiliation(s)
- Olivier J van Not
- Scientific Bureau, Dutch Institute for Clinical Auditing, Rijnsburgerweg 10, Leiden 2333AA, the Netherlands; Department of Medical Oncology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584CX, the Netherlands.
| | - Melissa M de Meza
- Scientific Bureau, Dutch Institute for Clinical Auditing, Rijnsburgerweg 10, Leiden 2333AA, the Netherlands; Department of Surgical Oncology, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066CX, the Netherlands; Department of Biomedical Data Sciences, Leiden University Medical Centre, Einthovenweg 20, Leiden 2333ZC, the Netherlands
| | - Alfons J M van den Eertwegh
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1118, Amsterdam 1081HZ, the Netherlands
| | - John B Haanen
- Department of Molecular Oncology & Immunology, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066CX, the Netherlands
| | - Christian U Blank
- Department of Molecular Oncology & Immunology, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066CX, the Netherlands; Department of Medical Oncology & Immunology, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066CX, the Netherlands
| | - Maureen J B Aarts
- Department of Medical Oncology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, P. Debyelaan 25, Maastricht 6229 HX, the Netherlands
| | | | - Jesper van Breeschoten
- Scientific Bureau, Dutch Institute for Clinical Auditing, Rijnsburgerweg 10, Leiden 2333AA, the Netherlands; Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1118, Amsterdam 1081HZ, the Netherlands
| | | | - Geke A P Hospers
- Department of Medical Oncology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, Groningen 9713GZ, the Netherlands
| | - Rawa K Ismail
- Scientific Bureau, Dutch Institute for Clinical Auditing, Rijnsburgerweg 10, Leiden 2333AA, the Netherlands; Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, the Netherlands
| | - Ellen Kapiteijn
- Department of Medical Oncology, Leiden University Medical Centre, Albinusdreef 2, Leiden 2333ZA, the Netherlands
| | - Djura Piersma
- Department of Internal Medicine, Medisch Spectrum Twente, Koningsplein 1, Enschede 7512KZ, the Netherlands
| | - Roos S van Rijn
- Department of Internal Medicine, Medical Centre Leeuwarden, Henri Dunantweg 2, Leeuwarden 8934AD, the Netherlands
| | | | - Astrid A M van der Veldt
- Department of Medical Oncology and Radiology & Nuclear Medicine, Erasmus Medical Centre, 's-Gravendijkwal 230, Rotterdam 3015CE, the Netherlands
| | - Gerard Vreugdenhil
- Department of Internal Medicine, Maxima Medical Centre, De Run 4600, Eindhoven 5504DB, the Netherlands
| | - Han J Bonenkamp
- Department of Surgery, Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen 6525GA, the Netherlands
| | - Marye J Boers-Sonderen
- Department of Medical Oncology, Radboud University Medical Centre, Geert Grooteplein Zuid 10, Nijmegen 6525GA, the Netherlands
| | - Willeke A M Blokx
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584CX, the Netherlands
| | - Michel W J M Wouters
- Scientific Bureau, Dutch Institute for Clinical Auditing, Rijnsburgerweg 10, Leiden 2333AA, the Netherlands; Department of Surgical Oncology, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066CX, the Netherlands; Department of Biomedical Data Sciences, Leiden University Medical Centre, Einthovenweg 20, Leiden 2333ZC, the Netherlands
| | - Karijn P M Suijkerbuijk
- Department of Medical Oncology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584CX, the Netherlands
| |
Collapse
|
31
|
Rutkowski P, Mackiewicz A. Editorial to the Special Issue on Skin Cancer: The State of the Art. Int J Mol Sci 2022; 23:ijms23073806. [PMID: 35409164 PMCID: PMC8998356 DOI: 10.3390/ijms23073806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/05/2022] Open
Affiliation(s)
- Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
- Correspondence: (P.R.); (A.M.)
| | - Andrzej Mackiewicz
- Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
- Correspondence: (P.R.); (A.M.)
| |
Collapse
|
32
|
Molecular Profiling and Novel Therapeutic Strategies for Mucosal Melanoma: A Comprehensive Review. Int J Mol Sci 2021; 23:ijms23010147. [PMID: 35008570 PMCID: PMC8745551 DOI: 10.3390/ijms23010147] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 01/15/2023] Open
Abstract
Mucosal melanoma is a rare and aggressive subtype of melanoma. Unlike its cutaneous counterpart, mucosal melanoma has only gained limited benefit from novel treatment approaches due to the lack of actionable driver mutations and poor response to immunotherapy. Over the last years, whole-genome and exome sequencing techniques have led to increased knowledge on the molecular landscape of mucosal melanoma. Molecular studies have underlined noteworthy findings with potential therapeutic implications, including the presence of KIT mutations, which are potential targets of tyrosine kinase inhibitors currently in use in the clinic (imatinib), but also SF3B1 mutation, CDK4 amplifications, and CDKN2A gene deletions, which are presently under investigation in clinical trials. Recent results from a pooled analysis of patients with mucosal melanoma treated with immunotherapy have suggested that the combination of immune checkpoint inhibitors might improve survival outcomes in this subset of patients, as compared with single-agent immunotherapy. However, these results are not confirmed across different studies, and combo-immunotherapy correlates with a higher rate of adverse events. In this review, we describe the clinical, biological, and genetic features of mucosal melanoma. We also provide an update on the results of approved systemic treatment in this setting and overview the therapeutic strategies currently under investigation in clinical trials.
Collapse
|