1
|
Li DL, Wu WL, Liu HP. CqProfilin enhances WSSV infection by promoting viral intracellular transport through binding to both viral nucleocapsid and actin cytoskeleton. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105281. [PMID: 39427863 DOI: 10.1016/j.dci.2024.105281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
White spot syndrome virus (WSSV) is a large nuclear-replicating DNA virus of crustaceans such as shrimp and crayfish; however, the molecular mechanisms facilitating its transport from the invasion site to the cell nucleus have not yet been well elucidated. In this study, a CqProfilin (CqPFN) with a conserved PROF domain was identified from the red claw crayfish Cherax quadricarinatus. CqPFN was ubiquitously expressed in all examined tissues and hemocyte, with the highest levels in the hemocyte, followed by hematopoietic tissue (Hpt) from which the hemocyte were derived in crayfish. The transcript of WSSV genes such as IE1 and VP28 was obviously decreased both in vivo in hemocyte and Hpt, as well as in vitro in cultured Hpt cells, after CqPFN gene silencing; in contrast, the expression of viral genes was significantly increased by the introduction of a recombinant CqPFN protein in Hpt cells in vitro. Moreover, CqPFN was clearly colocalized with the main viral nucleocapsid protein VP664 and F-actin cytoskeleton, respectively, during the early stage of WSSV infection in Hpt cells. In addition, CqPFN was confirmed to interact with a truncated VP6642,405-2,535 and another viral nucleocapsid protein VP15 of WSSV and Cqβ-Actin from Hpt by co-immunoprecipitation assays. Further studies found that VP664 also colocalized with F-actin in the Hpt cell cytoplasm after WSSV infection, suggesting that the actin cytoskeleton was involved in the intracellular transport of incoming viral nucleocapsid. Taken together, CqPFN might combine with the actin cytoskeleton to promote WSSV infection through binding with viral nucleocapsid proteins VP664 and VP15, promoting intracellular transport of viral incoming nucleocapsid for further releasing genome into the nucleus for transcription. Collectively, these results provided an understanding of the WSSV pathogenesis, which will contribute to the development of an antiviral strategy against WSSV disease.
Collapse
Affiliation(s)
- Dong-Li Li
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China; Fisheries College, Jimei University, Xiamen, 361021, Fujian, China
| | - Wen-Lin Wu
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, 362000, China.
| | - Hai-Peng Liu
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center Qingdao, China.
| |
Collapse
|
2
|
Boleti APDA, Jacobowski AC, Monteiro-Alfredo T, Pereira APR, Oliva MLV, Maria DA, Macedo MLR. Cutaneous Melanoma: An Overview of Physiological and Therapeutic Aspects and Biotechnological Use of Serine Protease Inhibitors. Molecules 2024; 29:3891. [PMID: 39202970 PMCID: PMC11357276 DOI: 10.3390/molecules29163891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Metastatic melanoma stands out as the most lethal form of skin cancer because of its high propensity to spread and its remarkable resistance to treatment methods. METHODS In this review article, we address the incidence of melanoma worldwide and its staging phases. We thoroughly investigate the different melanomas and their associated risk factors. In addition, we underscore the principal therapeutic goals and pharmacological methods that are currently used in the treatment of melanoma. RESULTS The implementation of targeted therapies has contributed to improving the approach to patients. However, because of the emergence of resistance early in treatment, overall survival and progression-free periods continue to be limited. CONCLUSIONS We provide new insights into plant serine protease inhibitor therapeutics, supporting high-throughput drug screening soon, and seeking a complementary approach to explain crucial mechanisms associated with melanoma.
Collapse
Affiliation(s)
- Ana Paula De Araújo Boleti
- Laboratory of Protein Purification and Their Biological Functions, Food Technology and Public Health Unit, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (A.P.D.A.B.); (A.C.J.); (T.M.-A.); (A.P.R.P.)
| | - Ana Cristina Jacobowski
- Laboratory of Protein Purification and Their Biological Functions, Food Technology and Public Health Unit, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (A.P.D.A.B.); (A.C.J.); (T.M.-A.); (A.P.R.P.)
| | - Tamaeh Monteiro-Alfredo
- Laboratory of Protein Purification and Their Biological Functions, Food Technology and Public Health Unit, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (A.P.D.A.B.); (A.C.J.); (T.M.-A.); (A.P.R.P.)
| | - Ana Paula Ramos Pereira
- Laboratory of Protein Purification and Their Biological Functions, Food Technology and Public Health Unit, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (A.P.D.A.B.); (A.C.J.); (T.M.-A.); (A.P.R.P.)
| | - Maria Luiza Vilela Oliva
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, SP, Brazil;
| | - Durvanei Augusto Maria
- Divisão de Ciências Fisiológicas e Químicas, Serviço de Bioquímica, Instituto Butantan, São Paulo 05585-000, SP, Brazil;
| | - Maria Lígia Rodrigues Macedo
- Laboratory of Protein Purification and Their Biological Functions, Food Technology and Public Health Unit, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (A.P.D.A.B.); (A.C.J.); (T.M.-A.); (A.P.R.P.)
