1
|
Yip AJW, Lee YZ, Kow ASF, Wong CSA, Lee MT, Tham CL, Tan JW. Current utilization trend of immortalized mast cell lines in allergy research: a systematic review. Immunol Res 2025; 73:41. [PMID: 39838115 PMCID: PMC11750950 DOI: 10.1007/s12026-024-09562-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 11/07/2024] [Indexed: 01/23/2025]
Abstract
Today, in the modern world, allergic diseases, also described as atopic allergies, are classified as a type of multifactorial disorder due to the complex interplay between genetics, environment, and socioeconomic factors that influence the disease's manifestation, severity, and one's predisposition to allergic diseases. It is undeniable that many reported studies have pointed out that the mast cell is one of the leading key players involved in triggering an allergic reaction. To improve our understanding of the molecular and cellular mechanisms underlying allergy, various mast cell lines have been employed in vitro to study the pathogenesis of allergic diseases for the past decades. However, there is no consensus on many fundamental aspects associated with their use, such as the effects of culture media composition and the type of inducer used for cell degranulation. As the standardization of research protocols and disease models is crucial, we present the outcome of a systematic review of scientific articles using three major immortalized in vitro mast cell lines (HMC-1, LAD2, and RBL-2H3) to study allergy. This systematic review described the cell source, culture conditions, inducers used for degranulation, and mediators released for examination. We hope that the present systematic review may help to standardize the use of immortalized in vitro mast cell lines in allergy research and serve as a user's guide to understand the fundamental aspects of allergy as well to develop an effective allergy therapy in the future for the betterment of human good health and wellbeing.
Collapse
Affiliation(s)
- Ashley Jia Wen Yip
- School of Science, Monash University Malaysia, Jalan Lagoon SelatanSubang Jaya, 47500, Bandar Sunway, Selangor, Malaysia
| | - Yu Zhao Lee
- Faculty of Medicine and Health Sciences, UCSI University, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Audrey Siew Foong Kow
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Carisa Su-Ann Wong
- School of Science, Monash University Malaysia, Jalan Lagoon SelatanSubang Jaya, 47500, Bandar Sunway, Selangor, Malaysia
| | - Ming-Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, 56000, Kuala Lumpur, Malaysia
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Natural Medicine and Product Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Ji Wei Tan
- School of Science, Monash University Malaysia, Jalan Lagoon SelatanSubang Jaya, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
2
|
Ménasché G, Longé C, Bratti M, Blank U. Cytoskeletal Transport, Reorganization, and Fusion Regulation in Mast Cell-Stimulus Secretion Coupling. Front Cell Dev Biol 2021; 9:652077. [PMID: 33796537 PMCID: PMC8007931 DOI: 10.3389/fcell.2021.652077] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/03/2021] [Indexed: 01/16/2023] Open
Abstract
Mast cells are well known for their role in allergies and many chronic inflammatory diseases. They release upon stimulation, e.g., via the IgE receptor, numerous bioactive compounds from cytoplasmic secretory granules. The regulation of granule secretion and its interaction with the cytoskeleton and transport mechanisms has only recently begun to be understood. These studies have provided new insight into the interaction between the secretory machinery and cytoskeletal elements in the regulation of the degranulation process. They suggest a tight coupling of these two systems, implying a series of specific signaling effectors and adaptor molecules. Here we review recent knowledge describing the signaling events regulating cytoskeletal reorganization and secretory granule transport machinery in conjunction with the membrane fusion machinery that occur during mast cell degranulation. The new insight into MC biology offers novel strategies to treat human allergic and inflammatory diseases targeting the late steps that affect harmful release from granular stores leaving regulatory cytokine secretion intact.
Collapse
Affiliation(s)
- Gaël Ménasché
- Laboratory of Molecular Basis of Altered Immune Homeostasis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Cyril Longé
- Laboratory of Molecular Basis of Altered Immune Homeostasis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Manuela Bratti
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Paris, France.,Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| | - Ulrich Blank
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Paris, France.,Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| |
Collapse
|
3
|
Wang S, Li L, Shi R, Liu X, Zhang J, Zou Z, Hao Z, Tao A. Mast Cell Targeted Chimeric Toxin Can Be Developed as an Adjunctive Therapy in Colon Cancer Treatment. Toxins (Basel) 2016; 8:E71. [PMID: 26978404 PMCID: PMC4810216 DOI: 10.3390/toxins8030071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 12/19/2022] Open
Abstract
The association of colitis with colorectal cancer has become increasingly clear with mast cells being identified as important inflammatory cells in the process. In view of the relationship between mast cells and cancer, we studied the effect and mechanisms of mast cells in the development of colon cancer. Functional and mechanistic insights were gained from ex vivo and in vivo studies of cell interactions between mast cells and CT26 cells. Further evidence was reversely obtained in studies of mast cell targeted Fcε-PE40 chimeric toxin. Experiments revealed mast cells could induce colon tumor cell proliferation and invasion. Cancer progression was found to be related to the density of mast cells in colonic submucosa. The activation of MAPK, Rho-GTPase, and STAT pathways in colon cancer cells was triggered by mast cells during cell-to-cell interaction. Lastly, using an Fcε-PE40 chimeric toxin we constructed, we confirmed the promoting effect of mast cells in development of colon cancer. Mast cells are a promoting factor of colon cancer and thus also a potential therapeutic target. The Fcε-PE40 chimeric toxin targeting mast cells could effectively prevent colon cancer in vitro and in vivo. Consequently, these data may demonstrate a novel immunotherapeutic approach for the treatment of tumors.
