1
|
Poimenidi E, Droggiti E, Karavasili K, Kotsirilou D, Mourkogianni E, Koolwijk P, Papadimitriou E. Regulation of Pleiotrophin and PTPRZ1 Expression by Hypoxia to Restrict Hypoxia-Induced Cell Migration. Cancers (Basel) 2025; 17:1516. [PMID: 40361445 PMCID: PMC12070880 DOI: 10.3390/cancers17091516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/17/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND/OBJECTIVES In the tumor microenvironment, hypoxia regulates genes that support tumor cell invasion and angiogenesis under the control of the hypoxia-inducible transcription factors (HIFs). Pleiotrophin (PTN) is a secreted protein that activates cell migration in endothelial and cancer cells that express ανβ3 integrin but has inhibitory effects in cells that do not express ανβ3 integrin. In both cases, the protein tyrosine phosphatase receptor zeta 1 (PTPRZ1) seems to mediate the effects of PTN. In the present work, we studied the effect of hypoxia on PTN and PTPRZ1 expression and the functional consequences of this effect. METHODS Western blot, quantitative real-time PCR, and luciferase assays were used to study the impact of hypoxia at the protein, mRNA, and transcriptional levels, respectively. Decoy oligonucleotides (ODNs), siRNA technology, and plasmid overexpression were used to study the involvement of the transcription factors studied. Functional assays were used to study the effect of hypoxia on cell proliferation and migration. RESULTS Hypoxia increases PTN expression through the transcriptional activation of the corresponding gene in ανβ3 integrin-expressing cells. The transcription factors HIF-1α, HIF-2α, and AP-1 mediate the up-regulation of PTN by hypoxia. Functional assays in endothelial cells from PTN knockout mice or endothelial and cancer cells following the downregulation of PTN expression showed that PTN negatively affects chemical hypoxia-induced cell proliferation and migration. In cancer cells that do not express ανβ3 integrin, hypoxia or chemical hypoxia inhibits PTN expression in a HIF-1α-, HIF-2α-, and AP-1-independent manner. The expression of PTPRZ1 is up-regulated by chemical hypoxia, is HIF-1α- and HIF-2α-dependent, and seems to limit the activation of HIF-1α, at least in endothelial cells. CONCLUSIONS Hypoxia or chemical hypoxia regulates PTN and PTPRZ1 expressions to restrict the stimulatory effects of hypoxia on endothelial and cancer cell migration.
Collapse
Affiliation(s)
- Evangelia Poimenidi
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504 Patras, Greece; (E.P.)
- Department of Physiology, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
| | - Eirini Droggiti
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504 Patras, Greece; (E.P.)
| | - Katerina Karavasili
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504 Patras, Greece; (E.P.)
| | - Dimitra Kotsirilou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504 Patras, Greece; (E.P.)
- Department of Physiology, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
| | - Eleni Mourkogianni
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504 Patras, Greece; (E.P.)
| | - Pieter Koolwijk
- Department of Physiology, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
| | - Evangelia Papadimitriou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504 Patras, Greece; (E.P.)
| |
Collapse
|
2
|
Choleva E, Menounou L, Ntenekou D, Kastana P, Tzoupis Η, Katraki-Pavlou S, Drakopoulou M, Spyropoulos D, Andrikopoulou A, Kanellopoulou V, Enake MK, Beis D, Papadimitriou E. Targeting the interaction of pleiotrophin and VEGFA 165 with protein tyrosine phosphatase receptor zeta 1 inhibits endothelial cell activation and angiogenesis. Eur J Pharmacol 2024; 977:176692. [PMID: 38821164 DOI: 10.1016/j.ejphar.2024.176692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Protein tyrosine phosphatase receptor zeta 1 (PTPRZ1) is a transmembrane tyrosine phosphatase (TP) that serves as a receptor for pleiotrophin (PTN) and vascular endothelial growth factor A 165 (VEGFA165) to regulate endothelial cell migration. In the present work, we identify a PTN peptide fragment (PTN97-110) that inhibits the interaction of PTN and VEGFA165 with PTPRZ1 but not VEGF receptor 2. This peptide abolishes the stimulatory effect of PTN and VEGFA165 on endothelial cell migration, tube formation on Matrigel, and Akt activation in vitro. It also partially inhibits VEGFA165-induced VEGF receptor 2 activation but does not affect ERK1/2 activation and cell proliferation. In vivo, PTN97-110 inhibits or dysregulates angiogenesis in the chick embryo chorioallantoic membrane and the zebrafish assays, respectively. In glioblastoma cells in vitro, PTN97-110 abolishes the stimulatory effect of VEGFA165 on cell migration and inhibits their anchorage-independent growth, suggesting that this peptide might also be exploited in glioblastoma therapy. Finally, in silico and experimental evidence indicates that PTN and VEGFA165 bind to the extracellular fibronectin type-III (FNIII) domain to stimulate cell migration. Collectively, our data highlight novel aspects of the interaction of PTN and VEGFA165 with PTPRZ1, strengthen the notion that PTPRZ1 is required for VEGFA165-induced signaling, and identify a peptide that targets this interaction and can be exploited for the design of novel anti-angiogenic and anti-glioblastoma therapeutic approaches.