- Department of Pharmaceutical Sciences, Food, and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| |
Collapse
|
3
|
Jin M, Yuan T, Tian K, Li J, Huang Q, Chi Y, Huang G. Oncogenic circ-SLC16A1 promotes progression of non-small cell lung cancer via regulation of the miR-1287-5p/profilin 2 axis. Cell Mol Biol Lett 2024; 29:43. [PMID: 38539084 PMCID: PMC10976772 DOI: 10.1186/s11658-024-00549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/13/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are single-stranded RNAs with covalently closed structures that have been implicated in cancer progression. However, the regulatory mechanisms remain largely unclear. So, the aim of this study was to reveal the role and regulatory mechanisms of circ-SLC16A1. METHODS In this study, next-generation sequencing was used to identify abnormally expressed circRNAs between cancerous and para-carcinoma tissues. Fluorescence in situ hybridization and quantitative reverse transcription polymerase chain reaction were performed to assess the expression patterns of circ-solute carrier family 16 member 1 (SLC16A1) in non-small cell lung cancer (NSCLC) cells and tissue specimens. The dual-luciferase reporter assay was utilized to identify downstream targets of circ-SLC16A1. Transwell migration, wound healing, 5-ethynyl-2'-deoxyuridine incorporation, cell counting, and colony formation assays were conducted to assess the proliferation and migration of NSCLC cells. A mouse tumor xenograft model was employed to determine the roles of circ-SLC16A1 in NSCLC progression and metastasis in vivo. RESULTS The results found that circ-SLC16A1 was upregulated in NSCLC cells and tissues. Downregulation of circ-SLC16A1 inhibited tumor growth by reducing proliferation, lung metastasis, and lymphatic metastasis of NSCLC cells, and arrested the cell cycle in the G1 phase. Also, silencing of circ-SLC16A1 promoted apoptosis of NSCLC cells. The results of bioinformatics analysis and the dual-luciferase reporter assay confirmed that microRNA (miR)-1287-5p and profilin 2 (PFN2) are downstream targets of circ-SLC16A1. PFN2 overexpression or circ-SLC16A1 inhibition restored proliferation and migration of NSCLC cells after silencing of circ-SLC16A1. PFN2 overexpression restored migration and proliferation of NSCLC cells post miR-1287-5p overexpression. CONCLUSIONS Collectively, these findings show that miR-1287-5p/PFN2 signaling was associated with downregulation of circ-SLC16A1 and reduced invasion and proliferation of NSCLC cells. So, circ-SLC16A1 is identified as a mediator of multiple pro-oncogenic signaling pathways in NSCLC and can be targeted to suppress tumor progression.
Collapse
Affiliation(s)
- Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Tailei Yuan
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
- Postgraduate Training Base of Shanghai Gongli Hospital, Ningxia Medical University, Shanghai, 200135, People's Republic of China
- Department of Clinical Lab, Shanghai Pudong New Area Gongli Hospital, Shanghai, 200135, People's Republic of China
- Jiangbei Hospital Affiliated to Xinglin College, Nantong University, Jiangsu, 210048, People's Republic of China
| | - Kaisai Tian
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
- Postgraduate Training Base of Shanghai Gongli Hospital, Ningxia Medical University, Shanghai, 200135, People's Republic of China
- Department of Clinical Lab, Shanghai Pudong New Area Gongli Hospital, Shanghai, 200135, People's Republic of China
| | - Jingjing Li
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Qingqing Huang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China.
| | - Yongbin Chi
- Postgraduate Training Base of Shanghai Gongli Hospital, Ningxia Medical University, Shanghai, 200135, People's Republic of China.
- Department of Clinical Lab, Shanghai Pudong New Area Gongli Hospital, Shanghai, 200135, People's Republic of China.
