1
|
Dynamics of Actin Cytoskeleton and Their Signaling Pathways during Cellular Wound Repair. Cells 2022; 11:cells11193166. [PMID: 36231128 PMCID: PMC9564287 DOI: 10.3390/cells11193166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 11/17/2022] Open
Abstract
The repair of wounded cell membranes is essential for cell survival. Upon wounding, actin transiently accumulates at the wound site. The loss of actin accumulation leads to cell death. The mechanism by which actin accumulates at the wound site, the types of actin-related proteins participating in the actin remodeling, and their signaling pathways are unclear. We firstly examined how actin accumulates at a wound site in Dictyostelium cells. Actin assembled de novo at the wound site, independent of cortical flow. Next, we searched for actin- and signal-related proteins targeting the wound site. Fourteen of the examined proteins transiently accumulated at different times. Thirdly, we performed functional analyses using gene knockout mutants or specific inhibitors. Rac, WASP, formin, the Arp2/3 complex, profilin, and coronin contribute to the actin dynamics. Finally, we found that multiple signaling pathways related to TORC2, the Elmo/Doc complex, PIP2-derived products, PLA2, and calmodulin are involved in the actin dynamics for wound repair.
Collapse
|
2
|
Dunn JD, Bosmani C, Barisch C, Raykov L, Lefrançois LH, Cardenal-Muñoz E, López-Jiménez AT, Soldati T. Eat Prey, Live: Dictyostelium discoideum As a Model for Cell-Autonomous Defenses. Front Immunol 2018; 8:1906. [PMID: 29354124 PMCID: PMC5758549 DOI: 10.3389/fimmu.2017.01906] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022] Open
Abstract
The soil-dwelling social amoeba Dictyostelium discoideum feeds on bacteria. Each meal is a potential infection because some bacteria have evolved mechanisms to resist predation. To survive such a hostile environment, D. discoideum has in turn evolved efficient antimicrobial responses that are intertwined with phagocytosis and autophagy, its nutrient acquisition pathways. The core machinery and antimicrobial functions of these pathways are conserved in the mononuclear phagocytes of mammals, which mediate the initial, innate-immune response to infection. In this review, we discuss the advantages and relevance of D. discoideum as a model phagocyte to study cell-autonomous defenses. We cover the antimicrobial functions of phagocytosis and autophagy and describe the processes that create a microbicidal phagosome: acidification and delivery of lytic enzymes, generation of reactive oxygen species, and the regulation of Zn2+, Cu2+, and Fe2+ availability. High concentrations of metals poison microbes while metal sequestration inhibits their metabolic activity. We also describe microbial interference with these defenses and highlight observations made first in D. discoideum. Finally, we discuss galectins, TNF receptor-associated factors, tripartite motif-containing proteins, and signal transducers and activators of transcription, microbial restriction factors initially characterized in mammalian phagocytes that have either homologs or functional analogs in D. discoideum.
Collapse
Affiliation(s)
- Joe Dan Dunn
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Cristina Bosmani
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Caroline Barisch
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Lyudmil Raykov
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Louise H Lefrançois
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Elena Cardenal-Muñoz
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | | | - Thierry Soldati
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
3
|
Identification of the protein kinases Pyk3 and Phg2 as regulators of the STATc-mediated response to hyperosmolarity. PLoS One 2014; 9:e90025. [PMID: 24587195 PMCID: PMC3934975 DOI: 10.1371/journal.pone.0090025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/24/2014] [Indexed: 11/19/2022] Open
Abstract
Cellular adaptation to changes in environmental osmolarity is crucial for cell survival. In Dictyostelium, STATc is a key regulator of the transcriptional response to hyperosmotic stress. Its phosphorylation and consequent activation is controlled by two signaling branches, one cGMP- and the other Ca(2+)-dependent, of which many signaling components have yet to be identified. The STATc stress signalling pathway feeds back on itself by upregulating the expression of STATc and STATc-regulated genes. Based on microarray studies we chose two tyrosine-kinase like proteins, Pyk3 and Phg2, as possible modulators of STATc phosphorylation and generated single and double knock-out mutants to them. Transcriptional regulation of STATc and STATc dependent genes was disturbed in pyk3(-), phg2(-), and pyk3(-)/phg2(-) cells. The absence of Pyk3 and/or Phg2 resulted in diminished or completely abolished increased transcription of STATc dependent genes in response to sorbitol, 8-Br-cGMP and the Ca(2+) liberator BHQ. Also, phospho-STATc levels were significantly reduced in pyk3(-) and phg2(-) cells and even further decreased in pyk3(-)/phg2(-) cells. The reduced phosphorylation was mirrored by a significant delay in nuclear translocation of GFP-STATc. The protein tyrosine phosphatase 3 (PTP3), which dephosphorylates and inhibits STATc, is inhibited by stress-induced phosphorylation on S448 and S747. Use of phosphoserine specific antibodies showed that Phg2 but not Pyk3 is involved in the phosphorylation of PTP3 on S747. In pull-down assays Phg2 and PTP3 interact directly, suggesting that Phg2 phosphorylates PTP3 on S747 in vivo. Phosphorylation of S448 was unchanged in phg2(-) cells. We show that Phg2 and an, as yet unknown, S448 protein kinase are responsible for PTP3 phosphorylation and hence its inhibition, and that Pyk3 is involved in the regulation of STATc by either directly or indirectly activating it. Our results add further complexities to the regulation of STATc, which presumably ensure its optimal activation in response to different environmental cues.
