1
|
Yumura S, Nakano M, Honda A, Hashimoto Y, Kondo T. Dynamics of intracellular cGMP during chemotaxis in Dictyostelium cells. J Cell Sci 2023; 136:286882. [PMID: 36601895 DOI: 10.1242/jcs.260591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
Cyclic guanosine 3',5'-monophosphate (cGMP) is a ubiquitous important second messenger involved in various physiological functions. Here, intracellular cGMP (cGMPi) was visualized in chemotactic Dictyostelium cells using the fluorescent probe, D-Green cGull. When wild-type cells were stimulated with a chemoattractant, fluorescence transiently increased, but guanylate cyclase-null cells did not show a change in fluorescence, suggesting that D-Green cGull is a reliable indicator of cGMPi. In the aggregation stage, the responses of cGMPi propagated in a wave-like fashion from the aggregation center. The oscillation of the cGMPi wave was synchronized almost in phase with those of other second messengers, such as the intracellular cAMP and Ca2+. The phases of these waves preceded those of the oscillations of actomyosin and cell velocity, suggesting that these second messengers are upstream of the actomyosin and chemotactic migration. An acute increase in cGMPi concentration released from membrane-permeable caged cGMP induced a transient shuttle of myosin II between the cytosol and cell cortex, suggesting a direct link between cGMP signaling and myosin II dynamics.
Collapse
Affiliation(s)
- Shigehiko Yumura
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Masaki Nakano
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Aika Honda
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Yuuki Hashimoto
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Tomo Kondo
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
2
|
Hiraoka H, Wang J, Nakano T, Hirano Y, Yamazaki S, Hiraoka Y, Haraguchi T. ATP levels influence cell movement during the mound phase in Dictyostelium discoideum as revealed by ATP visualization and simulation. FEBS Open Bio 2022; 12:2042-2056. [PMID: 36054629 PMCID: PMC9623536 DOI: 10.1002/2211-5463.13480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/16/2022] [Accepted: 08/29/2022] [Indexed: 01/25/2023] Open
Abstract
Cell migration plays an important role in multicellular organism development. The cellular slime mold Dictyostelium discoideum is a useful model organism for the study of cell migration during development. Although cellular ATP levels are known to determine cell fate during development, the underlying mechanism remains unclear. Here, we report that ATP-rich cells efficiently move to the central tip region of the mound against rotational movement during the mound phase. A simulation analysis based on an agent-based model reproduces the movement of ATP-rich cells observed in the experiments. These findings indicate that ATP-rich cells have the ability to move against the bulk flow of cells, suggesting a mechanism by which high ATP levels determine the cell fate of differentiation.
Collapse
Affiliation(s)
- Haruka Hiraoka
- Graduate School of Frontier BiosciencesOsaka UniversityJapan,Graduate School of ScienceNagoya UniversityJapan
| | - Jiewen Wang
- Graduate School of InformaticsOsaka Metropolitan UniversityJapan
| | - Tadashi Nakano
- Graduate School of InformaticsOsaka Metropolitan UniversityJapan
| | - Yasuhiro Hirano
- Graduate School of Frontier BiosciencesOsaka UniversityJapan
| | | | - Yasushi Hiraoka
- Graduate School of Frontier BiosciencesOsaka UniversityJapan
| | | |
Collapse
|
3
|
Belotti Y, McGloin D, Weijer CJ. Effects of spatial confinement on migratory properties of Dictyostelium discoideum cells. Commun Integr Biol 2021; 14:5-14. [PMID: 33552382 PMCID: PMC7849737 DOI: 10.1080/19420889.2021.1872917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Migratory environments of various eukaryotic cells, such as amoeba, leukocytes and cancer cells, typically involve spatial confinement. Numerous studies have recently emerged, aimed to develop experimental platforms that better recapitulate the characteristics of the cellular microenvironment. Using microfluidic technologies, we show that increasing confinement of Dictyostelium discoideum cells into narrower micro-channels resulted in a significant change in the mode of migration and associated arrangement of the actomyosin cytoskeleton. We observed that cells tended to migrate at constant speed, the magnitude of which was dependent on the size of the channels, as was the locomotory strategy adopted by each cell. Two different migration modes were observed, pseudopod-based and bleb-based migration, with bleb based migration being more frequent with increasing confinement and leading to slower migration. Beside the migration mode, we found that the major determinants of cell speed are its protrusion rate, the amount of F-actin at its leading edge and the number of actin foci. Our results highlighted the impact of the microenvironments on cell behavior. Furthermore, we developed a novel quantitative movement analysis platform for mono-dimensional cell migration that allows for standardization and simplification of the experimental conditions and aids investigation of the complex and dynamic processes occurring at the single-cell level.
