1
|
Tognetti L, Miracapillo C, Leonardelli S, Luschi A, Iadanza E, Cevenini G, Rubegni P, Cartocci A. Deep Learning Techniques for the Dermoscopic Differential Diagnosis of Benign/Malignant Melanocytic Skin Lesions: From the Past to the Present. Bioengineering (Basel) 2024; 11:758. [PMID: 39199716 PMCID: PMC11351129 DOI: 10.3390/bioengineering11080758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 09/01/2024] Open
Abstract
There has been growing scientific interest in the research field of deep learning techniques applied to skin cancer diagnosis in the last decade. Though encouraging data have been globally reported, several discrepancies have been observed in terms of study methodology, result presentations and validation in clinical settings. The present review aimed to screen the scientific literature on the application of DL techniques to dermoscopic melanoma/nevi differential diagnosis and extrapolate those original studies adequately by reporting on a DL model, comparing them among clinicians and/or another DL architecture. The second aim was to examine those studies together according to a standard set of statistical measures, and the third was to provide dermatologists with a comprehensive explanation and definition of the most used artificial intelligence (AI) terms to better/further understand the scientific literature on this topic and, in parallel, to be updated on the newest applications in the medical dermatologic field, along with a historical perspective. After screening nearly 2000 records, a subset of 54 was selected. Comparing the 20 studies reporting on convolutional neural network (CNN)/deep convolutional neural network (DCNN) models, we have a scenario of highly performant DL algorithms, especially in terms of low false positive results, with average values of accuracy (83.99%), sensitivity (77.74%), and specificity (80.61%). Looking at the comparison with diagnoses by clinicians (13 studies), the main difference relies on the specificity values, with a +15.63% increase for the CNN/DCNN models (average specificity of 84.87%) compared to humans (average specificity of 64.24%) with a 14,85% gap in average accuracy; the sensitivity values were comparable (79.77% for DL and 79.78% for humans). To obtain higher diagnostic accuracy and feasibility in clinical practice, rather than in experimental retrospective settings, future DL models should be based on a large dataset integrating dermoscopic images with relevant clinical and anamnestic data that is prospectively tested and adequately compared with physicians.
Collapse
Affiliation(s)
- Linda Tognetti
- Dermatology Unit, Deparment of Medical, Surgical and Neurosciences, University of Siena, Viale Bracci 16, 53100 Siena, Italy (P.R.)
| | - Chiara Miracapillo
- Dermatology Unit, Deparment of Medical, Surgical and Neurosciences, University of Siena, Viale Bracci 16, 53100 Siena, Italy (P.R.)
| | - Simone Leonardelli
- Dermatology Unit, Deparment of Medical, Surgical and Neurosciences, University of Siena, Viale Bracci 16, 53100 Siena, Italy (P.R.)
| | - Alessio Luschi
- Bioengineering and Biomedical Data Science Lab, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy (E.I.)
| | - Ernesto Iadanza
- Bioengineering and Biomedical Data Science Lab, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy (E.I.)
| | - Gabriele Cevenini
- Bioengineering and Biomedical Data Science Lab, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy (E.I.)
| | - Pietro Rubegni
- Dermatology Unit, Deparment of Medical, Surgical and Neurosciences, University of Siena, Viale Bracci 16, 53100 Siena, Italy (P.R.)
| | - Alessandra Cartocci
- Dermatology Unit, Deparment of Medical, Surgical and Neurosciences, University of Siena, Viale Bracci 16, 53100 Siena, Italy (P.R.)
- Bioengineering and Biomedical Data Science Lab, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy (E.I.)
