1
|
Amaral AU, Wajner M. Pathophysiology of maple syrup urine disease: Focus on the neurotoxic role of the accumulated branched-chain amino acids and branched-chain α-keto acids. Neurochem Int 2022; 157:105360. [DOI: 10.1016/j.neuint.2022.105360] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 12/21/2022]
|
2
|
Chai YL, Chong JR, Weng J, Howlett D, Halsey A, Lee JH, Attems J, Aarsland D, Francis PT, Chen CP, Lai MKP. Lysosomal cathepsin D is upregulated in Alzheimer's disease neocortex and may be a marker for neurofibrillary degeneration. Brain Pathol 2018; 29:63-74. [PMID: 30051532 DOI: 10.1111/bpa.12631] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/12/2018] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by accumulation of β-amyloid plaques (AP) and neurofibrillary tangles (NFT) in the cortex, together with synaptic loss and amyloid angiopathy. Perturbations in the brain lysosomal system, including the cathepsin family of proteases, have been implicated in AD where they may be involved in proteolytic clearance of misfolded and abnormally aggregated peptides. However, the status of cathepsin D (catD) is unclear in Lewy body dementia, the second most common form of neurodegenerative dementia after AD, and characterized by Lewy bodies (LB) containing aggregated α-synuclein. Furthermore, earlier reports of catD changes in AD have not been entirely consistent. We measured CatD immunoreactivities in the temporal (Brodmann area BA21) and parietal (BA40) cortices of well characterized AD brains as well as two clinical subtypes of Lewy body dementia, namely Parkinson disease dementia (PDD) and dementia with Lewy bodies (DLB), known to show varying degrees of concomitant AD pathology. Increased catD immunoreactivities in AD were found for both neocortical regions measured, where they also correlated with neuropathological NFT scores and phosphorylated pSer396 tau burden, and appeared to co-localize at least partly to NFT-containing neurons. In contrast, catD was increased only in BA40 in DLB and not at all in PDD, did not correlate with LB scores, and did not appreciably co-localize with α-synuclein inclusions. Our study suggests that catD upregulation may be an adaptive response to AD-related processes leading to neurofibrillary degeneration, but may not be directly associated with formation of α-synuclein inclusions in Lewy body dementia.
Collapse
Affiliation(s)
- Yuek Ling Chai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Joyce R Chong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore.,Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
| | - Jiaju Weng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - David Howlett
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Andrea Halsey
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Jasinda H Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Johannes Attems
- Institute of Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Dag Aarsland
- Department NVS, Center for Alzheimer Research, Division for Neurogeriatrics, Karolinska Institute, Huddinge, Sweden
| | - Paul T Francis
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore.,Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore.,Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore.,Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| |
Collapse
|
3
|
Sun J, Deng H, Zhou Z, Xiong X, Gao L. Endothelium as a Potential Target for Treatment of Abdominal Aortic Aneurysm. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6306542. [PMID: 29849906 PMCID: PMC5903296 DOI: 10.1155/2018/6306542] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 01/14/2018] [Accepted: 02/01/2018] [Indexed: 12/18/2022]
Abstract
Abdominal aortic aneurysm (AAA) was previously ascribed to weaken defective medial arterial/adventitial layers, for example, smooth muscle/fibroblast cells. Therefore, besides surgical repair, medications targeting the medial layer to strengthen the aortic wall are the most feasible treatment strategy for AAA. However, so far, it is unclear whether such drugs have any beneficial effect on AAA prognosis, rate of aneurysm growth, rupture, or survival. Notably, clinical studies have shown that AAA is highly associated with endothelial dysfunction in the aged population. Additionally, animal models of endothelial dysfunction and endothelial nitric oxide synthase (eNOS) uncoupling had a very high rate of AAA formation, indicating there is crucial involvement of the endothelium and a possible pharmacological solution targeting the endothelium in AAA treatment. Endothelial cells have been found to trigger vascular wall remodeling by releasing proteases, or recruiting macrophages along with other neutrophils, into the medial layer. Moreover, inflammation and oxidative stress of the arterial wall were induced by endothelial dysfunction. Interestingly, there is a paradoxical differential correlation between diabetes and aneurysm formation in retinal capillaries and the aorta. Deciphering the significance of such a difference may explain current unsuccessful AAA medications and offer a solution to this treatment challenge. It is now believed that AAA and atherosclerosis are two separate but related diseases, based on their different clinical patterns which have further complicated the puzzle. Therefore, a thorough investigation of the interaction between endothelium and medial/adventitial layer may provide us a better understanding and new perspective on AAA formation, especially after taking into account the importance of endothelium in the development of AAA. Moreover, a novel medication strategy replacing the currently used, but suboptimal treatments for AAA, could be informed with this analysis.