Collapse
Affiliation(s)
- Yuri Belotti
- School of Science and Engineering, University of Dundee, Dundee, Scotland, UK
| | - David McGloin
- School of Science and Engineering, University of Dundee, Dundee, Scotland, UK
| | | |
Collapse
|
4
|
Deneke VE, Di Talia S. Chemical waves in cell and developmental biology. J Cell Biol 2018; 217:1193-1204. [PMID: 29317529 PMCID: PMC5881492 DOI: 10.1083/jcb.201701158] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/28/2017] [Accepted: 12/12/2017] [Indexed: 12/31/2022] Open
Abstract
Many biological events, such as the propagation of nerve impulses, the synchronized cell cycles of early embryogenesis, and collective cell migration, must be coordinated with remarkable speed across very large distances. Such rapid coordination cannot be achieved by simple diffusion of molecules alone and requires specialized mechanisms. Although active transport can provide a directed and efficient way to travel across subcellular structures, it cannot account for the most rapid examples of coordination found in biology. Rather, these appear to be driven by mechanisms involving traveling waves of chemical activities that are able to propagate information rapidly across biological or physical systems. Indeed, recent advances in our ability to probe the dynamics of signaling pathways are revealing many examples of coordination of cellular and developmental processes through traveling chemical waves. Here, we will review the theoretical principles underlying such waves; highlight recent literature on their role in different contexts, ranging from chemotaxis to development; and discuss open questions and future perspectives on the study of chemical waves as an essential feature of cell and tissue physiology.
Collapse
Affiliation(s)
- Victoria E Deneke
- Department of Cell Biology, Duke University Medical Center, Durham, NC
| | - Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, NC
| |
Collapse
|
5
|
Actin cytoskeleton of chemotactic amoebae operates close to the onset of oscillations. Proc Natl Acad Sci U S A 2013; 110:3853-8. [PMID: 23431176 DOI: 10.1073/pnas.1216629110] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The rapid reorganization of the actin cytoskeleton in response to external stimuli is an essential property of many motile eukaryotic cells. Here, we report evidence that the actin machinery of chemotactic Dictyostelium cells operates close to an oscillatory instability. When averaging the actin response of many cells to a short pulse of the chemoattractant cAMP, we observed a transient accumulation of cortical actin reminiscent of a damped oscillation. At the single-cell level, however, the response dynamics ranged from short, strongly damped responses to slowly decaying, weakly damped oscillations. Furthermore, in a small subpopulation, we observed self-sustained oscillations in the cortical F-actin concentration. To substantiate that an oscillatory mechanism governs the actin dynamics in these cells, we systematically exposed a large number of cells to periodic pulse trains of different frequencies. Our results indicate a resonance peak at a stimulation period of around 20 s. We propose a delayed feedback model that explains our experimental findings based on a time-delay in the regulatory network of the actin system. To test the model, we performed stimulation experiments with cells that express GFP-tagged fusion proteins of Coronin and actin-interacting protein 1, as well as knockout mutants that lack Coronin and actin-interacting protein 1. These actin-binding proteins enhance the disassembly of actin filaments and thus allow us to estimate the delay time in the regulatory feedback loop. Based on this independent estimate, our model predicts an intrinsic period of 20 s, which agrees with the resonance observed in our periodic stimulation experiments.