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China.
| |
Collapse
|
4
|
Yu JH, Tan JN, Zhong GY, Zhong L, Hou D, Ma S, Wang PL, Zhang ZH, Lu XQ, Yang B, Zhou SN, Han FH. Hsa_circ_0020134 promotes liver metastasis of colorectal cancer through the miR-183-5p-PFN2-TGF-β/Smad axis. Transl Oncol 2024; 39:101823. [PMID: 37925795 PMCID: PMC10652212 DOI: 10.1016/j.tranon.2023.101823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023] Open
Abstract
Circular RNAs (circRNAs) are a distinct class of non-coding RNAs that play regulatory roles in the initiation and progression of tumors. With advancements in transcriptome sequencing technology, numerous circRNAs that play significant roles in tumor-related genes have been identified. In this study, we used transcriptome sequencing to analyze the expression levels of circRNAs in normal adjacent tissues, primary colorectal cancer (CRC) tissues, and CRC tissues with liver metastasis. We successfully identified the circRNA hsa_circ_0020134 (circ0020134), which exhibited significantly elevated expression specifically in CRC with liver metastasis. Importantly, high levels of circ0020134 were associated with a poor prognosis among patients. Functional experiments demonstrated that circ0020134 promotes the proliferation and metastasis of CRC cells both in vitro and in vivo. Mechanistically, upregulation of circ0020134 was induced by the transcription factor, PAX5, while miR-183-5p acted as a sponge for circ0020134, leading to partial upregulation of PFN2 mRNA and protein levels, thereby further activating the downstream TGF-β/Smad pathway. Additionally, downregulation of circ0020134 inhibited epithelial-mesenchymal transition (EMT) in CRC cells, which could be reversed by miR-183-5p inhibitor treatment. Collectively, our findings confirm that the circ0020134-miR-183-5p-PFN2-TGF-β/Smad axis induces EMT transformation within tumor cells, promoting CRC proliferation and metastasis, thus highlighting its potential as a therapeutic target for patients with CRC liver metastasis.
Collapse
Affiliation(s)
- Jin-Hao Yu
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China, 510120
| | - Jia-Nan Tan
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China, 510120
| | - Guang-Yu Zhong
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China, 510120
| | - Lin Zhong
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China, 510120
| | - Dong Hou
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China, 510120
| | - Shuai Ma
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China, 510120
| | - Peng-Liang Wang
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China, 510120
| | - Zhi-Hong Zhang
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China, 510120
| | - Xu-Qiang Lu
- Department of General Surgery, Puning People's Hospital, Puning, China, 515399
| | - Bin Yang
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China, 510120.
| | - Sheng-Ning Zhou
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China, 510120.
| | - Fang-Hai Han
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China, 510120.
| |
Collapse
|
5
|
Li D, Fu Z, Dong C, Song Y. Downregulation of circATXN7 represses non-small cell lung cancer growth by releasing miR-7-5p. Thorac Cancer 2022; 13:1597-1610. [PMID: 35445786 PMCID: PMC9161317 DOI: 10.1111/1759-7714.14426] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/29/2022] Open
Abstract
Background Circular RNAs (circRNAs) participate in the occurrence and progression of many cancers. CircRNA ataxin 7 (circATXN7) (circBase ID: hsa_circ_0066436) plays a promoting influence on gastric cancer progression. However, the biological role of circATXN7 in non‐small cell lung cancer (NSCLC) is indistinct. Methods Levels of circATXN7, microRNA (miR)‐7‐5p, and profilin 2 (PFN2) mRNA were detected using quantitative real‐time polymerase chain reaction (RT‐qPCR). Proliferation, apoptosis, metastasis, and invasion were analyzed using cell counting kit‐8 (CCK‐8), colony formation, 5‐ethynyl‐2′‐deoxyuridine (EdU), flow cytometry, and transwell assays. Protein levels were analyzed using western blotting (WB) and immunohistochemistry (IHC). The relationship between circATXN7 or PFN2 and miR‐7‐5p was analyzed by dual‐luciferase reporter and RNA immunoprecipitation (RIP) assays. The biological function of circATXN7 was verified by xenograft assay. Results CircATXN7 and PFN2 were highly expressed in NSCLC, whereas miR‐7‐5p expression had the opposite trend. CircATXN7 overexpression constrained apoptosis and promoted proliferation, metastasis, invasion, and epithelial‐mesenchymal transition of NSCLC cells, but circATXN7 silencing played the opposing influence and repressed xenograft tumor growth in vivo. CircATXN7 served as a miR‐7‐5p sponge, and circATXN7 regulated malignant behaviors of NSCLC cells through sponging miR‐7‐5p. PFN2 acted as a miR‐7‐5p target. PFN2 silencing overturned the promoting effect of miR‐7‐5p inhibitor on NSCLC cell malignancy, while PFN2 overexpression reversed the inhibitory impact of miR‐7‐5p mimic on NSCLC cell malignancy. Conclusion CircATXN7 accelerated the malignancy of NSCLC cells through adsorbing miR‐7‐5p and upregulating PFN2, offering evidence to support circATXN7 as a target for NSCLC treatment.