Collapse
Affiliation(s)
- Jingyuan Sun
- Endocrinology & Metabolism Department, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongping Deng
- Vascular Surgery Department, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhen Zhou
- Vascular Surgery Department, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Neurosurgery Department, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ling Gao
- Endocrinology & Metabolism Department, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Cocchiaro P, De Pasquale V, Della Morte R, Tafuri S, Avallone L, Pizard A, Moles A, Pavone LM. The Multifaceted Role of the Lysosomal Protease Cathepsins in Kidney Disease. Front Cell Dev Biol 2017; 5:114. [PMID: 29312937 PMCID: PMC5742100 DOI: 10.3389/fcell.2017.00114] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/07/2017] [Indexed: 12/18/2022] Open
Abstract
Kidney disease is worldwide the 12th leading cause of death affecting 8–16% of the entire population. Kidney disease encompasses acute (short-lasting episode) and chronic (developing over years) pathologies both leading to renal failure. Since specific treatments for acute or chronic kidney disease are limited, more than 2 million people a year require dialysis or kidney transplantation. Several recent evidences identified lysosomal proteases cathepsins as key players in kidney pathophysiology. Cathepsins, originally found in the lysosomes, exert important functions also in the cytosol and nucleus of cells as well as in the extracellular space, thus participating in a wide range of physiological and pathological processes. Based on their catalytic active site residue, the 15 human cathepsins identified up to now are classified in three different families: serine (cathepsins A and G), aspartate (cathepsins D and E), or cysteine (cathepsins B, C, F, H, K, L, O, S, V, X, and W) proteases. Specifically in the kidney, cathepsins B, D, L and S have been shown to regulate extracellular matrix homeostasis, autophagy, apoptosis, glomerular permeability, endothelial function, and inflammation. Dysregulation of their expression/activity has been associated to the onset and progression of kidney disease. This review summarizes most of the recent findings that highlight the critical role of cathepsins in kidney disease development and progression. A better understanding of the signaling pathways governed by cathepsins in kidney physiopathology may yield novel selective biomarkers or therapeutic targets for developing specific treatments against kidney disease.
Collapse
Affiliation(s)
- Pasquale Cocchiaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,Faculty of Medicine, Institut National de la Santé Et de la Recherche Médicale, "Défaillance Cardiaque Aigüe et Chronique", Nancy, France.,Université de Lorraine, Nancy, France.,Institut Lorrain du Coeur et des Vaisseaux, Center for Clinical Investigation 1433, Nancy, France.,CHRU de Nancy, Hôpitaux de Brabois, Nancy, France
| | - Valeria De Pasquale
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Rossella Della Morte
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Simona Tafuri
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Luigi Avallone
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Anne Pizard
- Faculty of Medicine, Institut National de la Santé Et de la Recherche Médicale, "Défaillance Cardiaque Aigüe et Chronique", Nancy, France.,Université de Lorraine, Nancy, France.,Institut Lorrain du Coeur et des Vaisseaux, Center for Clinical Investigation 1433, Nancy, France.,CHRU de Nancy, Hôpitaux de Brabois, Nancy, France
| | - Anna Moles
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
5
|
Serum Markers of Neurodegeneration in Maple Syrup Urine Disease. Mol Neurobiol 2016; 54:5709-5719. [PMID: 27660262 DOI: 10.1007/s12035-016-0116-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/09/2016] [Indexed: 12/14/2022]
Abstract
Maple syrup urine disease (MSUD) is an inherited disorder caused by deficient activity of the branched-chain α-keto acid dehydrogenase complex involved in the degradation pathway of branched-chain amino acids (BCAAs) and their respective α-keto-acids. Patients affected by MSUD present severe neurological symptoms and brain abnormalities, whose pathophysiology is poorly known. However, preclinical studies have suggested alterations in markers involved with neurodegeneration. Because there are no studies in the literature that report the neurodegenerative markers in MSUD patients, the present study evaluated neurodegenerative markers (brain-derived neurotrophic factor (BDNF), cathepsin D, neural cell adhesion molecule (NCAM), plasminogen activator inhibitor-1 total (PAI-1 (total)), platelet-derived growth factor AA (PDGF-AA), PDGF-AB/BB) in plasma from 10 MSUD patients during dietary treatment. Our results showed a significant decrease in BDNF and PDGF-AA levels in MSUD patients. On the other hand, NCAM and cathepsin D levels were significantly greater in MSUD patients compared to the control group, while no significant changes were observed in the levels of PAI-1 (total) and PDGF-AB/BB between the control and MSUD groups. Our data show that MSUD patients present alterations in proteins involved in the neurodegenerative process. Thus, the present findings corroborate previous studies that demonstrated that neurotrophic factors and lysosomal proteases may contribute, along with other mechanisms, to the intellectual deficit and neurodegeneration observed in MSUD.