Collapse
Affiliation(s)
- Effrosyni Choleva
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, 26504, Greece
| | - Lydia Menounou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, 26504, Greece
| | - Despoina Ntenekou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, 26504, Greece
| | - Pinelopi Kastana
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, 26504, Greece
| | | | - Stamatiki Katraki-Pavlou
- Zebrafish Disease Models Lab, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Greece
| | - Maria Drakopoulou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, 26504, Greece
| | - Dimitrios Spyropoulos
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, 26504, Greece
| | - Anastasia Andrikopoulou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, 26504, Greece
| | - Vasiliki Kanellopoulou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, 26504, Greece
| | - Michaela-Karina Enake
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, 26504, Greece
| | - Dimitris Beis
- Zebrafish Disease Models Lab, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Greece; Laboratory of Biological Chemistry, Faculty of Medicine, University of Ioannina, Greece
| | - Evangelia Papadimitriou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, 26504, Greece.
| |
Collapse
|
3
|
Papadimitriou E, Kanellopoulou VK. Protein Tyrosine Phosphatase Receptor Zeta 1 as a Potential Target in Cancer Therapy and Diagnosis. Int J Mol Sci 2023; 24:ijms24098093. [PMID: 37175798 PMCID: PMC10178973 DOI: 10.3390/ijms24098093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Protein tyrosine phosphatase receptor zeta 1 (PTPRZ1) is a type V transmembrane tyrosine phosphatase that is highly expressed during embryonic development, while its expression during adulthood is limited. PTPRZ1 is highly detected in the central nervous system, affecting oligodendrocytes' survival and maturation. In gliomas, PTPRZ1 expression is significantly upregulated and is being studied as a potential cancer driver and as a target for therapy. PTPRZ1 expression is also increased in other cancer types, but there are no data on the potential functional significance of this finding. On the other hand, low PTPRZ1 expression seems to be related to a worse prognosis in some cancer types, suggesting that in some cases, it may act as a tumor-suppressor gene. These discrepancies may be due to our limited understanding of PTPRZ1 signaling and tumor microenvironments. In this review, we present evidence on the role of PTPRZ1 in angiogenesis and cancer and discuss the phenomenal differences among the different types of cancer, depending on the regulation of its tyrosine phosphatase activity or ligand binding. Clarifying the involved signaling pathways will lead to its efficient exploitation as a novel therapeutic target or as a biomarker, and the development of proper therapeutic approaches.
Collapse
Affiliation(s)
- Evangelia Papadimitriou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504 Patras, Greece
| | - Vasiliki K Kanellopoulou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504 Patras, Greece
| |
Collapse
|
4
|
Pleiotrophin selectively binds to vascular endothelial growth factor receptor 2 and inhibits or stimulates cell migration depending on α νβ 3 integrin expression. Angiogenesis 2020; 23:621-636. [PMID: 32681389 DOI: 10.1007/s10456-020-09733-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 07/06/2020] [Indexed: 12/28/2022]
Abstract
Pleiotrophin (PTN) has a moderate stimulatory effect on endothelial cell migration through ανβ3 integrin, while it decreases the stimulatory effect of vascular endothelial growth factor A (VEGFA) and inhibits cell migration in the absence of ανβ3 through unknown mechanism(s). In the present work, by using a multitude of experimental approaches, we show that PTN binds to VEGF receptor type 2 (VEGFR2) with a KD of 11.6 nM. Molecular dynamics approach suggests that PTN binds to the same VEGFR2 region with VEGFA through its N-terminal domain. PTN inhibits phosphorylation of VEGFR2 at Tyr1175 and still stimulates endothelial cell migration in the presence of a selective VEGFR2 tyrosine kinase inhibitor. VEGFR2 downregulation by siRNA or an anti-VEGFR2 antibody that binds to the ligand-binding VEGFR2 domain also induce endothelial cell migration, which is abolished by a function-blocking antibody against ανβ3 or the peptide PTN112-136 that binds ανβ3 and inhibits PTN binding. In cells that do not express ανβ3, PTN decreases both VEGFR2 Tyr1175 phosphorylation and cell migration in a VEGFR2-dependent manner. Collectively, our data identify VEGFR2 as a novel PTN receptor involved in the regulation of cell migration by PTN and contribute to the elucidation of the mechanism of activation of endothelial cell migration through the interplay between VEGFR2 and ανβ3.