Collapse
|
4
|
Peracino B, Balest A, Bozzaro S. Phosphoinositides differentially regulate bacterial uptake and Nramp1-induced resistance to Legionella infection in Dictyostelium. J Cell Sci 2010; 123:4039-51. [DOI: 10.1242/jcs.072124] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Membrane phosphatidylinositides recruit cytosolic proteins to regulate phagocytosis, macropinocytosis and endolysosomal vesicle maturation. Here, we describe effects of inactivation of PI3K, PTEN or PLC on Escherichia coli and Legionella pneumophila uptake by the professional phagocyte Dictyostelium discoideum. We show that L. pneumophila is engulfed by macropinocytosis, a process that is partially sensitive to PI3K inactivation, unlike phagocytosis of E. coli. Both processes are blocked by PLC inhibition. Whereas E. coli is rapidly digested, Legionella proliferates intracellularly. Proliferation is blocked by constitutively expressing Nramp1, an endolysosomal iron transporter that confers resistance against invasive bacteria. Inactivation of PI3K, but not PTEN or PLC, enhances Legionella infection and suppresses the protective effect of Nramp1 overexpression. PI3K activity is restricted to early infection and is not mediated by effects on the actin cytoskeleton; rather L. pneumophila, in contrast to E. coli, subverts phosphoinositide-sensitive fusion of Legionella-containing macropinosomes with acidic vesicles, without affecting Nramp1 recruitment. A model is presented to explain how Legionella escapes fusion with acidic vesicles and Nramp1-induced resistance to pathogens.
Collapse
Affiliation(s)
- Barbara Peracino
- Department of Clinical and Biological Sciences, University of Turin, AOU S. Luigi, Reg. Gonzole 10, 10043 Orbassano (Torino), Italy
| | - Alessandra Balest
- Department of Clinical and Biological Sciences, University of Turin, AOU S. Luigi, Reg. Gonzole 10, 10043 Orbassano (Torino), Italy
| | - Salvatore Bozzaro
- Department of Clinical and Biological Sciences, University of Turin, AOU S. Luigi, Reg. Gonzole 10, 10043 Orbassano (Torino), Italy
| |
Collapse
|
5
|
Steinert M. Pathogen-host interactions in Dictyostelium, Legionella, Mycobacterium and other pathogens. Semin Cell Dev Biol 2010; 22:70-6. [PMID: 21109012 DOI: 10.1016/j.semcdb.2010.11.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 11/15/2010] [Accepted: 11/16/2010] [Indexed: 11/26/2022]
Abstract
Dictyostelium discoideum is a haploid social soil amoeba that is an established host model for several human pathogens. The research areas presently pursued include the use of D. discoideum to identify genetic host factors determining the outcome of infections and the use as screening system for identifying bacterial virulence factors. Here we report about the Legionella pneumophila directed phagosome biogenesis and the cell-to-cell spread of Mycobacterium species. Moreover, we highlight recent insights from the host-pathogen cross-talk between D. discoideum and the pathogens Salmonella typhimurium, Klebsiella pneumoniae, Yersinia pseudotuberculosis, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Burkholderia cenocepacia, Vibrio cholerae and Neisseria meningitidis.