Collapse
Affiliation(s)
- Dongliang Li
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zejun Fu
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chaoqun Dong
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yongming Song
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
6
|
Ling Y, Cao Q, Liu Y, Zhao J, Zhao Y, Li K, Chen Z, Du X, Huo X, Kang H, Chen Z. Profilin 2 (PFN2) promotes the proliferation, migration, invasion and epithelial-to-mesenchymal transition of triple negative breast cancer cells. Breast Cancer 2020; 28:368-378. [PMID: 33047272 DOI: 10.1007/s12282-020-01169-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 10/01/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND Triple negative breast cancer (TNBC) is the most aggressive subtype with the worst prognosis. The role of profilin 2 (PFN2) in TNBC is very controversial. The current study is to explore the role of PFN2 in TNBC. METHODS PFN2 expression in TNBC and normal breast tissues were evaluated by immunohistochemical analysis. The association between PFN2 expression and prognosis in TNBC patients was analyzed from the TCGA database. A cell counting kit-8 (CCK8) assay was employed to investigate the effects of PFN2 in TNBC cell proliferations. The migration and invasion capability of TNBC cells was evaluated by transwell assays. Western blot was performed to assess the related protein expression of TGF-β/Smad signaling and epithelial to mesenchymal transition. Finally, TNBC xenografts were established to determine the tumorigenicity in vivo using female Nod/Scid mice. RESULTS PFN2 is upregulated in TNBC and the higher expression was associated with worse survival. CCK8 assays and Transwell assays demonstrated that PFN2 promoted the proliferation, migration and invasion of TNBC cells. Smad2 and Smad3 were upregulated in PFN2 overexpressing TNBC cells, which further induced the process of epithelial‑to‑mesenchymal transition. Similarly, the overexpressing PFN2 TNBC cells exhibited stronger tumorigenicity in vivo. CONCLUSIONS Higher PFN2 expression is associated with a worse 10-year overall survival and relapse-free survival in breast cancer patients, as well as worse 10-year relapse-free survival in TNBC patients. PFN2 promotes the proliferation, migration and invasion of TNBC cells by regulating epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Yuwei Ling
- Department of General Surgery, Center for Thyroid and Breast Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Qi Cao
- School of Basic Medical Sciences, Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, 100069, China
| | - Yihan Liu
- School of Basic Medical Sciences, Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, 100069, China
| | - Jing Zhao
- Department of General Surgery, Center for Thyroid and Breast Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Ye Zhao
- Department of General Surgery, Center for Thyroid and Breast Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Kaifu Li
- Department of General Surgery, Center for Thyroid and Breast Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Zhiqiang Chen
- Department of General Surgery, Center for Thyroid and Breast Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Xiaoyan Du
- School of Basic Medical Sciences, Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, 100069, China
| | - Xueyun Huo
- School of Basic Medical Sciences, Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, 100069, China.
| | - Hua Kang
- Department of General Surgery, Center for Thyroid and Breast Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Zhenwen Chen
- School of Basic Medical Sciences, Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
7
|
Pinto-Costa R, Sousa MM. Profilin as a dual regulator of actin and microtubule dynamics. Cytoskeleton (Hoboken) 2019; 77:76-83. [PMID: 31811707 DOI: 10.1002/cm.21586] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/18/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022]
Abstract
Although originally identified as G-actin sequestering proteins, profilins are emerging as critical regulators of actin dynamics, capable of interacting with multiple acting binding proteins, and being able to link membrane lipids to cytoskeleton components. Recently, in addition to its actin, poly-proline, and phosphatidylinositol binding domains, profilin has been shown to contain residues specialized in microtubule binding. Here we will discuss in a critical perspective the emerging body of data supporting that profilins are central mediators of actin microfilament and microtubule interaction. We will also address the unanswered questions in the field, including the nature of the interaction of profilin with microtubules, and its effect on microtubule dynamics. These recent discoveries deepen our understanding on how different cytoskeleton components are integrated within cells.