Collapse
|
5
|
Zhang L, Kundu S, Feenstra T, Li X, Jin C, Laaniste L, El Hassan TEA, Ohlin KE, Yu D, Olofsson T, Olsson AK, Pontén F, Magnusson PU, Nilsson KF, Essand M, Smits A, Dieterich LC, Dimberg A. Pleiotrophin promotes vascular abnormalization in gliomas and correlates with poor survival in patients with astrocytomas. Sci Signal 2015; 8:ra125. [PMID: 26645582 DOI: 10.1126/scisignal.aaa1690] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glioblastomas are aggressive astrocytomas characterized by endothelial cell proliferation and abnormal vasculature, which can cause brain edema and increase patient morbidity. We identified the heparin-binding cytokine pleiotrophin as a driver of vascular abnormalization in glioma. Pleiotrophin abundance was greater in high-grade human astrocytomas and correlated with poor survival. Anaplastic lymphoma kinase (ALK), which is a receptor that is activated by pleiotrophin, was present in mural cells associated with abnormal vessels. Orthotopically implanted gliomas formed from GL261 cells that were engineered to produce pleiotrophin showed increased microvessel density and enhanced tumor growth compared with gliomas formed from control GL261 cells. The survival of mice with pleiotrophin-producing gliomas was shorter than that of mice with gliomas that did not produce pleiotrophin. Vessels in pleiotrophin-producing gliomas were poorly perfused and abnormal, a phenotype that was associated with increased deposition of vascular endothelial growth factor (VEGF) in direct proximity to the vasculature. The growth of pleiotrophin-producing GL261 gliomas was inhibited by treatment with the ALK inhibitor crizotinib, the ALK inhibitor ceritinib, or the VEGF receptor inhibitor cediranib, whereas control GL261 tumors did not respond to either inhibitor. Our findings link pleiotrophin abundance in gliomas with survival in humans and mice, and show that pleiotrophin promotes glioma progression through increased VEGF deposition and vascular abnormalization.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, The Rudbeck Laboratory, 75185 Uppsala, Sweden
| | - Soumi Kundu
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, The Rudbeck Laboratory, 75185 Uppsala, Sweden
| | - Tjerk Feenstra
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, The Rudbeck Laboratory, 75185 Uppsala, Sweden
| | - Xiujuan Li
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, The Rudbeck Laboratory, 75185 Uppsala, Sweden
| | - Chuan Jin
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, The Rudbeck Laboratory, 75185 Uppsala, Sweden
| | - Liisi Laaniste
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, The Rudbeck Laboratory, 75185 Uppsala, Sweden
| | | | - K Elisabet Ohlin
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, The Rudbeck Laboratory, 75185 Uppsala, Sweden
| | - Di Yu
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, The Rudbeck Laboratory, 75185 Uppsala, Sweden
| | - Tommie Olofsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, The Rudbeck Laboratory, 75185 Uppsala, Sweden
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Biomedical Center, Box 582, SE-75123 Uppsala, Sweden
| | - Fredrik Pontén
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, The Rudbeck Laboratory, 75185 Uppsala, Sweden
| | - Peetra U Magnusson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, The Rudbeck Laboratory, 75185 Uppsala, Sweden
| | - Karin Forsberg Nilsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, The Rudbeck Laboratory, 75185 Uppsala, Sweden
| | - Magnus Essand
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, The Rudbeck Laboratory, 75185 Uppsala, Sweden
| | - Anja Smits
- Department of Neuroscience, Neurology, Uppsala University, 751 85 Uppsala, Sweden
| | - Lothar C Dieterich
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, The Rudbeck Laboratory, 75185 Uppsala, Sweden
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, The Rudbeck Laboratory, 75185 Uppsala, Sweden.