Collapse
|
6
|
Schäfer E, Tarantola M, Polo E, Westendorf C, Oikawa N, Bodenschatz E, Geil B, Janshoff A. Chemotaxis of Dictyostelium discoideum: collective oscillation of cellular contacts. PLoS One 2013; 8:e54172. [PMID: 23349816 PMCID: PMC3547869 DOI: 10.1371/journal.pone.0054172] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 12/07/2012] [Indexed: 01/11/2023] Open
Abstract
Chemotactic responses of Dictyostelium discoideum cells to periodic self-generated signals of extracellular cAMP comprise a large number of intricate morphological changes on different length scales. Here, we scrutinized chemotaxis of single Dictyostelium discoideum cells under conditions of starvation using a variety of optical, electrical and acoustic methods. Amebas were seeded on gold electrodes displaying impedance oscillations that were simultaneously analyzed by optical video microscopy to relate synchronous changes in cell density, morphology, and distance from the surface to the transient impedance signal. We found that starved amebas periodically reduce their overall distance from the surface producing a larger impedance and higher total fluorescence intensity in total internal reflection fluorescence microscopy. Therefore, we propose that the dominant sources of the observed impedance oscillations observed on electric cell-substrate impedance sensing electrodes are periodic changes of the overall cell-substrate distance of a cell. These synchronous changes of the cell-electrode distance were also observed in the oscillating signal of acoustic resonators covered with amebas. We also found that periodic cell-cell aggregation into transient clusters correlates with changes in the cell-substrate distance and might also contribute to the impedance signal. It turned out that cell-cell contacts as well as cell-substrate contacts form synchronously during chemotaxis of Dictyostelium discoideum cells.
Collapse
Affiliation(s)
- Edith Schäfer
- Institute of Physical Chemistry, Georg-August-University Göttingen, Göttingen, Germany
| | - Marco Tarantola
- Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity (LFPB), Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Elena Polo
- Institute of Physical Chemistry, Georg-August-University Göttingen, Göttingen, Germany
| | - Christian Westendorf
- Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity (LFPB), Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Noriko Oikawa
- Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity (LFPB), Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Eberhard Bodenschatz
- Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity (LFPB), Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute of Nonlinear Dynamics, Georg-August-University Göttingen, Göttingen, Germany
| | - Burkhard Geil
- Institute of Physical Chemistry, Georg-August-University Göttingen, Göttingen, Germany
| | - Andreas Janshoff
- Institute of Physical Chemistry, Georg-August-University Göttingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
7
|
Allard J, Mogilner A. Traveling waves in actin dynamics and cell motility. Curr Opin Cell Biol 2012; 25:107-15. [PMID: 22985541 DOI: 10.1016/j.ceb.2012.08.012] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 08/20/2012] [Accepted: 08/23/2012] [Indexed: 11/26/2022]
Abstract
Much of current understanding of cell motility arose from studying steady treadmilling of actin arrays. Recently, there have been a growing number of observations of a more complex, non-steady, actin behavior, including self-organized waves. It is becoming clear that these waves result from activation and inhibition feedbacks in actin dynamics acting on different scales, but the exact molecular nature of these feedbacks and the respective roles of biomechanics and biochemistry are still unclear. Here, we review recent advances achieved in experimental and theoretical studies of actin waves and discuss mechanisms and physiological significance of wavy protrusions.