| |
Collapse
|
2
|
Salinas MP, Sepúlveda J, Hidalgo L, Peirano D, Morel M, Uribe P, Rotemberg V, Briones J, Mery D, Navarrete-Dechent C. A systematic review and meta-analysis of artificial intelligence versus clinicians for skin cancer diagnosis. NPJ Digit Med 2024; 7:125. [PMID: 38744955 PMCID: PMC11094047 DOI: 10.1038/s41746-024-01103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/04/2024] [Indexed: 05/16/2024] Open
Abstract
Scientific research of artificial intelligence (AI) in dermatology has increased exponentially. The objective of this study was to perform a systematic review and meta-analysis to evaluate the performance of AI algorithms for skin cancer classification in comparison to clinicians with different levels of expertise. Based on PRISMA guidelines, 3 electronic databases (PubMed, Embase, and Cochrane Library) were screened for relevant articles up to August 2022. The quality of the studies was assessed using QUADAS-2. A meta-analysis of sensitivity and specificity was performed for the accuracy of AI and clinicians. Fifty-three studies were included in the systematic review, and 19 met the inclusion criteria for the meta-analysis. Considering all studies and all subgroups of clinicians, we found a sensitivity (Sn) and specificity (Sp) of 87.0% and 77.1% for AI algorithms, respectively, and a Sn of 79.78% and Sp of 73.6% for all clinicians (overall); differences were statistically significant for both Sn and Sp. The difference between AI performance (Sn 92.5%, Sp 66.5%) vs. generalists (Sn 64.6%, Sp 72.8%), was greater, when compared with expert clinicians. Performance between AI algorithms (Sn 86.3%, Sp 78.4%) vs expert dermatologists (Sn 84.2%, Sp 74.4%) was clinically comparable. Limitations of AI algorithms in clinical practice should be considered, and future studies should focus on real-world settings, and towards AI-assistance.
Collapse
Affiliation(s)
- Maria Paz Salinas
- Department of Dermatology, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Javiera Sepúlveda
- Department of Dermatology, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leonel Hidalgo
- Department of Dermatology, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Dominga Peirano
- Department of Dermatology, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Macarena Morel
- Universidad Catolica-Evidence Center, Cochrane Chile Associated Center, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Uribe
- Department of Dermatology, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Melanoma and Skin Cancer Unit, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Veronica Rotemberg
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Juan Briones
- Department of Oncology, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Domingo Mery
- Department of Computer Science, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristian Navarrete-Dechent
- Department of Dermatology, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Melanoma and Skin Cancer Unit, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
3
|
Miller I, Rosic N, Stapelberg M, Hudson J, Coxon P, Furness J, Walsh J, Climstein M. Performance of Commercial Dermatoscopic Systems That Incorporate Artificial Intelligence for the Identification of Melanoma in General Practice: A Systematic Review. Cancers (Basel) 2024; 16:1443. [PMID: 38611119 PMCID: PMC11011068 DOI: 10.3390/cancers16071443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Cutaneous melanoma remains an increasing global public health burden, particularly in fair-skinned populations. Advancing technologies, particularly artificial intelligence (AI), may provide an additional tool for clinicians to help detect malignancies with a more accurate success rate. This systematic review aimed to report the performance metrics of commercially available convolutional neural networks (CNNs) tasked with detecting MM. METHODS A systematic literature search was performed using CINAHL, Medline, Scopus, ScienceDirect and Web of Science databases. RESULTS A total of 16 articles reporting MM were included in this review. The combined number of melanomas detected was 1160, and non-melanoma lesions were 33,010. The performance of market-approved technology and clinician performance for classifying melanoma was highly heterogeneous, with sensitivity ranging from 16.4 to 100.0%, specificity between 40.0 and 98.3% and accuracy between 44.0 and 92.0%. Less heterogeneity was observed when clinicians worked in unison with AI, with sensitivity ranging between 83.3 and 100.0%, specificity between 83.7 and 87.3%, and accuracy between 86.4 and 86.9%. CONCLUSION Instead of focusing on the performance of AI versus clinicians for classifying melanoma, more consistent performance has been obtained when clinicians' work is supported by AI, facilitating management decisions and improving health outcomes.
Collapse
Affiliation(s)
- Ian Miller
- Aquatic Based Research, Southern Cross University, Bilinga, QLD 4225, Australia; (I.M.); (N.R.)
- Faculty of Health, Southern Cross University, Bilinga, QLD 4225, Australia (P.C.)
- Specialist Suite, John Flynn Hospital, Tugun, QLD 4224, Australia
| | - Nedeljka Rosic
- Aquatic Based Research, Southern Cross University, Bilinga, QLD 4225, Australia; (I.M.); (N.R.)
- Faculty of Health, Southern Cross University, Bilinga, QLD 4225, Australia (P.C.)
| | - Michael Stapelberg
- Aquatic Based Research, Southern Cross University, Bilinga, QLD 4225, Australia; (I.M.); (N.R.)
- Faculty of Health, Southern Cross University, Bilinga, QLD 4225, Australia (P.C.)