Collapse
|
6
|
Alizadeh AM, Shiri S, Farsinejad S. Metastasis review: from bench to bedside. Tumour Biol 2014; 35:8483-523. [PMID: 25104089 DOI: 10.1007/s13277-014-2421-z] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/29/2014] [Indexed: 12/19/2022] Open
Abstract
Cancer is the final result of uninhibited cell growth that involves an enormous group of associated diseases. One major aspect of cancer is when cells attack adjacent components of the body and spread to other organs, named metastasis, which is the major cause of cancer-related mortality. In developing this process, metastatic cells must successfully negotiate a series of complex steps, including dissociation, invasion, intravasation, extravasation, and dormancy regulated by various signaling pathways. In this review, we will focus on the recent studies and collect a comprehensive encyclopedia in molecular basis of metastasis, and then we will discuss some new potential therapeutics which target the metastasis pathways. Understanding the new aspects on molecular mechanisms and signaling pathways controlling tumor cell metastasis is critical for the development of therapeutic strategies for cancer patients that would be valuable for researchers in both fields of molecular and clinical oncology.
Collapse
Affiliation(s)
- Ali Mohammad Alizadeh
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, 1419733141, Iran,
| | | | | |
Collapse
|
7
|
Wei H, Alberts I, Li X. The apoptotic perspective of autism. Int J Dev Neurosci 2014; 36:13-8. [DOI: 10.1016/j.ijdevneu.2014.04.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 12/12/2022] Open
Affiliation(s)
- Hongen Wei
- Central LaboratoryShanxi Provincial People's HospitalAffiliate of Shanxi Medical UniversityTaiyuanChina
| | - Ian Alberts
- Department of Natural SciencesLaGuardia CC, CUNYNew YorkNY11101USA
| | - Xiaohong Li
- Department of NeurochemistryNY State Institute for Basic Research in Developmental DisabilitiesNew YorkNY10314USA
| |
Collapse
|
8
|
Loss of melanoregulin (MREG) enhances cathepsin-D secretion by the retinal pigment epithelium. Vis Neurosci 2013; 30:55-64. [PMID: 23611523 DOI: 10.1017/s0952523813000096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cathepsin-D (Cat-D) is a major proteolytic enzyme in phagocytic cells. In the retinal pigment epithelium (RPE), it is responsible for the daily degradation of photoreceptor outer segments (POSs) to maintain retinal homeostasis. Melanoregulin (MREG)-mediated loss of phagocytic capacity has been linked to diminished intracellular Cat-D activity. Here, we demonstrate that loss of MREG enhances the secretion of intermediate Cat-D (48 kDa), resulting in a net enhancement of extracellular Cat-D activity. These results suggest that MREG is required to maintain Cat-D homeostasis in the RPE and likely plays a protective role in retinal health. In this regard, in the Mreg dsu/dsu mouse, we observe increased basal laminin. Loss of the Mreg dsu allele is not lethal and therefore leads to slow age-dependent changes in the RPE. Thus, we propose that this model will allow us to study potential dysregulatory functions of Cat-D in retinal disease.