Collapse
Affiliation(s)
- Jun Allard
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
8
|
Shu S, Liu X, Kriebel PW, Hong MS, Daniels MP, Parent CA, Korn ED. Expression of Y53A-actin in Dictyostelium disrupts the cytoskeleton and inhibits intracellular and intercellular chemotactic signaling. J Biol Chem 2010; 285:27713-25. [PMID: 20610381 DOI: 10.1074/jbc.m110.116277] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We showed previously that phosphorylation of Tyr(53), or its mutation to Ala, inhibits actin polymerization in vitro with formation of aggregates of short filaments, and that expression of Y53A-actin in Dictyostelium blocks differentiation and development at the mound stage (Liu, X., Shu, S., Hong, M. S., Levine, R. L., and Korn, E. D. (2006) Proc. Natl. Acad. Sci. U.S.A. 103, 13694-13699; Liu, X., Shu, S., Hong, M. S., Yu, B., and Korn, E. D. (2010) J. Biol. Chem. 285, 9729-9739). We now show that expression of Y53A-actin, which does not affect cell growth, phagocytosis, or pinocytosis, inhibits the formation of head-to-tail cell streams during cAMP-induced aggregation, although individual amoebae chemotax normally. We show that expression of Y53A-actin causes a 50% reduction of cell surface cAMP receptors, and inhibits cAMP-induced increases in adenylyl cyclase A activity, phosphorylation of ERK2, and actin polymerization. Trafficking of vesicles containing adenylyl cyclase A to the rear of the cell and secretion of the ACA vesicles are also inhibited. The actin cytoskeleton of cells expressing Y53A-actin is characterized by numerous short filaments, and bundled and aggregated filaments similar to the structures formed by copolymerization of purified Y53A-actin and wild-type actin in vitro. This disorganized actin cytoskeleton may be responsible for the inhibition of intracellular and intercellular cAMP signaling in cells expressing F-Y53A-actin.
Collapse
Affiliation(s)
- Shi Shu
- Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Current descriptions of eukaryotic chemotaxis and cell movement focus on how extracellular signals (chemoattractants) cause new pseudopods to form. This 'signal-centred' approach is widely accepted but is derived mostly from special cases, particularly steep chemoattractant gradients. I propose a 'pseudopod-centred' explanation, whereby most pseudopods form themselves, without needing exogenous signals, and chemoattractants only bias internal pseudopod dynamics. This reinterpretation of recent data suggests that future research should focus on pseudopod mechanics, not signal processing.
Collapse
Affiliation(s)
- Robert H Insall
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, UK
| |
Collapse
|
10
|
Lusche DF, Wessels D, Soll DR. The effects of extracellular calcium on motility, pseudopod and uropod formation, chemotaxis, and the cortical localization of myosin II in Dictyostelium discoideum. CELL MOTILITY AND THE CYTOSKELETON 2009; 66:567-87. [PMID: 19363786 PMCID: PMC2747089 DOI: 10.1002/cm.20367] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Extracellular Ca(++), a ubiquitous cation in the soluble environment of cells both free living and within the human body, regulates most aspects of amoeboid cell motility, including shape, uropod formation, pseudopod formation, velocity, and turning in Dictyostelium discoideum. Hence it affects the efficiency of both basic motile behavior and chemotaxis. Extracellular Ca(++) is optimal at 10 mM. A gradient of the chemoattractant cAMP generated in the absence of added Ca(++) only affects turning, but in combination with extracellular Ca(++), enhances the effects of extracellular Ca(++). Potassium, at 40 mM, can partially substitute for Ca(++). Mg(++), Mn(++), Zn(++), and Na(+) cannot. Extracellular Ca(++), or K(+), also induce the cortical localization of myosin II in a polar fashion. The effects of Ca(++), K(+) or a cAMP gradient do not appear to be similarly mediated by an increase in the general pool of free cytosolic Ca(++). These results suggest a model, in which each agent functioning through different signaling systems, converge to affect the cortical localization of myosin II, which in turn effects the behavioral changes leading to efficient cell motility and chemotaxis. Cell Motil. Cytoskeleton 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Daniel F Lusche
- Department of Biology, The W.M. Keck Dynamic Image Analysis Facility, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | |
Collapse
|