Collapse
Affiliation(s)
- Rita Pinto-Costa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular-IBMC and Instituto de Inovação e Investigação em Saúde, Universidade do Porto, Porto, Portugal.,Graduate Program in Molecular and Cell Biology, Instituto de Ciências Biomédicas Abel Salazar-ICBAS, University of Porto, Porto, Portugal
| | - Mónica M Sousa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular-IBMC and Instituto de Inovação e Investigação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
8
|
Zhou K, Chen J, Wu J, Xu Y, Wu Q, Yue J, Song Y, Li S, Zhou P, Tu W, Yang G, Jiang S. Profilin 2 Promotes Proliferation and Metastasis of Head and Neck Cancer Cells by Regulating PI3K/AKT/β-Catenin Signaling Pathway. Oncol Res 2019; 27:1079-1088. [PMID: 31122311 PMCID: PMC7848265 DOI: 10.3727/096504019x15579146061957] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Profilin 2 (PFN2) was found to be mainly expressed in neurons and involved in the development of the brain. In recent years, emerging evidence indicated that PFN2 is also significantly upregulated in various cancers including head and neck cancer (HNSC) and influences cancer cell proliferation, migration, and invasion. However, the role of PFN2 in HNSC development and progression remains unclear. The aim of our study was to investigate the role of PFN2 in the development of HNSC and its possible molecular mechanisms. Bioinformatics showed that increased expression of PFN2 in tumors correlated highly with poor prognosis of HNSC patients. Our results indicated that PFN2 was highly expressed in HNSC tissues and in HNSC cell lines. Knockdown of PFN2 inhibited proliferation, invasion, and migration of HNSC cells, while PFN2 overexpression produced the opposite effects. Using a nude mouse xenograft model, we substantiated the tumor-promoting effect of PFN2 on HNSC in vivo. Furthermore, we found that PFN2 downregulation reduced the phosphorylation of Akt and GSK-3β and reduced the expression of β-catenin in HNSC cells. The opposite was observed when PFN2 was overexpressed. Collectively, these results suggest that PFN2 promotes the proliferation and metastasis of HNSC by activating the PI3K/Akt/β-catenin signaling pathway. Although further validation is needed, we speculate that PFN2 plays a crucial role in HNSC and may be a promising therapeutic target and prognostic biomarker.
Collapse
Affiliation(s)
- Kecheng Zhou
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Jie Chen
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Jiayu Wu
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Yangxinzi Xu
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Qiaoyun Wu
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Jingjing Yue
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Yu Song
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui, P.R. China
| | - Shengcun Li
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Peng Zhou
- Department of Anatomy, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Wenzhan Tu
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Guanhu Yang
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Songhe Jiang
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| |
Collapse
|
9
|
Gau D, Veon W, Shroff SG, Roy P. The VASP-profilin1 (Pfn1) interaction is critical for efficient cell migration and is regulated by cell-substrate adhesion in a PKA-dependent manner. J Biol Chem 2019; 294:6972-6985. [PMID: 30814249 DOI: 10.1074/jbc.ra118.005255] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/22/2019] [Indexed: 12/20/2022] Open
Abstract
Dynamic regulation of the actin cytoskeleton is an essential feature of cell motility. Action of Enabled (Ena)/vasodilator-stimulated phosphoprotein (VASP), a family of conserved actin-elongating proteins, is an important aspect of regulation of the actin cytoskeletal architecture at the leading edge that controls membrane protrusion and cell motility. In this study, we performed mutagenesis experiments in overexpression and knockdown-rescue settings to provide, for the first time, direct evidence of the role of the actin-binding protein profilin1 (Pfn1) in VASP-mediated regulation of cell motility. We found that VASP's interaction with Pfn1 is promoted by cell-substrate adhesion and requires down-regulation of PKA activity. Our experimental data further suggest that PKA-mediated Ser137 phosphorylation of Pfn1 potentially negatively regulates the Pfn1-VASP interaction. Finally, Pfn1's ability to be phosphorylated on Ser137 was partly responsible for the anti-migratory action elicited by exposing cells to a cAMP/PKA agonist. On the basis of these findings, we propose a mechanism of adhesion-protrusion coupling in cell motility that involves dynamic regulation of Pfn1 by PKA activity.
Collapse
Affiliation(s)
- David Gau
- From the Department of Bioengineering, University of Pittsburgh and
| | - William Veon
- From the Department of Bioengineering, University of Pittsburgh and
| | - Sanjeev G Shroff
- From the Department of Bioengineering, University of Pittsburgh and
| | - Partha Roy
- From the Department of Bioengineering, University of Pittsburgh and .,the Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| |
Collapse
|
10
|
Frantzi M, Klimou Z, Makridakis M, Zoidakis J, Latosinska A, Borràs DM, Janssen B, Giannopoulou I, Lygirou V, Lazaris AC, Anagnou NP, Mischak H, Roubelakis MG, Vlahou A. Silencing of Profilin-1 suppresses cell adhesion and tumor growth via predicted alterations in integrin and Ca2+ signaling in T24M-based bladder cancer models. Oncotarget 2018; 7:70750-70768. [PMID: 27683119 PMCID: PMC5342587 DOI: 10.18632/oncotarget.12218] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 09/13/2016] [Indexed: 12/14/2022] Open
Abstract
Bladder cancer (BC) is the second most common malignancy of the genitourinary system, characterized by the highest recurrence rate of all cancers. Treatment options are limited; thus a thorough understanding of the underlying molecular mechanisms is needed to guide the discovery of novel therapeutic targets. Profilins are actin binding proteins with attributed pleiotropic functions to cytoskeletal remodeling, cell adhesion, motility, even transcriptional regulation, not fully characterized yet. Earlier studies from our laboratory revealed that decreased tissue levels of Profilin-1 (PFN1) are correlated with BC progression to muscle invasive disease. Herein, we describe a comprehensive analysis of PFN1 silencing via shRNA, in vitro (by employing T24M cells) and in vivo [(with T24M xenografts in non-obese diabetic severe combined immunodeficient mice (NOD/SCID) mice]. A combination of phenotypic and molecular assays, including migration, proliferation, adhesion assays, flow cytometry and total mRNA sequencing, as well as immunohistochemistry for investigation of selected findings in human specimens were applied. A decrease in BC cell adhesion and tumor growth in vivo following PFN downregulation are observed, likely associated with the concomitant downregulation of Fibronectin receptor, Endothelin-1, and Actin polymerization. A decrease in the levels of multiple key members of the non-canonical Wnt/Ca2+ signaling pathway is also detected following PFN1 suppression, providing the groundwork for future studies, addressing the specific role of PFN1 in Ca2+ signaling, particularly in the muscle invasive disease.