Collapse
Affiliation(s)
- Michael Steinert
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
6
|
Phagocytosis and host-pathogen interactions in Dictyostelium with a look at macrophages. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 271:253-300. [PMID: 19081545 DOI: 10.1016/s1937-6448(08)01206-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Research into phagocytosis and host-pathogen interactions in the lower eukaryote Dictyostelium discoideum has flourished in recent years. This chapter presents a glimpse of where this research stands, with emphasis on the cell biology of the phagocytic process and on the wealth of molecular genetic data that have been gathered. The basic mechanistic machinery and most of the underlying genes appear to be evolutionarily conserved, reflecting the fact that phagocytosis arose as an efficient way to ingest food in single protozoan cells devoid of a rigid cell wall. In spite of some differences, the signal transduction pathways regulating phagosome biogenesis are also emerging as ultimately similar between Dictyostelium and macrophages. Both cell types are hosts for many pathogenic invasive bacteria, which exploit phagocytosis to grow intracellularly. We present an overwiew, based on the analysis of mutants, on how Dictyostelium contributes as a genetic model system to decipher the complexity of host-pathogen interactions.
Collapse
|
7
|
Kortholt A, King JS, Keizer-Gunnink I, Harwood AJ, Van Haastert PJM. Phospholipase C regulation of phosphatidylinositol 3,4,5-trisphosphate-mediated chemotaxis. Mol Biol Cell 2007; 18:4772-9. [PMID: 17898079 PMCID: PMC2096598 DOI: 10.1091/mbc.e07-05-0407] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Generation of a phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P(3)] gradient within the plasma membrane is important for cell polarization and chemotaxis in many eukaryotic cells. The gradient is produced by the combined activity of phosphatidylinositol 3-kinase (PI3K) to increase PI(3,4,5)P(3) on the membrane nearest the polarizing signal and PI(3,4,5)P(3) dephosphorylation by phosphatase and tensin homolog deleted on chromosome ten (PTEN) elsewhere. Common to both of these enzymes is the lipid phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)], which is not only the substrate of PI3K and product of PTEN but also important for membrane binding of PTEN. Consequently, regulation of phospholipase C (PLC) activity, which hydrolyzes PI(4,5)P(2), could have important consequences for PI(3,4,5)P(3) localization. We investigate the role of PLC in PI(3,4,5)P(3)-mediated chemotaxis in Dictyostelium. plc-null cells are resistant to the PI3K inhibitor LY294002 and produce little PI(3,4,5)P(3) after cAMP stimulation, as monitored by the PI(3,4,5)P(3)-specific pleckstrin homology (PH)-domain of CRAC (PH(CRAC)GFP). In contrast, PLC overexpression elevates PI(3,4,5)P(3) and impairs chemotaxis in a similar way to loss of pten. PI3K localization at the leading edge of plc-null cells is unaltered, but dissociation of PTEN from the membrane is strongly reduced in both gradient and uniform stimulation with cAMP. These results indicate that local activation of PLC can control PTEN localization and suggest a novel mechanism to regulate the internal PI(3,4,5)P(3) gradient.
Collapse
Affiliation(s)
- Arjan Kortholt
- Department of Molecular Cell Biology, University of Groningen, 9751 NN Haren, The Netherlands
| | | | | | | | | |
Collapse
|
8
|
Jeon TJ, Lee DJ, Merlot S, Weeks G, Firtel RA. Rap1 controls cell adhesion and cell motility through the regulation of myosin II. ACTA ACUST UNITED AC 2007; 176:1021-33. [PMID: 17371831 PMCID: PMC2064086 DOI: 10.1083/jcb.200607072] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have investigated the role of Rap1 in controlling chemotaxis and cell adhesion in Dictyostelium discoideum. Rap1 is activated rapidly in response to chemoattractant stimulation, and activated Rap1 is preferentially found at the leading edge of chemotaxing cells. Cells expressing constitutively active Rap1 are highly adhesive and exhibit strong chemotaxis defects, which are partially caused by an inability to spatially and temporally regulate myosin assembly and disassembly. We demonstrate that the kinase Phg2, a putative Rap1 effector, colocalizes with Rap1–guanosine triphosphate at the leading edge and is required in an in vitro assay for myosin II phosphorylation, which disassembles myosin II and facilitates filamentous actin–mediated leading edge protrusion. We suggest that Rap1/Phg2 plays a role in controlling leading edge myosin II disassembly while passively allowing myosin II assembly along the lateral sides and posterior of the cell.