- Specialist Suite, John Flynn Hospital, Tugun, QLD 4224, Australia
| | - Jeremy Hudson
- Faculty of Health, Southern Cross University, Bilinga, QLD 4225, Australia (P.C.)
- North Queensland Skin Centre, Townsville, QLD 4810, Australia
| | - Paul Coxon
- Faculty of Health, Southern Cross University, Bilinga, QLD 4225, Australia (P.C.)
- North Queensland Skin Centre, Townsville, QLD 4810, Australia
| | - James Furness
- Water Based Research Unit, Bond University, Robina, QLD 4226, Australia;
| | - Joe Walsh
- Sport Science Institute, Sydney, NSW 2000, Australia;
- AI Consulting Group, Sydney, NSW 2000, Australia
| | - Mike Climstein
- Aquatic Based Research, Southern Cross University, Bilinga, QLD 4225, Australia; (I.M.); (N.R.)
- Faculty of Health, Southern Cross University, Bilinga, QLD 4225, Australia (P.C.)
- Physical Activity, Lifestyle, Ageing and Wellbeing Faculty Research Group, University of Sydney, Sydney, NSW 2050, Australia
| |
Collapse
|
4
|
Wei ML, Tada M, So A, Torres R. Artificial intelligence and skin cancer. Front Med (Lausanne) 2024; 11:1331895. [PMID: 38566925 PMCID: PMC10985205 DOI: 10.3389/fmed.2024.1331895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Artificial intelligence is poised to rapidly reshape many fields, including that of skin cancer screening and diagnosis, both as a disruptive and assistive technology. Together with the collection and availability of large medical data sets, artificial intelligence will become a powerful tool that can be leveraged by physicians in their diagnoses and treatment plans for patients. This comprehensive review focuses on current progress toward AI applications for patients, primary care providers, dermatologists, and dermatopathologists, explores the diverse applications of image and molecular processing for skin cancer, and highlights AI's potential for patient self-screening and improving diagnostic accuracy for non-dermatologists. We additionally delve into the challenges and barriers to clinical implementation, paths forward for implementation and areas of active research.
Collapse
Affiliation(s)
- Maria L. Wei
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, United States
- Dermatology Service, San Francisco VA Health Care System, San Francisco, CA, United States
| | - Mikio Tada
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, United States
| | - Alexandra So
- School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Rodrigo Torres
- Dermatology Service, San Francisco VA Health Care System, San Francisco, CA, United States
| |
Collapse
|
5
|
Zhu AQ, Wang Q, Shi YL, Ren WW, Cao X, Ren TT, Wang J, Zhang YQ, Sun YK, Chen XW, Lai YX, Ni N, Chen YC, Hu JL, Mou LC, Zhao YJ, Liu YQ, Sun LP, Zhu XX, Xu HX, Guo LH, China Alliance of Multi-Center Clinical Study for Ultrasound (Ultra-Chance). A deep learning fusion network trained with clinical and high-frequency ultrasound images in the multi-classification of skin diseases in comparison with dermatologists: a prospective and multicenter study. EClinicalMedicine 2024; 67:102391. [PMID: 38274117 PMCID: PMC10808933 DOI: 10.1016/j.eclinm.2023.102391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Clinical appearance and high-frequency ultrasound (HFUS) are indispensable for diagnosing skin diseases by providing internal and external information. However, their complex combination brings challenges for primary care physicians and dermatologists. Thus, we developed a deep multimodal fusion network (DMFN) model combining analysis of clinical close-up and HFUS images for binary and multiclass classification in skin diseases. METHODS Between Jan 10, 2017, and Dec 31, 2020, the DMFN model was trained and validated using 1269 close-ups and 11,852 HFUS images from 1351 skin lesions. The monomodal convolutional neural network (CNN) model was trained and validated with the same close-up images for comparison. Subsequently, we did a prospective and multicenter study in China. Both CNN models were tested prospectively on 422 cases from 4 hospitals and compared with the results from human raters (general practitioners, general dermatologists, and dermatologists specialized in HFUS). The performance of binary classification (benign vs. malignant) and multiclass classification (the specific diagnoses of 17 types of skin diseases) measured by the area under the receiver operating characteristic curve (AUC) were evaluated. This study is registered with www.chictr.org.cn (ChiCTR2300074765). FINDINGS The performance of the DMFN model (AUC, 0.876) was superior to that of the monomodal CNN model (AUC, 0.697) in the binary classification (P = 0.0063), which was also better than that of the general practitioner (AUC, 0.651, P = 0.0025) and general dermatologists (AUC, 0.838; P = 0.0038). By integrating close-up and HFUS images, the DMFN model attained an almost identical performance in comparison to dermatologists (AUC, 0.876 vs. AUC, 0.891; P = 0.0080). For the multiclass classification, the DMFN model (AUC, 0.707) exhibited superior prediction performance compared with general dermatologists (AUC, 0.514; P = 0.0043) and dermatologists specialized in HFUS (AUC, 0.640; P = 0.0083), respectively. Compared to dermatologists specialized in HFUS, the DMFN model showed better or comparable performance in diagnosing 9 of the 17 skin diseases. INTERPRETATION The DMFN model combining analysis of clinical close-up and HFUS images exhibited satisfactory performance in the binary and multiclass classification compared with the dermatologists. It may be a valuable tool for general dermatologists and primary care providers. FUNDING This work was supported in part by the National Natural Science Foundation of China and the Clinical research project of Shanghai Skin Disease Hospital.