Collapse
|
9
|
Vetvicka V, Fusek M, Vashishta A. Procathepsin d involvement in chemoresistance of cancer cells. NORTH AMERICAN JOURNAL OF MEDICAL SCIENCES 2012; 4:174-9. [PMID: 22536560 PMCID: PMC3334257 DOI: 10.4103/1947-2714.94943] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Background: The role of pCD in cancer has been studied for a long time. We have focused on the hypothesis that increased expression and/or secretion of pCD in cancer cells causes increased chemoresistance to apoptosis inducing molecules. Aim: The aim was to evaluate the effects of pCD expression/release on chemoresistance. Materials and Methods: We tested the LC50 values for various transfectants of breast cancer cell line MDA-MB-231 as well as effects of exogenous additions of pCD, its mutants, pepstatine, antibodies, and Brefeldin on the resistance. Results: We found that pCD levels can be correlated with chemoresistance, the pro-resistant activity seems to be localized outside the cells, proteolytic activity is not involved, and PI3-Akt signaling has an important role in antiapoptotic effects of pCD. Conclusion: We can conclude that overexpression of pCD has strong influence on increased resistance of tumor cells. This could, in fact, be an important contribution in the possible use of pCD level determination for prognostic and/or therapeutic purposes.
Collapse
Affiliation(s)
- Vaclav Vetvicka
- Department of Pathology, University of Louisville, Louisville, KY, USA
| | | | | |
Collapse
|
10
|
Martino S, Tiribuzi R, Ciraci E, Makrypidi G, D'Angelo F, di Girolamo I, Gritti A, de Angelis GMC, Papaccio G, Sampaolesi M, Berardi AC, Datti A, Orlacchio A. Coordinated involvement of cathepsins S, D and cystatin C in the commitment of hematopoietic stem cells to dendritic cells. Int J Biochem Cell Biol 2011; 43:775-83. [PMID: 21315176 DOI: 10.1016/j.biocel.2011.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 01/29/2011] [Accepted: 02/01/2011] [Indexed: 02/02/2023]
Abstract
The identity of biochemical players which underpin the commitment of CD34(+) hematopoietic stem cells to immunogenic or tolerogenic dendritic cells is largely unknown. To explore this issue, we employed a previously established cell-based system amenable to shift dendritic cell differentiation from the immunogenic into the tolerogenic pathway upon supplementation with a conventional cytokine cocktail containing thrombopoietin (TPO) and IL-16. We show that stringent regulation of cathepsins S and D, two proteases involved in antigen presentation, is crucial to engage cell commitment to either route. In response to TPO+IL-16-dependent signaling, both cathepsins undergo earlier maturation and down-regulation. Additionally, cystatin C orchestrates cathepsin S expression through a tight but reversible interaction that, based on a screen of adult stem cells from disparate origins, CD14(+) cells, primary fibroblasts and the MCF7 cell line, appears unique to CD34(+) stem cells from peripheral and cord blood. As shown by CD4(+) T cell proliferation in mixed-lymphocyte reactions, cell commitment to either pathway is disrupted upon cathepsin knockdown by RNAi. Surprisingly, similar effects were also observed upon gene overexpression, which prompts atypically accelerated maturation of cathepsins S and D in cells of the immunogenic pathway, similar to the tolerogenic route. Furthermore, RNAi studies revealed that cystatin C is a proteolytic target of cathepsin D and has a direct, causal impact on cell differentiation. Together, these findings uncover a novel biochemical cluster that is subject to time-controlled and rigorously balanced expression to mediate specific stem cell commitment at the crossroads towards tolerance or immunity.
Collapse
Affiliation(s)
- Sabata Martino
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Belguendouz H, Messaoudène D, Lahmar K, Ahmedi L, Medjeber O, Hartani D, Lahlou-Boukoffa O, Touil-Boukoffa C. Interferon-γ and nitric oxide production during Behçet uveitis: immunomodulatory effect of interleukin-10. J Interferon Cytokine Res 2011; 31:643-51. [PMID: 21510811 DOI: 10.1089/jir.2010.0148] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Uveitis is one of the major manifestations of Behçet Disease, a systemic inflammatory vasculitis. Our aim is to investigate in vivo and in vitro production of interferon (IFN)-γ and nitric oxide (NO) during Behçet uveitis (BU). Moreover, we evaluated the implication of IFN-γ and interleukin (IL)-10 in the regulation of NO production in vitro. Cytokines' concentrations were measured by ELISA, and NO levels were assessed by modified Griess's method. Our results showed that patients with active disease had significant elevation of IFN-γ and NO concentrations in both plasma and peripheral blood mononuclear cell culture supernatants compared with controls (P<0.01) or to patients with inactive disease (P<0.05). Further, IFN-γ induced significantly higher production of NO in cell culture supernatants, whereas IL-10 significantly reduced it (P<0.05). In conclusion, the elevated levels of IFN-γ in vivo and in vitro in patients with BU reflect the implication of this cytokine in the disease physiopathology. These results suggest that IFN-γ, through the induction of NO synthase 2 and the production of NO, is implicated in the genesis of the inflammatory process during active BU; whereas IL-10 seems to have protective properties.