Collapse
Affiliation(s)
- Maria Frantzi
- Proteomics Laboratory, Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Research and Development Department, Mosaiques Diagnostics GmbH, Hannover, Germany
| | - Zoi Klimou
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Cell and Gene Therapy Laboratory, Biomedical Research Foundation of The Academy of Athens, Athens, Greece
| | - Manousos Makridakis
- Proteomics Laboratory, Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Jerome Zoidakis
- Proteomics Laboratory, Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Agnieszka Latosinska
- Proteomics Laboratory, Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Daniel M Borràs
- Research and Development Department, GenomeScan B.V., Leiden, The Netherlands
| | - Bart Janssen
- Research and Development Department, GenomeScan B.V., Leiden, The Netherlands
| | - Ioanna Giannopoulou
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasiliki Lygirou
- Proteomics Laboratory, Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Andreas C Lazaris
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Nicholas P Anagnou
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Cell and Gene Therapy Laboratory, Biomedical Research Foundation of The Academy of Athens, Athens, Greece
| | - Harald Mischak
- Research and Development Department, Mosaiques Diagnostics GmbH, Hannover, Germany
| | - Maria G Roubelakis
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Cell and Gene Therapy Laboratory, Biomedical Research Foundation of The Academy of Athens, Athens, Greece
| | - Antonia Vlahou
- Proteomics Laboratory, Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
11
|
Liu J, Wu Y, Wang Q, Liu X, Liao X, Pan J. Bioinformatic analysis of PFN2 dysregulation and its prognostic value in head and neck squamous carcinoma. Future Oncol 2018; 14:449-459. [PMID: 29322815 DOI: 10.2217/fon-2017-0348] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
AIM This study aimed to identify PFN2 expression profile, its prognostic value and the mechanism of its dysregulation in head and neck squamous cell carcinoma (HNSC). MATERIALS & METHODS Bioinformatic analysis was performed using data in the Gene Expression Omnibus Datasets, Human Protein Atlas and The Cancer Genome Atlas-HNSC. RESULTS PFN2 was upregulated in HNSC than in normal head and neck tissues. High PFN2 expression independently predicted poor overall survival in primary HNSC (hazard ratio: 1.548, 95% CI: 1.174-2.042; p = 0.002). Fourteen percent of HNSC cases had PFN2 amplification. PFN2 DNA methylation was negatively correlated with its mRNA expression (Pearson's r = -0.713). CONCLUSION High PFN2 expression might serve as a valuable predictor for poor overall survival of HNSC. DNA amplification and hypomethylation might be two mechanisms of PFN2 dysregulation.