| |
Collapse
|
6
|
Lamprou M, Kaspiris A, Panagiotopoulos E, Giannoudis PV, Papadimitriou E. The role of pleiotrophin in bone repair. Injury 2014; 45:1816-23. [PMID: 25456495 DOI: 10.1016/j.injury.2014.10.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/07/2014] [Indexed: 02/02/2023]
Abstract
Bone has an enormous capacity for growth, regeneration, and remodelling, largely due to induction of osteoblasts that are recruited to the site of bone formation. Although the pathways involved have not been fully elucidated, it is well accepted that the immediate environment of the cells is likely to play a role via cell–matrix interactions, mediated by several growth factors. Formation of new blood vessels is also significant and interdependent to bone formation, suggesting that enhancement of angiogenesis could be beneficial during the process of bone repair. Pleiotrophin (PTN), also called osteoblast-specific factor 1, is a heparin-binding angiogenic growth factor, with a well-defined and significant role in both physiological and pathological angiogenesis. In this review we summarise the existing evidence on the role of PTN in bone repair.
Collapse
|
7
|
Mikelis C, Sfaelou E, Koutsioumpa M, Kieffer N, Papadimitriou E. Integrin alpha(v)beta(3) is a pleiotrophin receptor required for pleiotrophin-induced endothelial cell migration through receptor protein tyrosine phosphatase beta/zeta. FASEB J 2009; 23:1459-69. [PMID: 19141530 DOI: 10.1096/fj.08-117564] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have previously shown that the angiogenic growth factor pleiotrophin (PTN) induces migration of endothelial cells through binding to its receptor protein tyrosine phosphatase beta/zeta (RPTPbeta/zeta). In this study, we show that a monoclonal antibody against alpha(nu)beta(3) but not alpha(5)beta(1) integrin abolished PTN-induced human endothelial cell migration in a concentration-dependent manner. Integrin alpha(nu)beta(3) was found to directly interact with PTN in an RGD-independent manner, whereas a synthetic peptide corresponding to the specificity loop of the beta(3) integrin extracellular domain ((177)CYDMKTTC(184)) inhibited PTN-alpha(nu)beta(3) interaction and totally abolished PTN-induced endothelial cell migration. Interestingly, alpha(nu)beta(3) was also found to directly interact with RPTPbeta/zeta, and PTN-induced Y773 phosphorylation of beta(3) integrin was dependent on both RPTPbeta/zeta and the downstream c-src kinase activation. Midkine was found to interact with RPTPbeta/zeta, but not with alpha(nu)beta(3), and caused a small but statistically significant decrease in cell migration. In the same line, PTN decreased migration of different glioma cell lines that express RPTPbeta/zeta but do not express alpha(nu)beta(3), while it stimulated migration of U87MG cells that express alpha(nu)beta(3) on their cell membrane. Overexpression or down-regulation of beta(3) stimulated or abolished, respectively, the effect of PTN on cell migration. Collectively, these data suggest that alpha(nu)beta(3) is a key molecule that determines the stimulatory or inhibitory effect of PTN on cell migration.
Collapse
Affiliation(s)
- Constantinos Mikelis
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, GR 26504, Greece
| | | | | | | | | |
Collapse
|
8
|
Mikelis C, Papadimitriou E. Heparin-binding protein pleiotrophin: an important player in the angiogenic process. Connect Tissue Res 2008; 49:149-52. [PMID: 18661331 DOI: 10.1080/03008200802148652] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Angiogenesis, the formation of new blood vessels from pre-existing ones, is a fundamental process in life, being also significantly important in several pathological situations. Pleiotrophin is a heparin-binding growth factor with pleiotrophic actions and significant role(s) in the formation of new blood vessels, being regulated by angiogenic stimuli and acting directly on endothelial cells. In this minireview, we summarize data on the regulation and mode of action of pleiotrophin and its involvement in physiological and tumor angiogenesis.
Collapse
Affiliation(s)
- Constantinos Mikelis
- Department of Pharmacy, Laboratory of Molecular Pharmacology, University of Patras, Patras, Greece
| | | |
Collapse
|