Collapse
Affiliation(s)
- An-Qi Zhu
- Department of Medical Ultrasound, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, China
| | - Qiao Wang
- Department of Medical Ultrasound, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Shanghai, China
| | - Yi-Lei Shi
- MedAI Technology (Wuxi) Co., Ltd., Wuxi, China
| | - Wei-Wei Ren
- Department of Medical Ultrasound, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Shanghai, China
| | - Xu Cao
- MedAI Technology (Wuxi) Co., Ltd., Wuxi, China
| | - Tian-Tian Ren
- Department of Medical Ultrasound, Ma'anshan People's Hospital, Ma'anshan, China
| | - Jing Wang
- Department of Ultrasound, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Ya-Qin Zhang
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, China
| | - Yi-Kang Sun
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, China
| | - Xue-Wen Chen
- Department of Dermatological Surgery, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yong-Xian Lai
- Department of Dermatological Surgery, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Na Ni
- Department of Dermatological Surgery, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yu-Chong Chen
- Department of Dermatological Surgery, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | | | - Li-Chao Mou
- MedAI Technology (Wuxi) Co., Ltd., Wuxi, China
| | - Yu-Jing Zhao
- Department of Medical Ultrasound, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ye-Qiang Liu
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li-Ping Sun
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Shanghai, China
| | - Xiao-Xiang Zhu
- Chair of Data Science in Earth Observation, Technical University of Munich, Munich, Germany
| | - Hui-Xiong Xu
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, China
| | - Le-Hang Guo
- Department of Medical Ultrasound, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Shanghai, China
| | - China Alliance of Multi-Center Clinical Study for Ultrasound (Ultra-Chance)
- Department of Medical Ultrasound, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Shanghai, China
- MedAI Technology (Wuxi) Co., Ltd., Wuxi, China
- Department of Medical Ultrasound, Ma'anshan People's Hospital, Ma'anshan, China
- Department of Ultrasound, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, China
- Department of Dermatological Surgery, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Chair of Data Science in Earth Observation, Technical University of Munich, Munich, Germany
| |
Collapse
|
6
|
Grossarth S, Mosley D, Madden C, Ike J, Smith I, Huo Y, Wheless L. Recent Advances in Melanoma Diagnosis and Prognosis Using Machine Learning Methods. Curr Oncol Rep 2023; 25:635-645. [PMID: 37000340 PMCID: PMC10339689 DOI: 10.1007/s11912-023-01407-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/01/2023]
Abstract
PURPOSE OF REVIEW The purpose was to summarize the current role and state of artificial intelligence and machine learning in the diagnosis and management of melanoma. RECENT FINDINGS Deep learning algorithms can identify melanoma from clinical, dermoscopic, and whole slide pathology images with increasing accuracy. Efforts to provide more granular annotation to datasets and to identify new predictors are ongoing. There have been many incremental advances in both melanoma diagnostics and prognostic tools using artificial intelligence and machine learning. Higher quality input data will further improve these models' capabilities.