Collapse
Affiliation(s)
- Jiyuan Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Clinical Research, Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yunlong Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Clinical Research, Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qizhang Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Clinical Research, Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xian Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Clinical Research, Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xuejuan Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Clinical Research, Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jian Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Clinical Research, Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Nejedla M, Li Z, Masser AE, Biancospino M, Spiess M, Mackowiak SD, Friedländer MR, Karlsson R. A Fluorophore Fusion Construct of Human Profilin I with Non-Compromised Poly(L-Proline) Binding Capacity Suitable for Imaging. J Mol Biol 2017; 429:964-976. [DOI: 10.1016/j.jmb.2017.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/06/2016] [Accepted: 01/03/2017] [Indexed: 10/24/2022]
|
13
|
Nejedla M, Sadi S, Sulimenko V, de Almeida FN, Blom H, Draber P, Aspenström P, Karlsson R. Profilin connects actin assembly with microtubule dynamics. Mol Biol Cell 2016; 27:2381-93. [PMID: 27307590 PMCID: PMC4966980 DOI: 10.1091/mbc.e15-11-0799] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 06/09/2016] [Indexed: 12/29/2022] Open
Abstract
Profilin is a well-known regulator of actin filament formation. It indirectly associates with microtubules and influences their growth rate. Formins are the linker molecules, and the turnover of the actin microfilament system balances profilin association with the microtubules. Profilin controls actin nucleation and assembly processes in eukaryotic cells. Actin nucleation and elongation promoting factors (NEPFs) such as Ena/VASP, formins, and WASP-family proteins recruit profilin:actin for filament formation. Some of these are found to be microtubule associated, making actin polymerization from microtubule-associated platforms possible. Microtubules are implicated in focal adhesion turnover, cell polarity establishment, and migration, illustrating the coupling between actin and microtubule systems. Here we demonstrate that profilin is functionally linked to microtubules with formins and point to formins as major mediators of this association. To reach this conclusion, we combined different fluorescence microscopy techniques, including superresolution microscopy, with siRNA modulation of profilin expression and drug treatments to interfere with actin dynamics. Our studies show that profilin dynamically associates with microtubules and this fraction of profilin contributes to balance actin assembly during homeostatic cell growth and affects microtubule dynamics. Hence profilin functions as a regulator of microtubule (+)-end turnover in addition to being an actin control element.
Collapse
Affiliation(s)
- Michaela Nejedla
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Sara Sadi
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Vadym Sulimenko
- Institute of Molecular Genetics, ASCR, 142 20 Prague 4, Czech Republic
| | | | - Hans Blom
- Science for Life Laboratory, SE-171 21 Solna, Sweden
| | - Pavel Draber
- Institute of Molecular Genetics, ASCR, 142 20 Prague 4, Czech Republic
| | - Pontus Aspenström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Roger Karlsson
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
14
|
Actoclampin (+)-end-tracking motors: How the pursuit of profilin's role(s) in actin-based motility twice led to the discovery of how cells crawl. Biophys Chem 2015; 209:41-55. [PMID: 26720287 DOI: 10.1016/j.bpc.2015.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/05/2015] [Indexed: 11/21/2022]
Abstract
The path to the discovery of the actoclampins began with efforts to define profilin's role in actin-based pathogen and endosome rocketing. That research identified a set of FPPPP-containing cargo proteins and FPPPP-binding proteins that are consistently stationed within the polymerization zone during episodes of active motility. The very same biophysical clues that forced us to abandon Brownian Ratchet models guided us to the Actoclampin Hypothesis, which asserts that every propulsive filament possesses a (+)-end-tracking motor that generates the forces cells need to crawl. Each actoclampin motor is a multi-arm oligomeric complex, employing one arm to recruit/deliver Profilin•Actin•ATP to a growth-site located at the (+)-end of the lagging subfilament, while a second arm maintains an affinity-modulated binding interaction with the extreme (+)-end of the other subfilament. The alternating actions of these arms define a true molecular motor, the processivity of which explains why propelling filaments maintain full possession of their cargo. The Actoclampin Hypothesis also suggests how the energetics of tracker interactions with the (+)-end determines whether a given actoclampin is a passive (low force-producing) or active (high force-producing) motor, the latter requiring the Gibbs free energy of ATP hydrolysis. Another aim of this review is to acknowledge an earlier notional model that emerged from efforts to comprehend profilin's pivotal role(s) in actin-based cell motility.
Collapse
|
15
|
RNAi Screening Reveals Proteasome- and Cullin3-Dependent Stages in Vaccinia Virus Infection. Cell Rep 2012; 2:1036-47. [DOI: 10.1016/j.celrep.2012.09.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 08/30/2012] [Accepted: 09/07/2012] [Indexed: 11/19/2022] Open
|
16
|
Ding Z, Bae YH, Roy P. Molecular insights on context-specific role of profilin-1 in cell migration. Cell Adh Migr 2012; 6:442-9. [PMID: 23076048 DOI: 10.4161/cam.21832] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Profilin-1 (Pfn1) is a ubiquitously expressed actin-monomer binding protein that has been linked to many cellular activities ranging from control of actin polymerization to gene transcription. Traditionally, Pfn1 has been considered to be an essential control element for actin polymerization and cell migration. Seemingly contrasting this view, a few recent studies have shown evidence of an inhibitory action of Pfn1 on motility of certain types of carcinoma cells. In this review, we summarize biochemistry and functional aspects of Pfn1 in normal cells and bring in newly emerged action of Pfn1 in cancer cells that may explain its context-specific role in cell migration.