Collapse
Affiliation(s)
- Taeck J Jeon
- Section of Cell and Developmental Biology, Division of Biological Sciences, Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
9
|
Mercanti V, Charette SJ, Bennett N, Ryckewaert JJ, Letourneur F, Cosson P. Selective membrane exclusion in phagocytic and macropinocytic cups. J Cell Sci 2006; 119:4079-87. [PMID: 16968738 DOI: 10.1242/jcs.03190] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Specialized eukaryotic cells can ingest large particles and sequester them within membrane-delimited phagosomes. Many studies have described the delivery of lysosomal proteins to the phagosome, but little is known about membrane sorting during the early stages of phagosome formation. Here we used Dictyostelium discoideum amoebae to analyze the membrane composition of newly formed phagosomes. The membrane delimiting the closing phagocytic cup was essentially derived from the plasma membrane, but a subgroup of proteins was specifically excluded. Interestingly the same phenomenon was observed during the formation of macropinosomes, suggesting that the same sorting mechanisms are at play during phagocytosis and macropinocytosis. Analysis of mutant strains revealed that clathrin-associated adaptor complexes AP-1, -2 and -3 were not necessary for this selective exclusion and, accordingly, ultrastructural analysis revealed no evidence for vesicular transport around phagocytic cups. Our results suggest the existence of a new, as yet uncharacterized, sorting mechanism in phagocytic and macropinocytic cups.
Collapse
Affiliation(s)
- Valentina Mercanti
- Université de Genève, Centre Médical Universitaire, Département de Physiologie Cellulaire et Métabolisme, 1 rue Michel Servet, CH-1211 Genève 4, Switzerland
| | | | | | | | | | | |
Collapse
|
10
|
Charette SJ, Mercanti V, Letourneur F, Bennett N, Cosson P. A role for adaptor protein-3 complex in the organization of the endocytic pathway in Dictyostelium. Traffic 2006; 7:1528-38. [PMID: 17010123 DOI: 10.1111/j.1600-0854.2006.00478.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Dictyostelium discoideum cells continuously internalize extracellular material, which accumulates in well-characterized endocytic vacuoles. In this study, we describe a new endocytic compartment identified by the presence of a specific marker, the p25 protein. This compartment presents features reminiscent of mammalian recycling endosomes: it is localized in the pericentrosomal region but distinct from the Golgi apparatus. It specifically contains surface proteins that are continuously endocytosed but rapidly recycled to the cell surface and thus absent from maturing endocytic compartments. We evaluated the importance of each clathrin-associated adaptor complex in establishing a compartmentalized endocytic system by studying the phenotype of the corresponding mutants. In knockout cells for mu3, a subunit of the AP-3 clathrin-associated complex, membrane proteins normally restricted to p25-positive endosomes were mislocalized to late endocytic compartments. Our results suggest that AP-3 plays an essential role in the compartmentalization of the endocytic pathway in Dictyostelium.
Collapse
Affiliation(s)
- Steve J Charette
- Université de Genève, Centre Médical Universitaire, Département de Physiologie Cellulaire et Métabolisme, 1 rue Michel Servet, CH-1211 Genève 4, Switzerland.
| | | | | | | | | |
Collapse
|
11
|
Cherix N, Froquet R, Charette SJ, Blanc C, Letourneur F, Cosson P. A Phg2-Adrm1 pathway participates in the nutrient-controlled developmental response in Dictyostelium. Mol Biol Cell 2006; 17:4982-7. [PMID: 16987957 PMCID: PMC1679667 DOI: 10.1091/mbc.e06-07-0619] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dictyostelium amoebae grow as single cells but upon starvation they initiate multicellular development. Phg2 was characterized previously as a kinase controlling cellular adhesion and the organization of the actin cytoskeleton. Here we report that Phg2 also plays a role during the transition between growth and multicellular development, as evidenced by the fact that phg2 mutant cells can initiate development even in the presence of nutrients. Even at low cell density and in rich medium, phg2 mutant cells express discoidin, one of the earliest predevelopmental markers. Complementation studies indicate that, in addition to the kinase domain, the core region of Phg2 is involved in the initiation of development. In this region, a small domain contiguous with a previously described ras-binding domain was found to interact with the Dictyostelium ortholog of the mammalian adhesion-regulating molecule (ADRM1). In addition, adrm1 knockout cells also exhibit abnormal initiation of development. These results suggest that a Phg2-Adrm1 signaling pathway is involved in the control of the transition from growth to differentiation in Dictyostelium. Phg2 thus plays a dual role in the control of cellular adhesion and initiation of development.