Collapse
Affiliation(s)
- Shan Wang
- The Second Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Clinical Specialty in Allergy, The State Key Laboratory of Respiratory Disease; Guangzhou 510260, China.
| | - Linmei Li
- The Second Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Clinical Specialty in Allergy, The State Key Laboratory of Respiratory Disease; Guangzhou 510260, China.
| | - Renren Shi
- The Second Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Clinical Specialty in Allergy, The State Key Laboratory of Respiratory Disease; Guangzhou 510260, China.
| | - Xueting Liu
- The Second Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Clinical Specialty in Allergy, The State Key Laboratory of Respiratory Disease; Guangzhou 510260, China.
| | - Junyan Zhang
- The Second Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Clinical Specialty in Allergy, The State Key Laboratory of Respiratory Disease; Guangzhou 510260, China.
| | - Zehong Zou
- The Second Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Clinical Specialty in Allergy, The State Key Laboratory of Respiratory Disease; Guangzhou 510260, China.
| | - Zhuofang Hao
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China.
| | - Ailin Tao
- The Second Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Clinical Specialty in Allergy, The State Key Laboratory of Respiratory Disease; Guangzhou 510260, China.
| |
Collapse
|
4
|
Huang H, Jiang L, Li S, Deng J, Li Y, Yao J, Li B, Zheng J. Using microfluidic chip to form brain-derived neurotrophic factor concentration gradient for studying neuron axon guidance. BIOMICROFLUIDICS 2014; 8:014108. [PMID: 24660043 PMCID: PMC3945791 DOI: 10.1063/1.4864235] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 01/24/2014] [Indexed: 05/29/2023]
Abstract
Molecular gradients play a significant role in regulating biological and pathological processes. Although conventional gradient-generators have been used for studying chemotaxis and axon guidance, there are still many limitations, including the inability to maintain stable tempo-spatial gradients and the lack of the cell monitoring in a real-time manner. To overcome these shortcomings, microfluidic devices have been developed. In this study, we developed a microfluidic gradient device for regulating neuron axon guidance. A microfluidic device enables the generation of Brain-derived neurotrophic factor (BDNF) gradient profiles in a temporal and spatial manner. We test the effect of the gradient profiles on axon guidance, in the BDNF concentration gradient axon towards the high concentration gradient. This microfluidic gradient device could be used as a powerful tool for cell biology research.
Collapse
Affiliation(s)
- Hui Huang
- Department of Clinical Laboratory Science, College of Medical Laboratory, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Lili Jiang
- Department of Clinical Laboratory Science, College of Medical Laboratory, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Shu Li
- Department of Microbiology, College of Basic Medical Science, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Jun Deng
- Department of Clinical Laboratory Science, College of Medical Laboratory, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Yan Li
- Department of Clinical Laboratory Science, College of Medical Laboratory, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Jie Yao
- Department of Clinical Laboratory Science, College of Medical Laboratory, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Biyuan Li
- Department of Clinical Laboratory Science, College of Medical Laboratory, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Junsong Zheng
- Department of Clinical Laboratory Science, College of Medical Laboratory, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| |
Collapse
|
5
|
Yamauchi A, Degawa-Yamauchi M, Kuribayashi F, Kanegasaki S, Tsuchiya T. Systematic single cell analysis of migration and morphological changes of human neutrophils over stimulus concentration gradients. J Immunol Methods 2013; 404:59-70. [PMID: 24370750 DOI: 10.1016/j.jim.2013.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 12/01/2013] [Accepted: 12/10/2013] [Indexed: 11/16/2022]
Abstract
To compare the responses of individual neutrophils to chemoattractants, migration pathway data were obtained using TAXIScan, an optically accessible/horizontal apparatus in which a concentration gradient is established reproducibly for a given stimulus. The observed linear-mode trajectory pattern of neutrophils toward N-formyl-methionyl-leucyl-phenylalanine (fMLP) or Interleukin (IL)-8/CXCL8 was distinguished from random migration patterns toward leukotriene (LT) B4 or platelet activating factor (PAF). The median values of velocity and directionality calculated for individual cells toward fMLP and IL-8 were both relatively similar and high, whereas the values toward LTB4 and PAF were widely dispersed over a lower range of directionality and from low to high ranges of velocity. The different patterns between the groups may be explained by unique morphology with single polarity toward fMLP and IL-8, and unstable morphology with multiple polarities toward LTB4 and PAF. Unique morphologies toward fMLP and IL-8 were not affected by coexisting LTB4 or PAF. On the other hand, the addition of suboptimum concentrations of fMLP or IL-8 to LTB4 or PAF induced a nearly maximum chemotactic response in most cells. These data suggest that exogenous formyl peptides and endogenous chemokines augment neutrophil accumulation at inflammation sites, whereas lipid mediators may play a role in supporting activation of the inflammatory cells for recruitment.
Collapse
Affiliation(s)
- Akira Yamauchi
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima, Kurashiki 701-0192, Japan.
| | | | - Futoshi Kuribayashi
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima, Kurashiki 701-0192, Japan
| | - Shiro Kanegasaki
- YU-ECI Research Center for Medical Science, Yeungnam University, Gyeongsan-City 712-749, Republic of Korea
| | - Tomoko Tsuchiya
- YU-ECI Research Center for Medical Science, Yeungnam University, Gyeongsan-City 712-749, Republic of Korea.
| |
Collapse
|