Collapse
Affiliation(s)
- Zhijie Ding
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | |
Collapse
|
17
|
Kanaan Z, Qadan M, Eichenberger MR, Galandiuk S. The actin-cytoskeleton pathway and its potential role in inflammatory bowel disease-associated human colorectal cancer. Genet Test Mol Biomarkers 2010; 14:347-53. [PMID: 20406101 DOI: 10.1089/gtmb.2009.0197] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION To improve our understanding of the various clinical phenotypes in inflammatory bowel disease (IBD)-associated colorectal cancer (CRC) and provide potential targets for early diagnosis and future therapy, we sought to identify new candidate genes and molecular pathways involved in the pathogenesis and progression of this disorder. Recent evidence has implicated the actin-cytoskeleton pathway in the development of metastatic sporadic CRC through cytoskeletal proteins such as fascin-1. We hereby propose that similar genetic polymorphisms and mutations among regulatory genes of the actin-cytoskeleton pathway may also be associated with increased dysplasia, carcinogenesis, and susceptibility for invasion and metastasis in IBD-associated CRC, as compared with sporadic CRC. MATERIALS AND METHODS To test this hypothesis, we identified three patients with IBD-associated CRC. We subsequently retrieved normal, dysplastic, and cancerous tissue from within the same surgical colonic specimen. Messenger RNA was subsequently isolated from fresh frozen tissue, and oligonucleotide arrays were carried out to identify genes that were differentially expressed between the three various tissue types (normal, dysplasia, and cancer). By utilizing the same specimen to obtain each of the three various tissue types, we excluded intersubject variability during the analysis. Finally, we performed bioinformatic interaction pathway analysis using the "Ingenuity Pathway Analysis" software. RESULTS Computerized pathway analysis revealed that the actin-cytoskeleton pathway was significantly dysregulated in the progression of normal cells, via dysplasia, to IBD-associated CRC (p < 0.05). Significantly up-regulated genes identified in the analysis included the fibroblast growth factor, Abelson interactor gene-2, profilin-2, and radixin genes. Conversely, the diaphanous homolog gene appeared to be significantly down-regulated. CONCLUSION Via the dysregulation of these five genes within the actin-cytoskeleton pathway, we propose that this molecular pathway provides a potential mechanism for the malignant transformation and progression of normal tissue, via dysplasia, to IBD-associated CRC.
Collapse
Affiliation(s)
- Ziad Kanaan
- Department of Surgery, Price Institute of Surgical Research, University of Louisville School of Medicine, Louisville, Kentucky 40292, USA
| | | | | | | |
Collapse
|
18
|
Gau D, Ding Z, Baty C, Roy P. Fluorescence Resonance Energy Transfer (FRET)-based Detection of Profilin-VASP Interaction. Cell Mol Bioeng 2010; 4:1-8. [PMID: 21566724 DOI: 10.1007/s12195-010-0133-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Profilins belong to a family of small G-actin binding proteins which are thought to assist in F-actin elongation at the leading edge of migrating cells through their interactions with a host of actin-binding proteins including Ena (enabled)/VASP (vasodilator stimulated phosphoprotein). Profilin's interactions with the major actin regulators have been studied almost exclusively using biochemical methods. Therefore spatiotemporal features of these protein-protein interactions have not been resolved so far. In this paper, we for the first time demonstrate the feasibility of GFP-based fluorescence resonance energy transfer (FRET) technique to detect VASP's interaction with profilin-1, a ubiquitously expressed member of profilin family of genes. Specifically, we performed acceptor photobleaching FRET in MDA-MB-231 breast cancer cells to show prominent VASP-Pfn1 interaction at the membrane ruffles near the leading edge.
Collapse
Affiliation(s)
- Dave Gau
- Department of Bioengineering, University of Pittsburgh, 306 Center for Bioengineering, 300 Technology Drive, Pittsburgh, PA 15219, USA
| | | | | | | |
Collapse
|
19
|
Johnsson AK, Karlsson R. Microtubule-dependent localization of profilin I mRNA to actin polymerization sites in serum-stimulated cells. Eur J Cell Biol 2010; 89:394-401. [PMID: 20129697 DOI: 10.1016/j.ejcb.2009.10.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 10/29/2009] [Accepted: 10/29/2009] [Indexed: 12/12/2022] Open
Abstract
Specific localization of messenger RNA (mRNA) appears to be a general mechanism to accumulate certain proteins to subcellular compartments for participation in local processes, thereby maintaining cell polarity under strict spatiotemporal control. Transportation of mRNA with associated protein components (RNP granules) by the actin microfilament or the microtubule systems is one important mechanism to achieve this locally distributed protein production. Here we provide evidence for a microtubule-dependent localization of mRNA encoding the actin regulatory protein profilin to sites in mouse embryonic fibroblasts, which express enhanced actin polymerization.
Collapse
Affiliation(s)
- Anna-Karin Johnsson
- Department of Cell Biology, WGI, Stockholm University, SE-106 91 Stockholm, Sweden
| | | |
Collapse
|