Collapse
Affiliation(s)
- Nathalie Cherix
- *Département de Physiologie et Métabolisme Cellulaire, Centre Médical Universitaire, Université de Genève, CH-1211 Genève 4, Switzerland; and
| | - Romain Froquet
- *Département de Physiologie et Métabolisme Cellulaire, Centre Médical Universitaire, Université de Genève, CH-1211 Genève 4, Switzerland; and
| | - Steve J. Charette
- *Département de Physiologie et Métabolisme Cellulaire, Centre Médical Universitaire, Université de Genève, CH-1211 Genève 4, Switzerland; and
| | - Cédric Blanc
- Institut de Biologie et Chimie des Protéines, UMR 5086, CNRS/Université Lyon I, IFR 128 BioSciences Lyon-Gerland, F-69367 Lyon Cedex 07, France
| | - François Letourneur
- Institut de Biologie et Chimie des Protéines, UMR 5086, CNRS/Université Lyon I, IFR 128 BioSciences Lyon-Gerland, F-69367 Lyon Cedex 07, France
| | - Pierre Cosson
- *Département de Physiologie et Métabolisme Cellulaire, Centre Médical Universitaire, Université de Genève, CH-1211 Genève 4, Switzerland; and
| |
Collapse
|
12
|
Charette SJ, Cosson P. Exocytosis of late endosomes does not directly contribute membrane to the formation of phagocytic cups or pseudopods in Dictyostelium. FEBS Lett 2006; 580:4923-8. [PMID: 16920105 DOI: 10.1016/j.febslet.2006.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 07/19/2006] [Accepted: 08/01/2006] [Indexed: 11/20/2022]
Abstract
Exocytosis of late endocytic compartments in Dictyostelium has mostly been studied by live microscopy. Here we show that this exocytosis is accompanied by a complete fusion of late endosomes with the plasma membrane resulting in the transient formation of membrane microdomains that can be visualized by immunofluorescence in fixed cells. This permitted to demonstrate that fusion of late endocytic compartments with the cell surface does not occur in regions of the plasma membrane engaged in the formation of pseudopods, macropinosomes or phagosomes. Our results propose that exocytosis of late endosomes and actin-driven membrane remodeling are mutually exclusive processes.
Collapse
Affiliation(s)
- Steve J Charette
- Université de Genève, Centre Médical Universitaire, Département de physiologie cellulaire et métabolisme, 1 rue Michel Servet, CH-1211 Geneva 4, Switzerland.
| | | |
Collapse
|
13
|
Kortholt A, Rehmann H, Kae H, Bosgraaf L, Keizer-Gunnink I, Weeks G, Wittinghofer A, Van Haastert PJM. Characterization of the GbpD-activated Rap1 pathway regulating adhesion and cell polarity in Dictyostelium discoideum. J Biol Chem 2006; 281:23367-76. [PMID: 16769729 DOI: 10.1074/jbc.m600804200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The regulation of cell polarity plays an important role in chemotaxis. GbpD, a putative nucleotide exchange factor for small G-proteins of the Ras family, has been implicated in adhesion, cell polarity, and chemotaxis in Dictyostelium. Cells overexpressing GbpD are flat, exhibit strongly increased cell-substrate attachment, and extend many bifurcated and lateral pseudopodia. These cells overexpressing GbpD are severely impaired in chemotaxis, most likely due to the induction of many protrusions rather than an enhanced adhesion. The GbpD-overexpression phenotype is similar to that of cells overexpressing Rap1. Here we demonstrate that GbpD activates Rap1 both in vivo and in vitro but not any of the five other characterized Ras proteins. In a screen for Rap1 effectors, we overexpressed GbpD in several mutants defective in adhesion or cell polarity and identified Phg2 as Rap1 effector necessary for adhesion, but not cell polarity. Phg2, a serine/threonine-specific kinase, directly interacts with Rap1 via its Ras association domain.
Collapse
Affiliation(s)
- Arjan Kortholt
- Department of Molecular Cell Biology, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|