Collapse
Affiliation(s)
- Sarah Grossarth
- Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | | | - Christopher Madden
- Department of Dermatology, Vanderbilt University Medicine Center, Nashville, TN, USA
- State University of New York Downstate College of Medicine, Brooklyn, NY, USA
| | - Jacqueline Ike
- Department of Dermatology, Vanderbilt University Medicine Center, Nashville, TN, USA
- Meharry Medical College, Nashville, TN, USA
| | - Isabelle Smith
- Department of Dermatology, Vanderbilt University Medicine Center, Nashville, TN, USA
- Vanderbilt University, Nashville, TN, USA
| | - Yuankai Huo
- Department of Computer Science and Electrical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Lee Wheless
- Department of Dermatology, Vanderbilt University Medicine Center, Nashville, TN, USA.
- Department of Medicine, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Tennessee Valley Healthcare System VA Medical Center, Nashville, TN, USA.
| |
Collapse
|
7
|
Winkler JK, Blum A, Kommoss K, Enk A, Toberer F, Rosenberger A, Haenssle HA. Assessment of Diagnostic Performance of Dermatologists Cooperating With a Convolutional Neural Network in a Prospective Clinical Study: Human With Machine. JAMA Dermatol 2023; 159:621-627. [PMID: 37133847 PMCID: PMC10157508 DOI: 10.1001/jamadermatol.2023.0905] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/05/2023] [Indexed: 05/04/2023]
Abstract
Importance Studies suggest that convolutional neural networks (CNNs) perform equally to trained dermatologists in skin lesion classification tasks. Despite the approval of the first neural networks for clinical use, prospective studies demonstrating benefits of human with machine cooperation are lacking. Objective To assess whether dermatologists benefit from cooperation with a market-approved CNN in classifying melanocytic lesions. Design, Setting, and Participants In this prospective diagnostic 2-center study, dermatologists performed skin cancer screenings using naked-eye examination and dermoscopy. Dermatologists graded suspect melanocytic lesions by the probability of malignancy (range 0-1, threshold for malignancy ≥0.5) and indicated management decisions (no action, follow-up, excision). Next, dermoscopic images of suspect lesions were assessed by a market-approved CNN, Moleanalyzer Pro (FotoFinder Systems). The CNN malignancy scores (range 0-1, threshold for malignancy ≥0.5) were transferred to dermatologists with the request to re-evaluate lesions and revise initial decisions in consideration of CNN results. Reference diagnoses were based on histopathologic examination in 125 (54.8%) lesions or, in the case of nonexcised lesions, on clinical follow-up data and expert consensus. Data were collected from October 2020 to October 2021. Main Outcomes and Measures Primary outcome measures were diagnostic sensitivity and specificity of dermatologists alone and dermatologists cooperating with the CNN. Accuracy and receiver operator characteristic area under the curve (ROC AUC) were considered as additional measures. Results A total of 22 dermatologists detected 228 suspect melanocytic lesions (190 nevi, 38 melanomas) in 188 patients (mean [range] age, 53.4 [19-91] years; 97 [51.6%] male patients). Diagnostic sensitivity and specificity significantly improved when dermatologists additionally integrated CNN results into decision-making (mean sensitivity from 84.2% [95% CI, 69.6%-92.6%] to 100.0% [95% CI, 90.8%-100.0%]; P = .03; mean specificity from 72.1% [95% CI, 65.3%-78.0%] to 83.7% [95% CI, 77.8%-88.3%]; P < .001; mean accuracy from 74.1% [95% CI, 68.1%-79.4%] to 86.4% [95% CI, 81.3%-90.3%]; P < .001; and mean ROC AUC from 0.895 [95% CI, 0.836-0.954] to 0.968 [95% CI, 0.948-0.988]; P = .005). In addition, the CNN alone achieved a comparable sensitivity, higher specificity, and higher diagnostic accuracy compared with dermatologists alone in classifying melanocytic lesions. Moreover, unnecessary excisions of benign nevi were reduced by 19.2%, from 104 (54.7%) of 190 benign nevi to 84 nevi when dermatologists cooperated with the CNN (P < .001). Most lesions were examined by dermatologists with 2 to 5 years (96, 42.1%) or less than 2 years of experience (78, 34.2%); others (54, 23.7%) were evaluated by dermatologists with more than 5 years of experience. Dermatologists with less dermoscopy experience cooperating with the CNN had the most diagnostic improvement compared with more experienced dermatologists. Conclusions and Relevance In this prospective diagnostic study, these findings suggest that dermatologists may improve their performance when they cooperate with the market-approved CNN and that a broader application of this human with machine approach could be beneficial for dermatologists and patients.