Collapse
Affiliation(s)
- Houda Belguendouz
- Laboratoire de Biologie Cellulaire et Moléculaire, FSB-USTHB, Université Bab-Ezzouar, Algiers, Algeria
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Masson O, Bach AS, Derocq D, Prébois C, Laurent-Matha V, Pattingre S, Liaudet-Coopman E. Pathophysiological functions of cathepsin D: Targeting its catalytic activity versus its protein binding activity? Biochimie 2010; 92:1635-43. [DOI: 10.1016/j.biochi.2010.05.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 05/14/2010] [Indexed: 11/27/2022]
|
13
|
Malik M, Sheikh AM, Wen G, Spivack W, Brown WT, Li X. Expression of inflammatory cytokines, Bcl2 and cathepsin D are altered in lymphoblasts of autistic subjects. Immunobiology 2010; 216:80-5. [PMID: 20399529 DOI: 10.1016/j.imbio.2010.03.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 03/02/2010] [Accepted: 03/04/2010] [Indexed: 12/11/2022]
Abstract
UNLABELLED To determine whether inflammation and apoptosis are involved in the pathogenesis of autism, we examined cytokines, Bcl2 expression and cathepsin D protease activity in the lymphoblasts of autistic subjects and age-matched controls. We found increased expression levels of pro-inflammatory cytokines TNF-α and IL-6, but decreased Bcl2 expression in lymphoblasts of autistic subjects. We also found that cathepsin D mRNA and protein expression were significantly increased in autistic lymphoblasts. CONCLUSION Our findings suggest that inflammation and apoptosis may play a significant role in the pathogenesis of autism, and cathepsin D may participate in the regulation of cytokine-induced inflammation and apoptosis in autistic lymphoblasts.
Collapse
Affiliation(s)
- Mazhar Malik
- Department of Neurochemistry, NY State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, New York, NY 10314, USA
| | | | | | | | | | | |
Collapse
|
14
|
Sheikh A, Li X, Wen G, Tauqeer Z, Brown W, Malik M. Cathepsin D and apoptosis related proteins are elevated in the brain of autistic subjects. Neuroscience 2010; 165:363-70. [DOI: 10.1016/j.neuroscience.2009.10.035] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 10/15/2009] [Accepted: 10/19/2009] [Indexed: 10/20/2022]
|
15
|
Ahn JE, Zhu-Salzman K. CmCatD, a cathepsin D-like protease has a potential role in insect defense against a phytocystatin. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:678-685. [PMID: 19446566 DOI: 10.1016/j.jinsphys.2009.04.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 04/26/2009] [Accepted: 04/29/2009] [Indexed: 05/27/2023]
Abstract
When fed on a diet containing a proteinaceous cysteine protease inhibitor from soybean (scN), cowpea bruchid larvae enhance their overall digestive capacity to counter the inhibitory effect. Elevated proteolytic activity is attributed not only to the major digestive cysteine proteases (CmCPs), but also to aspartic proteases, a minor midgut protease component. In this study, we isolated a CmCatD cDNA from cowpea bruchid midgut that shares substantial sequence similarity with cathepsin D-like aspartic proteases of other organisms. Its transcript profile was developmentally regulated and subject to alteration by dietary scN. CmCatD transcripts were more abundant in scN-fed 3rd and 4th instar midguts than in control. The bacterially expressed recombinant CmCatD proprotein was capable of autoprocessing under acidic conditions, and mature CmCatD also exhibited pH-dependent proteolytic activity which was inhibited specifically by pepstatin A, indicative of its aspartic protease nature. CmCatD trans-activated CmCPs and vice versa, suggesting a cooperation between the minor midgut CmCatD and major digestive CmCPs. Further, CmCatD was able to degrade scN after extensive incubation. This activity partially restored CmCP proteolytic activity otherwise inhibited by scN. Thus CmCatD could facilitate insects' coping with the challenge of dietary scN by exerting its scN-insensitive and scN-degrading activity, freeing cysteine proteases for food degradation. Taken together, cowpea bruchids coordinate the functionality of the two classes of digestive proteases to fend off the negative effect of scN, and fulfill their nutrient requirements.
Collapse
Affiliation(s)
- Ji-Eun Ahn
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | | |
Collapse
|