Collapse
Affiliation(s)
- Julia K. Winkler
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
| | - Andreas Blum
- Public, Private and Teaching Practice of Dermatology, Konstanz, Germany
| | - Katharina Kommoss
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
| | - Alexander Enk
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
| | - Ferdinand Toberer
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
| | - Albert Rosenberger
- Institute of Genetic Epidemiology, University Medical Center, Georg-August University of Goettingen, Goettingen, Germany
| | - Holger A. Haenssle
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
8
|
Liopyris K, Gregoriou S, Dias J, Stratigos AJ. Artificial Intelligence in Dermatology: Challenges and Perspectives. Dermatol Ther (Heidelb) 2022; 12:2637-2651. [PMID: 36306100 PMCID: PMC9674813 DOI: 10.1007/s13555-022-00833-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/07/2022] [Indexed: 01/07/2023] Open
Abstract
Artificial intelligence (AI) based on machine learning and convolutional neuron networks (CNN) is rapidly becoming a realistic prospect in dermatology. Non-melanoma skin cancer is the most common cancer worldwide and melanoma is one of the deadliest forms of cancer. Dermoscopy has improved physicians' diagnostic accuracy for skin cancer recognition but unfortunately it remains comparatively low. AI could provide invaluable aid in the early evaluation and diagnosis of skin cancer. In the last decade, there has been a breakthrough in new research and publications in the field of AI. Studies have shown that CNN algorithms can classify skin lesions from dermoscopic images with superior or at least equivalent performance compared to clinicians. Even though AI algorithms have shown very promising results for the diagnosis of skin cancer in reader studies, their generalizability and applicability in everyday clinical practice remain elusive. Herein we attempted to summarize the potential pitfalls and challenges of AI that were underlined in reader studies and pinpoint strategies to overcome limitations in future studies. Finally, we tried to analyze the advantages and opportunities that lay ahead for a better future for dermatology and patients, with the potential use of AI in our practices.
Collapse
Affiliation(s)
- Konstantinos Liopyris
- 1st Department of Dermatology-Venereology, Andreas Sygros Hospital, National and Kapodistrian University of Athens, 5 Ionos Dragoumi Str, 16121, Athens, Greece
- Dermatology Department, Memorial Sloan Kettering Cancer Center, New York, NY, 10021, USA
| | - Stamatios Gregoriou
- 1st Department of Dermatology-Venereology, Andreas Sygros Hospital, National and Kapodistrian University of Athens, 5 Ionos Dragoumi Str, 16121, Athens, Greece.
| | - Julia Dias
- 1st Department of Dermatology-Venereology, Andreas Sygros Hospital, National and Kapodistrian University of Athens, 5 Ionos Dragoumi Str, 16121, Athens, Greece
| | - Alexandros J Stratigos
- 1st Department of Dermatology-Venereology, Andreas Sygros Hospital, National and Kapodistrian University of Athens, 5 Ionos Dragoumi Str, 16121, Athens, Greece
| |
Collapse
|
9
|
Winkler JK, Haenssle HA. [Artificial intelligence-based classification for the diagnostics of skin cancer]. DERMATOLOGIE (HEIDELBERG, GERMANY) 2022; 73:838-844. [PMID: 36094608 DOI: 10.1007/s00105-022-05058-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Convolutional neural networks (CNN) achieve a level of performance comparable or even superior to dermatologists in the assessment of pigmented and nonpigmented skin lesions. In the analysis of images by artificial neural networks, images on a pixel level pass through various layers of the network with different graphic filters. Based on excellent study results, a first deep learning network (Moleanalyzer pro, Fotofinder Systems GmBH, Bad Birnbach, Germany) received market approval in Europe. However, such neural networks also reveal relevant limitations, whereby rare entities with insufficient training images are classified less adequately and image artifacts can lead to false diagnoses. Best results can ultimately be achieved in a cooperation of "man with machine". For future skin cancer screening, automated total body mapping is evaluated, which combines total body photography, automated data extraction and assessment of all relevant skin lesions.
Collapse
Affiliation(s)
- Julia K Winkler
- Universitätshautklinik Heidelberg, Im Neuenheimer Feld 440, 69120, Heidelberg, Deutschland.
| | - Holger A Haenssle
- Universitätshautklinik Heidelberg, Im Neuenheimer Feld 440, 69120, Heidelberg, Deutschland
| |
Collapse
|